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A hierarchical neural model in short-term load forecasting
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Abstract

This paper proposes a novel neural model to the problem of short-term load forecasting (STLF). The neural model is made
up of two self-organizing map (SOM) nets—one on top of the other. It has been successfully applied to domains in which the
context information given by former events plays a primary role. The model was trained on load data extracted from a Brazilian
electric utility, and compared to a multilayer perceptron (MLP) load forecaster. It was required to predict once every hour the
electric load during the next 24 h. The paper presents the results, the conclusions, and points out some directions for future work.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

With power systems growth and the increase in their
complexity, many factors have become influential to
the electric power generation and consumption (e.g.,
load management, energy exchange, spot pricing, in-
dependent power producers, non-conventional energy,
generation units, etc.). Therefore, the forecasting pro-
cess has become even more complex, and more ac-
curate forecasts are needed. The relationship between
the load and its exogenous factors is complex and
non-linear, making it quite difficult to model through
conventional techniques, such as time series and linear
regression analysis. Besides not giving the required
precision, most of the traditional techniques are not ro-
bust enough. They fail to give accurate forecasts when
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quick weather changes occur. Other problems include
noise immunity, portability and maintenance[1].

Neural networks (NNs) have succeeded in several
power system problems, such as planning, control,
analysis, protection, design, load forecasting, security
analysis, and fault diagnosis. The last three are the
most popular[2]. The NN ability in mapping complex
non-linear relationships is responsible for the growing
number of its application to the short-term load fore-
casting (STLF)[3–6]. Several electric utilities over the
world have been applying NNs for load forecasting in
an experimental or operational basis[1,2,4].

So far, the great majority of proposals on the appli-
cation of NNs to STLF use the multilayer perceptron
(MLP) trained with error backpropagation. Besides
the high computational burden for supervised train-
ing, MLPs do not have a good ability to detect data
outside the domain of the training data.

This paper introduces a new hierarchical neural
model (HNM) to STLF. The HNM is an extension of
the Kohonen’s original self-organizing map (SOM)
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[7]. Several researchers have extended the Kohonen’s
self-organizing feature map model to recognize se-
quential information. The problem involves either
recognizing a set of sequences of vectors in time or
recognizing sub-sequences inside a large and unique
sequence.

Several approaches, such as windowed data ap-
proