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The dynamic nonlinear response and stability of slender structures in the main resonance regions are a topic of importance in
structural analysis. In complex problems, the determination of the response in the frequency domain indirectly obtained through
analyses in time domain can lead to huge computational effort in large systems. In nonlinear cases, the response in the frequency
domain becomes even more cumbersome because of the possibility of multiple solutions for certain forcing frequencies. Those
solutions can be stable and unstable, in particular saddle-node bifurcation at the turning points along the resonance curves. In this
work, an incremental technique for direct calculation of the nonlinear response in frequency domain of plane frames subjected to
base excitation is proposed. The transformation of equations of motion to the frequency domain is made through the harmonic
balance method in conjunction with the Galerkin method. The resulting system of nonlinear equations in terms of the modal
amplitudes and forcing frequency is solved by the Newton-Raphson method together with an arc-length procedure to obtain the
nonlinear resonance curves. Suitable examples are presented, and the influence of the frame geometric parameters and basemotion
on the nonlinear resonance curves is investigated.

1. Introduction

Lightweight framed structures are extensively used in engi-
neering applications such as buildings, industrial construc-
tions, off-shore platforms, and aerospace structures. In civil
engineering, framed metal structures such as gabled frames
are efficient structural forms to withstand various loads such
as live, snow, wind, earthquake, and crane loads. Linear
models are usually used for the design of these structures.
However, as its slenderness increases, the degree of geometric
nonlinearity increases as well as the occurrence of instability
phenomena. Under dynamic loads, slender frames may be
subjected to unwanted (or unsafe) large vibration amplitudes
and accelerations and dynamic jumps in the main resonance
regions due to hardening or softening frequency-amplitude
relation and modal couplings. Therefore, an accurate non-
linear dynamic analysis is required. Recent earthquakes
have increased the interest in the development of reliable

analytical methods of assessing the dynamic response of
existing structures and, if necessary, developing effective
retrofit strategies. So, understanding the nonlinear dynamics
of framed structures under base excitation constitutes an
essential step for their safe design.

The seminal works by Koiter [1] and Roorda [2] have
shown the complex postbucking paths exhibited by slender
frames; subsequently, several authors have studied the non-
linear behavior of reticulated structures liable to buckling
under prescribed loading conditions. A compilation of these
first results can be found in Bazant and Cedolin [3] who
summarize many topics about the stability of slender frames.
Design prescriptions are found, for example, in Galambos
[4]. More recently, Silvestre and Camotim [5] presented a
semianalyticalmethod to analyze the geometrically nonlinear
behavior of plane frames, including the influence of eventual
buckling mode interaction phenomena. Later, they presented
the results concerning the elastic in-plane stability and
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second-order behavior of unbraced single-bay pitched-roof
steel frames and proposed a methodology to design this type
of commonly used structure. In particular, they showed that,
due to the rafter slope, the geometrically nonlinear behaviors
of orthogonal beam-and-column and pitched-roof frames are
qualitatively different [6]. The dynamics of such frames will
be investigated in this work. More recently, Galvão et al. [7]
assessed the effect of geometric imperfections and boundary
conditions on the postbuckling response and imperfection-
sensitivity of L-frames.

The dynamic response of slender frames in the main
resonance regions is an important topic in the analysis of
these structures under time varying loads. Several nonlinear
phenomena have been studied in the last decades. Simitses
[8] studied the effect of static preloading and suddenly
applied loads on the nonlinear vibrations and instabilities of
slender structures. Chan andHo [9] conducted the nonlinear
vibration analysis of steel frames with flexible connections.
Mazzilli and Brasil [10] presented an analytical study of
the nonlinear vibrations in a three-time redundant portal
frame, considering the effect of axial forces upon the natural
frequencies. The axial forces play an important role in tuning
the sway mode and the first symmetrical mode into a 1 : 2
internal resonance. Harmonic support excitations resonant
with the first symmetrical mode are then introduced and the
amplitudes of nonlinear steady states are computed based
upon a multiple scales solution. Later, Soares and Mazzilli
[11] described the implementation of a computer program
to calculate nonlinear normal modes of structural systems
and generate individual modes of planar framed structures
exhibiting geometrically nonlinear behavior. The procedure
follows the invariant manifold approach, adapted to handle
equations of motion of systems discretized by finite element
techniques. Chan and Chui [12] examined, based on their
previous works, the nonlinear static and cyclic behavior of
steel frames with semirigid connections. McEwan et al. [13]
proposed a method for modeling the large deflection beam
response involving multiple vibration modes, while Ribeiro
[14] analyzed the geometrically nonlinear vibrations of beams
and plane frames by the hierarchical finite element method
and examined the suitability of the proposed formulation for
time domain nonlinear analyses. Da Silva et al. [15] studied
the nonlinear dynamics of a low-rise portal frame using
the ANSYS finite element software. The results show the
influence of semirigid joints and geometrical nonlinearity
on the steel frames dynamics. More recently, Galvão et al.
[16] investigated the effect of semirigid connections on the
nonlinear vibrations of slender frames and obtained the
nonlinear relation between the natural frequencies and static
preloading. Su and Cesnik [17] introduced a strain-based
geometrically nonlinear beam formulation for structural and
aeroelastic modeling and analysis of slender wings of very
flexible aircraft. Solutions of different beam configurations
under static loads and forced dynamic excitations are com-
pared against ones from other geometrically nonlinear beam
formulations. Gonçalves et al. [18] published an experimental
analysis of the nonlinear vibrations of a slendermetal column
under self-weight. Masoodi and Moghaddam [19] studied
the nonlinear dynamics and natural frequencies of gabled

frames having flexible restraints and connections. To control
unwanted nonlinear phenomena and vibrations of frames,
several control techniques are proposed in literature. For
example, Palacios Felix et al. [20] examined the nonlinear
control method based on the saturation phenomenon. The
interaction of a nonideal source with a portal frame leads to
the occurrence of interesting nonlinear phenomena during
the passage through resonance when the nonideal excitation
frequency is near the portal frame natural frequency and
when the nonideal system frequency is approximately twice
the controller frequency (two-to-one internal resonance).
They also suggest the use of the portal frame for energy
harvesting.

The determination of a structure’s response in the fre-
quency domain, characterized by the resonance curves and
bifurcation diagrams, is, in some cases, indirectly obtained
through a series of analyses in time domain, varying step by
step a selected control parameter (see Parker and Chua [21]).
In this brute force approach, for each control parameter value,
the equations of motion must be integrated long enough to
reach the steady-state regime. This leads to a huge computa-
tional effort when analyzing structures with a large number
of degrees of freedom [16]. In nonlinear cases, the response
in the frequency domain becomes even more cumbersome
because of the possibility of multiple solutions for certain
forcing frequencies. Those solutions can be stable and unsta-
ble, and bifurcations can appear, in particular saddle-node
bifurcation at the turning points along the resonance curves.
To predict the nonlinear response in frequency domain, some
methods are used, such as the harmonic balance method
(HBM) and other integral transformations. Based on the
HBM, Nakhla and Valch [22] proposed a method for the
solution of nonlinear periodic networks, avoiding the time
domain solution of the dynamic equations. Lau et al. [23]
formulated an incremental variational process based on the
HBM to study the nonlinear vibrations of elastic systems.
Further, Cheung and Chen [24] used the formulation of
the incremental harmonic balance method (IHB) to solve
a system of differential equations with cubic nonlinearity,
which governs a wide range of engineering problems such as
large-amplitude vibration of beams or plates. An incremental
arc-length method combined with a cubic extrapolation
technique is adopted to trace the response curves. Chen et al.
[25] generalized this technique to use the incremental HBM
in a finite element context, being able to use the HBM in
the study of systems with several degrees of freedom. Due
to its simple formulation and relatively easy implementation,
the HBM is one of the most popular methods to study the
nonlinear vibrations of structures [26]. The algebraic system
of nonlinear equations, which results from theHBM, requires
a numerical procedure to obtain the solutions. Frequently,
Newton’s method is adopted to solve the nonlinear system.
However, in many cases, the resonance curves exhibit limit
points and, in such cases, the use of continuation methods
is necessary. For example, Ribeiro and Petyt [27] studied the
free and steady-state forced vibrations of thin plates. Symbolic
computation is employed in the derivation of the model
and the equations of motion are solved by the Newton and
continuation methods. Von Groll and Ewins [28] described a
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numerical algorithm based on the harmonic balance method
to study rotor/stator interaction dynamics under periodic
excitation. The algorithm also calculates turning points and
follows solution branches via arc-length continuation. More
recently, Ferreira and Serpa [29] described the application
of the arc-length method to solve a system of nonlinear
equations obtaining as a result the nonlinear frequency
response. In a recent work, Londoño et al. [30] used contin-
uation methods in frequency domain to obtain the backbone
curves of several nonlinear systems, while Renson et al. [31]
presented numerical methodologies for the computation of
nonlinear normal modes in mechanical system.

Stoykov and Ribeiro [32, 33] investigated the geometri-
cally nonlinear free vibrations of beams using a 𝑝-version
finite element method. The variation of the amplitude of
vibration with the frequency of vibration is determined and
presented in the form of backbone curves. Coupling between
modes is investigated, internal resonances are found, and
the ensuing multimodal oscillations are described. Formica
et al. [34] present a computational framework to perform
parameter continuation of periodic solutions of nonlinear,
distributed-parameter systems represented by partial dif-
ferential equations with time-dependent coefficients and
excitations. As a case study, they consider a nonlinear beam
subject to a harmonic excitation.

An important design concern is the dynamics of slender
frames subjected to seismic loads. In such cases, the response
of the structure in frequency domain is important, since the
vulnerability of structure during an earthquake is related to
the relation between the natural vibration frequencies of the
structure and the frequency content of the seismic load, as
studied in Paullo Muñoz et al. [35] who assess the frequency
domain response of slender frames under seismic excitation.
In seismic events, the ground acceleration magnitude is a
crucial parameter, since the effect of the excitation on the
structure is directly related to acceleration magnitude. Most
recorded events have a magnitude lower than 1𝑔. However,
peak acceleration greater than 1𝑔 has been registered. For
example, an accelerationmagnitude of 1.7𝑔was registered for
the Los Angeles earthquake, and a peak acceleration of 2.99𝑔
was registered for the 2011 Tohoku earthquake [36]. Douglas
[37] presented a review of equations for the estimation of
peak ground acceleration using strong-motion records, while
Katsanos et al. [38] reviewed alternative selection procedures
for incorporating strong ground motion records within the
framework of seismic design of structures. There are many
other research areas where the influence of base acceleration
on structural components is important, including subsurface
explosions, rotating machinery, and launching vehicles.

In this work, an incremental technique for the direct
calculation of the nonlinear dynamic response in frequency
domain of nonlinear plane frames discretized by the finite ele-
ment method and subjected to a base excitation is proposed.
The transformation of discretized equations of motion, in the
finite element context, to the frequency domain is accom-
plished here through the classical harmonic balance method
(HBM). For the nonlinear analysis, a particular adaptation
of the HBM-Galerkin methodology presented by Cheung
and Chen [24] and generalized for the use in FEM context

by Chen et al. [25] is proposed here. The resulting system
of nonlinear equations in terms of the modal amplitudes
and forcing frequency is solved by the Newton-Raphson
method together with an arc-length procedure to obtain
the nonlinear resonance curves. Examples of commonly
used frame geometries are presented and the influence of
vertical and horizontal base motions on the frame nonlinear
response as a function of the frame geometric parameters is
analyzed.

2. Formulation

2.1. Equations of Motion. For a structural system under
the action of harmonic forcing with a prescribed forcing
frequency Ω, the nonlinear equations of motion can be
written as

Mü (𝑡) + Cu̇ (𝑡) + Fi (u (𝑡)) = 𝐹 cos (Ω𝑡) f , (1)

where M, C, and Fi are the mass matrix, damping matrix,
and the vector of nonlinear elastic forces, respectively, with
Fi being dependent on the nodal displacement vector u(𝑡)
and on the geometric nonlinear formulation; f is the vector
of external applied loads at the nodal points, which gives the
amount of forces at each DOF, and 𝐹 and Ω are, respectively,
the magnitude and frequency of the harmonic excitation.

2.2. Harmonic Balance Method (HBM) for Linear Analysis.
The HBM is one of the most popular methods for the
nonlinear analysis of dynamical systems. In this method, the
displacement field is approximated by a finite Fourier series
of the form

u (𝑡) = 𝑁∑
𝑛=0

[A𝑛 cos (𝑛Ω𝑡) + B𝑛 sin (𝑛Ω𝑡)] , (2)

where A𝑛 and B𝑛 are the modal amplitude vectors corre-
sponding to the 𝑛th harmonic and 𝑁 is the number of terms
considered in the approximation. For the linear damped case,
it is only necessary to retain the second term in (2). Thus, the
nodal displacement vector takes the form

u (𝑡) = A1 cos (Ω𝑡) + B1 sin (Ω𝑡) . (3)

Introducing (3) into (1) results in

(ΩCA1 − Ω2MB1) cos (Ωt)
− (Ω2MA1 + ΩCB1) sin (Ωt) = 𝐹f cos (Ωt) . (4)

Taking 𝐹f = F0 and Fi = Ku(𝑡), where K is the linear
stiffness matrix, and applying the HBM to equation (4), the
following system is obtained:

[ C −ΩM + K

−Ω2M + K −ΩC
] {A1

B1
} = {F0

0
} . (5)

Equation (5) can be expressed in a more compact form as

K (Ω)D − F = 0, (6)
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where

K (Ω) = [ ΩC −Ω2M + K

−Ω2M + K −ΩC
] ,

D = {A1

B1
} ,

F = {F0
0

} .

(7)

As a result of the transformation of the system of equa-
tions to the frequency domain and the use of continuation
techniques together with an arc-length constraint, the forcing
frequency Ω and the modal amplitude vector D are the
unknowns in (7) [29, 39, 40]. Even in the linear case, the
transformation of (1) to the frequency domain leads to a
nonlinear system of algebraic equations, with the use of
nonlinear techniques such as the Newton-Raphson method
being necessary.

2.3. HBM-Galerkin Methodology for Nonlinear Analysis. For
the nonlinear analysis, considering that the steady-state
response is periodic, it is convenient to use a periodic
nondimensional time variable defined as

𝜏 = Ω𝑡. (8)

Substituting (8) into (1), the equation of motion can be
rewritten as

Ω2Mü (𝜏) + ΩCu̇ (𝜏) + Fi (u (𝜏)) = 𝐹 cos (𝜏) f (9)

and each component of the displacement vector can be
approximated by

𝑢𝑖 (𝜏) = 𝑁∑
𝑛=0

[𝑎𝑖,𝑛 cos (𝜏) + 𝑏𝑖,𝑛 sin (𝜏)] . (10)

For a damped system with quadratic nonlinearity, at least
the first two terms of the Fourier series must be considered
[39]:

𝑢𝑖 (𝜏) = 𝑎𝑖,0 + 𝑏𝑖,1 cos (𝜏) + 𝑐𝑖,1 sin (𝜏) . (11)

For a damped system with only cubic nonlinearity, it is
necessary to consider at least the following terms [39]:

𝑢𝑖 (𝜏) = 𝑎𝑖,1 cos (𝜏) + 𝑏𝑖,1 sin (𝜏) . (12)

Plane frames exhibit quadratic and cubic nonlinearities.
Define

𝑢𝑖 = C (𝜏) d𝑖 (13)

with

C (𝜏)= ⟨1, sin (𝜏) , cos (𝜏)⟩ ,
d𝑖= ⟨𝑎𝑖,0, 𝑏𝑖,1, 𝑐𝑖,1⟩T . (14)

Consider the following relation:

u (𝜏) = S (𝜏)D, (15)

where

S (𝜏) =

[[[[[[[[[[[[[
[

C (𝜏) 0 0 0 ⋅ ⋅ ⋅ 0
0 C (𝜏) 0 0 ⋅ ⋅ ⋅ 0
0 0 C (𝜏) 0 ⋅ ⋅ ⋅ 0

0 0 0 C (𝜏) ⋅ ⋅ ⋅ ...
... ... ... ... d 0
0 0 0 ⋅ ⋅ ⋅ 0 C (𝜏)

]]]]]]]]]]]]]
]𝑁×3𝑁

,

D = ⟨d1, d2, . . . , d𝑁⟩T
1×3𝑁

.

(16)

𝑁 is total number of degrees of freedom. Introducing (15) into
(9), the following matrix equation is obtained:

Ω2MS̈ (𝜏)D + ΩCṠ (𝜏)D + Fi (S (𝜏)D) = F0 cos (𝜏) . (17)

Considering that the solution is periodic, multiplying
both sides of (17) by S(𝜏)T and integrating the resulting
expression over a period, one obtains [40]

∫2𝜋
0

S (𝜏)T [Ω2MS̈ (𝜏)D + ΩCṠ (𝜏)D
+ Fi (S (𝜏)D)] 𝑑𝜏 = ∫2𝜋

0
S (𝜏)TF0 cos (𝜏) 𝑑𝜏.

(18)

In a compact form, (18) can be expressed as

Ω2MD + ΩCD + Fi (D) = F, (19)

where

M = ∫2𝜋
0

S (𝜏)TMS̈ (𝜏) ⋅ 𝑑𝜏,
C = ∫2𝜋

0
S (𝜏)TCṠ (𝜏) ⋅ 𝑑𝜏

F = ∫2𝜋
0

S (𝜏)TF0 cos (𝜏) 𝑑𝜏,
Fi (D) = ∫2𝜋

0
S (𝜏)TFi (S (𝜏) ⋅ D) 𝑑𝜏.

(20)

Equation (19) is a nonlinear systemof algebraic equations,
in which the unknowns are the forcing frequency Ω and
the modal amplitude vector D. The internal force vector in
frequency domain Fi(D) is obtained from the transformation
of Fi(u(𝜏)). In this context, an explicit expression for Fi(u(𝜏))
is necessary. The next step is the solution of the nonlinear
system of algebraic equations.
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2.4. Solution of the Nonlinear System of Equations. The trans-
formation of the equations of motion from time to frequency
domain results in a nonlinear system of algebraic equations
both for the linear and nonlinear cases, as shown by (6) and
(19), with the unknown variables being the forcing frequency
and the modal amplitudes. In this section, the technique to
solve the nonlinear system of equations must consider the
possibility of frequency and amplitude limit points. In this
context, (6) can be defined in a general form as

R (Ω,D) = 0. (21)

Through an incremental analysis, the dynamic equilib-
rium in the 𝑖th step is given by

R (Ω𝑖,D𝑖) = 0. (22)

The unknown variables in the 𝑖th step are obtained by the
incremental analysis as

Ω𝑖 = Ω𝑖−1 + ΔΩ𝑖,
D𝑖 = D𝑖−1 + ΔD𝑖. (23)

Introducing (22) into (21) results in

R (Ω𝑖−1 + ΔΩ𝑖,D𝑖−1 + ΔD𝑖) = 0. (24)

The frequency and amplitude increments ΔΩ𝑖 and ΔA𝑖
can be calculated iteratively as

ΔΩ𝑘𝑖 = ΔΩ𝑘−1𝑖 + 𝛿Ω𝑘𝑖 ,
ΔD𝑘𝑖 = ΔD𝑘−1𝑖 + 𝛿D𝑘𝑖 ,

(25)

where 𝛿Ω𝑘𝑖 and 𝛿D𝑘𝑖 are the correctors which can be obtained
through the first variation of (24) as

𝛿R𝑘= 𝜕R𝑘−1
𝜕D𝑖 𝛿D𝑘𝑖 + 𝜕R𝑘−1𝜕Ω𝑖 𝛿Ω𝑘𝑖 (26)

or, in a more compact form, as

Km𝑘−1𝛿D𝑘𝑖 + 𝛿Ω𝑘𝑖 f𝑘−1 = 𝛿R𝑘. (27)

To solve (27), an additional constraint equation is neces-
sary. In this work, a spherical arc-length constraint is used
[41, 42]:

ΔD𝑇𝑖 ΔD𝑖 + (ΔΩ𝑘𝑖 )2 f𝑘−1Tf𝑘−1 − Δ𝑙2𝑖 = 0. (28)

From (24), (25), (27), and (28), it is possible to obtain the
iterative frequency corrector as

𝛿Ω𝑘𝑖 =
{{{{{{{{{{{{{

±

Δ𝑙2𝑖
√vTv+f𝑘−1Tf𝑘−1

for 𝑘 = 1

− r𝑘
𝑇
v𝑘

v𝑘Tv𝑘
for 𝑘 > 1,

(29)

where

v𝑘 = (Km𝑘−1)−1 f𝑘−1,
r𝑘 = (Km𝑘−1)−1 R𝑘−1.

(30)

The signal of the first frequency corrector, also called
frequency predictor, can be obtained using the positive work
criterion as

sign (𝛿Ω1𝑖 ) = sign((v𝑘)T ⋅ f𝑘−1) . (31)

For linear systems, Km and f can be defined by the
following expressions:

Km = [ ΩC −Ω2M + K

−Ω2M + K −ΩC
] ,

f = [ C −2𝜔M
−2𝜔M −C ]D.

(32)

Analogously, for the nonlinear case, Km and f can be
obtained from the following relations:

Km = Ω2M + ΩC + 𝜕Fi (D)
𝜕D ,

f = (2ΩM + C) ⋅ D.
(33)

2.5. Geometric Nonlinear Consideration. An explicit expres-
sion for Fi(u(𝜏)) is necessary. Considering an incremental
analysis, the nodal displacement vector can be expressed as

u (𝑡𝑖) = u (𝑡𝑖−1) + Δu (𝑡) . (34)

Analogously, the internal forces vector can be calculated as

Fi (𝑡𝑖) = Fi (𝑡𝑖−1) + ΔFi (𝑡) . (35)

Fi can be derived once the kinematic relations and
constitutive law are defined. These relations depend on the
adopted nonlinear strain measure formulation [7, 16]. In
this paper, only the geometric nonlinearity is considered.
In this context, the internal force increment vector can be
approximated as

ΔFint = (KL + KNL) Δu, (36)

where KL is the linear elastic stiffness matrix and KNL
is the nonlinear stiffness matrix. Considering a linearized
formulation, the nonlinear stiffness matrix for an Euler-
Bernoulli beam-column plane element in a local system of
reference can be defined as [7, 16]
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KNL =

[[[[[[[[[[[[[[[[[[[[[[[
[

𝑃𝐿 𝑀1 + 𝑀2𝐿2 0 − 𝑃𝐿 − 𝑀1 + 𝑀2𝐿2 0
𝑀1 + 𝑀2𝐿2 6𝑃5𝐿 𝑃10 − 𝑀1 + 𝑀2𝐿2 − 6𝑃5𝐿 𝑃10

0 𝑃10 𝑃𝐿15 0 − 𝑃10 − 𝑃𝐿30
− 𝑃𝐿 − 𝑀1 + 𝑀2𝐿2 0 𝑃𝐿 𝑀1 + 𝑀2𝐿2 0

− 𝑀1 + 𝑀2𝐿2 − 6𝑃5𝐿 − 𝑃10 𝑀1 + 𝑀2𝐿2 6𝑃5𝐿 − 𝑃10
0 𝑃10 − 𝑃𝐿30 0 − 𝑃10 𝑃𝐿15

]]]]]]]]]]]]]]]]]]]]]]]
]

, (37)

where 𝑃 is the average internal axial force and 𝑀1 and 𝑀2
are the internal bending moments in the initial and the end
nodes, respectively. For a prismatic bean-column element,
the internal forces can be expressed as a function of the axial
and transversal displacements, respectively, 𝑢(𝑥) and V(𝑥), as

𝑃 = 𝐸𝐴 ( 𝜕𝑢 (𝑥)𝜕𝑥 + 1𝐿 ∫𝐿
0

( 𝜕V (𝑥)𝜕𝑥 )2 ⋅ 𝑑𝑥)
𝑀 = 𝐸𝐼 ( 𝜕2V (𝑥)𝜕𝑥2 ) ,

(38)

where 𝐸 is Young’s modulus, 𝐴 is the cross-sectional area,
and 𝐼 is the moment of inertia. The displacement fields
can be expressed by interpolation of nodal displacement
components as

𝑢 (𝑥) = 2∑
𝑖=1

𝐻𝑖 (𝑥) 𝑢𝑖,

V (𝑥) = 6∑
𝑖=3

𝐻𝑖 (𝑥) 𝑢𝑖,
(39)

where 𝐻𝑖(𝑥) is the shape function used for the finite element
discretization. Analogous to (15), the increment of the nodal
displacement vector can by calculated as

Δu (𝑡) = S (𝜏) ΔD. (40)

Solving (15), (35), (36), and (40), the nodal internal force
vector Fi at the 𝑖th increment can be obtained as

Fi𝑖 = KLS (𝜏)D + Fi𝑖−1 + KNLS (𝜏) ΔD. (41)

Finally, the nodal internal force vector in frequency
domain defined in (20) can be calculated as

Fi𝑖 (D) = KLD𝑖 + KNLΔD + Fi𝑖−1 (D) , (42)

where

KL = ∫2𝜋
0

S (𝜏)𝑇KLS (𝜏) 𝑑𝜏
KNL = ∫2𝜋

0
S (𝜏)𝑇KNLS (𝜏) 𝑑𝜏

Fi𝑖−1 (D) = ∫2𝜋
0

S (𝜏)𝑇FNL𝑖−1𝑑𝜏.
(43)

In linear case, Fi(D) = KLD, and the resultant nonlinear
system of equations defined by (19) is the same as the system
obtained through the classical HBM (see (5)).

2.6. Equivalent Rotation Matrix. In order to assemble the
global system of equations, the matrices M, C, KL, and KNL
must be defined in global coordinates. The matrices M, C,
and KL are the same for any reference system, since they
are constant. On the other hand, KNL, defined by (37), is
formulated in a local reference frame. Thus, its rotation to
the global reference system is necessary. It is defined in global
reference frame by

KNL = ∫2𝜋
0

S (𝜏)𝑇T𝑇KNLTS (𝜏) 𝑑𝜏, (44)

where T is a rotation matrix. The rotation matrix for a
plane beam-column element can be found in [15]. In terms
of the computational implementation, it is not convenient
to rotate the stiffness matrix KNL before frequency domain
transformation, since the elements of KNL have large expres-
sion which depend on nodal displacement, even in the local
reference frame. So, it is convenient to rotate KNL after the
transformation of the equations to the frequency domain,
using an equivalent rotation matrix. In this case, it takes the
form

KNL = T󸀠𝑇∫2𝜋
0

S (𝜏)𝑇KNLS (𝜏) 𝑑𝜏T󸀠, (45)
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Figure 1: Tower model with concentrated mass at top and elastoplastic support.

0

0.05

0.1

0.15

0.2

0.25

A
m

pl
itu

de
 n

or
m

 (m
)

Time dom. int. k = 1011 kNm/rad
Time dom. int. k = infinite
HBM k = 1011 kNm/rad
HBM k = infinite

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.000.00
Ω (rad/s)

Figure 2: Variation of themaximumdisplacement at the top of the tower as a function of the forcing frequencyΩ obtained with the harmonic
balance method (HBM) and with time domain integration. 𝐴𝑥 = 0.8𝑔.

m = 10kg
kl = 5N/m

k = kl + knlu(t)
2

f(t) = 0.4m · cos (�휔t)

u(t)

m

Figure 3: 1-DOF model with cubic nonlinear stiffness under harmonic excitation.

where T󸀠 is the equivalent rotation matrix, which satisfies the
following condition:

T󸀠𝑇S (𝜏)𝑇 = S (𝜏)𝑇T𝑇. (46)

Taking into account the block-diagonal characteristic of S(𝜏)
and since T is an orthogonal matrix, it is possible to find

an explicit expression for T󸀠 as a function of T through the
following expression:

T󸀠 = [[[[
[

t󸀠1,1 . . . t󸀠1,NGL... d
...

t󸀠NGL,1 . . . t󸀠NGL,NGL

]]]]
]

, (47)
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Figure 5: Pitched-roof frame model and four first natural vibration modes.

where NGL is the number of degrees of freedom and t󸀠𝑖,𝑗 is a
submatrix given by

t󸀠𝑖,𝑗 = T𝑖,𝑗I3, (48)

where I3 is an identity matrix of order three.

3. Numerical Examples

3.1. Linear Analysis Validation. As a first example, a simple
tower model with a concentrated mass at the top and an
elastic rotational support at the base is studied to validate the
linear formulation. The finite element model is composed of
10 beam-column Euler-Bernoulli elements. The geometrical
and material properties are shown in Figure 1. The tower is
under the action of a horizontal harmonic base displacement.

Figure 2 shows the variation of the maximum displace-
ment at the top of the tower as a function of the forcing

frequency Ω (resonance curve) for a forcing magnitude 𝐴𝑥 =0.8𝑔, where 𝑔 is the acceleration of gravity, considering two
values of the elastic support stiffness 𝑘𝑟. The results obtained
with the present formulation and continuation scheme agree
with the results obtained from a time domain analysis. This
shows the coherence of the result obtained with the proposed
method.

3.2. Nonlinear Analysis Validation. As a second example, a
simple mass-spring system with cubic nonlinearity under
harmonic excitation is studied to validate the nonlinear
formulation. The schematic representation of the system and
relevant properties are shown in Figure 3. In this example,
damping is not considered.

Figure 4 shows the nonlinear resonance curves obtained
through the present HBM-Galerkin methodology and time
domain simulations for positive (hardening) and negative
(softening) cubic nonlinearity (𝑘nl = ±10N/m3). The results
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Figure 6: Variation of the norm of the horizontal and vertical vibration amplitudes at the roof top as a function of the excitation frequency
for a horizontal base excitation and three values of the roof height 𝐻. 𝐴𝑥 = 0.96𝑔.

obtained with the present HBM-Galerkin scheme and with
time domain simulations are very close, validating the non-
linear formulation. It can be also observed that the algorithm
is able to bypass the limit point associated with the saddle-
node bifurcation. As expected, the time domain analysis
is not able to trace the unstable branches of resonance
curves.

3.3. Frequency Domain Analysis of Slender Frames

3.3.1. Pitched-Roof Frame. A pitched-roof frame fixed at the
base and with a constant cross section is studied to assess
the behavior of this type of commonly used structure under
horizontal and vertical base excitation. The geometry and
material properties of the frame are shown in Figure 5, as well
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Figure 7: Variation of the norm of the vertical vibration amplitude at the roof top as a function of the excitation frequency for a vertical base
excitation and three values of the roof height 𝐻. 𝐴𝑦 = 0.96𝑔.

Table 1: Four first natural frequencies of the pitched-roof frame.

𝐻 (m) Natural vibration frequency (rad/s)
1st mode 2nd mode 3rd mode 4th mode

0.0 21.82 48.97 130.54 161
3.0 19.61 47.14 108.23 159.80
6.0 15.40 36.42 83.21 92.08

as the configuration of the first four natural vibration modes,
with the first and third modes being antisymmetric and the
second and fourth modes being symmetric. The influence of
the roof height on the response is also investigated. Table 1
shows the first four natural frequencies for the three values
of 𝐻 considered in the numerical analysis. The vibration fre-
quencies decrease with𝐻, as the frame slenderness increases.
The structure is modeled with twenty bean-column elements:
8 elements of the same size for the columns and 12 elements
for the roof.

Figure 6 shows the variation of the norm of the horizontal
and vertical components of the displacement at top of the

frame, 𝐷𝑥 and 𝐷𝑦, respectively, as a function of the forcing
frequency, Ω, considering both linear (blue) and nonlinear
(red) FE formulations for three values of the height of the
roof pitches (𝐻 = 0m, 3m, and 6m) and considering a
horizontal excitation magnitude: 𝐴𝑥 = 0.96𝑔. The horizontal
base motion excites the first and the third modes only, which
correspond to predominantly lateral deformation modes.
The nonlinear effect is present in the first resonance region,
where a hardening behavior is observed. The first peak and,
consequently, the nonlinearity increase with increasing roof
height, with the nonlinear maximum vibration amplitude
being slightly lower than the linear one. After the first peak,
the nonlinear and linear responses are practically coincident.
The vertical displacement 𝐷𝑦 is smaller than the vertical
component and is overestimated in a linear analysis. Figure 7
displays the response for a vertical excitation magnitude:𝐴𝑦 = 0.96𝑔. The vertical base motion excites the second
and fourth modes; these modes correspond to symmetric
vibration modes with predominantly vertical motion. For
vertical base excitation, the resonance peak of the vertical
motion decreases when the roof height increases and the
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Figure 8: Variation of the norm of the vertical and horizontal vibration amplitudes at the roof top as a function of the excitation frequency
for simultaneous vertical and horizontal excitation and three values of the roof height 𝐻. 𝐴𝑥 = 0.8𝑔 and 𝐴𝑦 = 0.667𝐴𝑥.

effect of nonlinearity is negligible. In this case, due to the
symmetry of the displacement field, the lateral motion of the
top node is zero.

Figure 8 shows the norm of the horizontal and vertical
displacement as a function of the forcing frequency for the
frame excited in both the horizontal and vertical directions.

This is a typical excitation in seismic analysis where both
components are usually present. Following the suggestion
of some seismic code [43], the intensity of the vertical base
motion is adopted as 0.67 times the intensity of the horizontal
base motion (𝐴𝑦 = 0.66𝐴𝑥). In this case, all vibration
modes are excited.The influence of geometric nonlinearity is
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Figure 10: Influence of the roof height on the nonlinear response of the arched-roof frame under horizontal excitation. 𝐴𝑥 = 0.96𝑔.

evident in the two first resonance regions, where a hardening
behavior, leading to possible dynamic jumps, is observed. As
the roof height increases, themagnitude of𝐷𝑥 corresponding
to the first resonant peak increases, while the magnitude of
second peak decreases. On the other hand, the magnitude

of vertical displacement 𝐷𝑦 is reduced in the two first
resonance regions with the increase of the roof height. These
nonlinear resonance curves exhibit amplitude and frequency
limit points. This indicates the existence of fold (saddle-
node) bifurcations, which can only be mapped by the use of
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Figure 11: Influence of the roof height on the nonlinear response of the arched-roof frame under vertical excitation. 𝐴𝑦 = 0.96𝑔.

continuation techniques.The solutions between the two limit
points are unstable.

3.3.2. Arched-Roof Frame. Now, an arched-roof framefixed at
the base and with a constant cross section is studied to assess
the behavior of this typical structural form under horizontal
and vertical base excitation.The structure has the same span,
column height, and cross section as the pitched roof, as well
as the same material properties, as shown in Figure 9, to
enable comparisons of the results. An incomplete circular
arch with height 𝐻 is considered. Figure 9 also shows the
configuration of the first four vibration modes. Table 2 shows
the first four natural frequencies for three values of the arch
height, 𝐻. As in the previous example, the first and third
modes are antisymmetric, while the second and fourthmodes
are symmetric.

Figures 10 and 11 show the variation of the norm of
the vertical and horizontal displacements at top of the arch
as a function of the forcing frequency for horizontal and
vertical harmonic excitation, respectively, and considering
both linear (blue) and nonlinear (red) formulations. For the

Table 2: Natural vibration frequencies of the arched-roof frame.

𝐻 (m) Natural vibration frequency (rad/s)
1st mode 2nd mode 3rd mode 4th mode

1.0 21.02 51.73 122.60 167.05
3.0 17.81 48.51 97.77 151.60
5.0 13.20 40.79 74.02 113.41

horizontal base excitation, the first and the third modes are
excited and the nonlinear effect is only noticed in the first
peak leading to a hardening behavior and decrease of the
maximum lateral displacement. As in the previous example,
the first peak increases with the increase of the roof height.
For vertical base excitation, only the second and fourth
modes are excited and the nonlinear effect is slightly noted
in the first peak only, where a softening behavior is observed.
In this case, the first peak amplitude decreases when the roof
height increases. Comparing the results of the pitched roof
and arched roof for 𝐻 = 3m, one can observe that the arched
roof is more flexible, leading to higher vibration amplitudes.
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Figure 12: Variation of the norm of the vertical and horizontal vibration amplitudes at the roof top as a function of the excitation frequency
for simultaneous vertical and horizontal excitation and three values of the roof height 𝐻. 𝐴𝑥 = 0.8𝑔 and 𝐴𝑦 = 0.667𝐴𝑥.

Figure 12 shows the variation of the maximum horizontal
(𝐷𝑥) and vertical displacements (𝐷𝑦) at the top of arch,
considering both horizontal and vertical base excitationswith𝐴𝑦 = 0.667𝐴𝑥 and 𝐴𝑥 = 0.8𝑔. In this case, all vibration
modes are excited. The influence of the geometric nonlin-
earity is evident in the two first resonance regions, where

a hardening behavior leading to possible dynamic jumps is
observed. As the roof height increases, the magnitude of𝐷𝑥 corresponding to the first resonant peak increases, while
the magnitude of second peak decreases. The magnitude of
vertical displacement 𝐷𝑦 decreases in the two first resonance
regions with the increase of the roof height.
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Figure 13: Influence of the roof height on the nonlinear response of the frame under horizontal and vertical excitation. 𝐴𝑥 = 0.8𝑔 and 𝐴𝑦 =0.667𝐴𝑥.

3.3.3. Pitched-Roof Framewith a Long Span. Now, the pitched
roof is again analyzed considering a span length 𝐿 = 16.0m,
increasing thus the frame’s slenderness. The other properties
of the system are the same as those shown in Figure 5. Table 3
shows the first four natural frequencies for the three values of

the roof height. Compared with the results in Table 1, a strong
decrease in the natural frequencies is observed.

Figure 13 shows the resonance curves of the horizontal
(𝐴𝑥) and vertical (𝐴𝑦) displacement at the top of the frame
considering vertical and horizontal harmonic base excitation
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Figure 14: Influence of increasing magnitude 𝐴𝑥 on the nonlinear response of the frame under horizontal excitation. Norm of the horizontal
displacement at top of pitched-roof as a function of the forcing frequency. 𝐿 = 10 and 𝐻 = 6m.

acting simultaneously with amplitude of the horizontal accel-
eration of 𝐴𝑥 = 0.8𝑔 and vertical acceleration of 𝐴𝑦 =0.66𝐴𝑥. The nonlinear effects are visible in the two first
resonance regions, similar to the frame with 𝐿 = 10m.
However, the two first natural frequencies are close, especially
for 𝐻 = 0m, leading to modal interaction between the
two first modes and a large excitation region, where large-
amplitude vibrations occur. Compared with the results in
Figure 6, for 𝐿 = 10m, a marked increase in the lateral
and vertical displacements is observed.The vertical displace-
ments are particularly large around the second vibration
frequency.

3.3.4. Strong Base Motion. Now, the effect of strong base
motion on the nonlinear dynamics of the pitched-roof
frame (Section 3.3.1), arched-roof (Section 3.3.2) frame, and
pitched-roof frame with long span (Section 3.3.3) is assessed.
For this, a parametric study considering the variation of the
ground acceleration magnitude is presented. A maximum
acceleration peak of 3.6𝑔 for a single direction excitation
and of 3.0𝑔 for horizontal and vertical excitations acting
simultaneously is adopted.

Figure 14 shows the variation of the maximum horizontal
displacement at top of the pitched-roof frame (Figure 5)
as a function of the forcing frequency for increasing base
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Figure 15: Influence of increasing base motion 𝐴𝑥 on the nonlinear response of the frame under vertical excitation. Norm of the vertical
displacement at top of pitched roof as a function of the forcing frequency. 𝐿 = 10m and 𝐻 = 6m.

Table 3: Natural vibration frequency of pitched-roof frame.

𝐻 (m) Natural frequency of vibration (rad/s)
1st mode 2nd mode 3rd mode 4th mode

0.0 16.60 21.09 60.68 117.35
3.0 15.52 25.58 58.03 91.95
6.0 12.93 24.82 50.24 59.47

excitation magnitude. A sharp increase in the vibration
amplitude and the hardening nonlinearity of the response
in the first resonance region is observed. For strong base
motions, the effect of the nonlinearity in the vicinity of the
third vibration frequency begins to appear, being also of the
hardening type. The second mode is not excited.

Figure 15 shows the frame response due to vertical
harmonic acceleration, considering 𝐴𝑥 = 1.8𝑔 and 𝐴𝑥 =3.6𝑔. The effect of the geometric nonlinearity is observed
in the resonance regions associated with the second and
fourth vibration modes, exhibiting softening behavior. The
softening behavior is due to quadratic nonlinearities and is
connected with the interaction between axial and transver-
sal beam displacements. In such cases, the linear analy-
sis underestimates the maximum vibration response. The
softening effect due to negative quadratic nonlinearity can
be observed in other slender structures under compres-
sive loads like shallow arches and arises from the inter-
action between in-plane compressive forces and bending
[25].

Figure 16 shows the horizontal and vertical components
of vibration as function of forcing frequency at top of

pitched-roof frame (𝐿 = 10m and 𝐻 = 6m), considering
harmonic horizontal and vertical base excitations acting
simultaneously and considering 𝐴𝑦 = 0.667𝐴𝑥 and two
values of the acceleration amplitude: 𝐴𝑥 = 1.5𝑔 and 𝐴𝑥 =3.0𝑔. The nonlinear effect is present in all resonance regions
for the two displacement components. A strong difference
between the linear and nonlinear responses is particularly
observed in the first resonance region.

Finally, Figure 17 shows the horizontal and vertical
displacement components at top of pitched-roof frame as a
function of forcing frequency for the frame with 𝐿 = 16m
and 𝐻 = 6m, considering harmonic horizontal and vertical
base excitations acting simultaneously with 𝐴𝑦 = 0.667𝐴𝑥,
for two values of 𝐴𝑥: 1.5𝑔 and 3.0𝑔. Again, the strong base
motion leads to a highly nonlinear response.

In all cases analyzed here, the resonance curves for the lin-
ear and nonlinear cases were easily obtained by the proposed
numerical methodology, which can be easily applied to any
structural system discretized by the FEM.

4. Conclusions

In this work, an incremental technique for the direct cal-
culation of the nonlinear resonance curves of plane frames
discretized by the finite element method and subjected to a
base excitation is proposed.The transformation of discretized
equations of motion, in the finite element method context, to
the frequency domain is accomplished here through the clas-
sical harmonic balance method together with the Galerkin
method.The resulting system of nonlinear equations in terms
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Figure 16: Horizontal and vertical displacements at top of the frame as a function of the forcing frequency due to simultaneous horizontal
and vertical forcing. 𝐿 = 10m and 𝐻 = 6m.

of the modal amplitudes and forcing frequency is solved by
the Newton-Raphson method together with an arc-length
procedure to obtain the nonlinear resonance curves. The
formulation of the proposed method is validated comparing
the present results with time domain simulations showing
coherence and precision.The algorithm is able tomap regions
with coexisting stable and unstable solutions. A pitched-
roof frame and an arched-roof frame under horizontal and
vertical base excitation with varying roof height and spans
are studied to illustrate the influence of the nonlinearity
on the four first resonance regions. Horizontal base motion

excites only the odd modes, while vertical base motion
excites only the evenmodes. Under simultaneous vertical and
horizontal excitation, all modes are excited. The roof height
has a strong influence on the resonant peaks and degree of
nonlinearity.The results also show the influence of increasing
base excitation on the nonlinear behavior. Depending on
the excitation magnitude, hardening or softening behavior
can be observed. The proposed method is shown to be a
useful method for the analysis of slender frame structures in
frequency domain, since it is able to obtain the resonance
curves with precision and small computational effort. This
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Figure 17: Horizontal and vertical displacements at the top of the frame as a function of the forcing frequency due to simultaneous horizontal
and vertical forcing. 𝐿 = 16m and 𝐻 = 6m.

can be used as a preliminary design tool for frames under
seismic and other types of base excitation, leading to a safer
design.
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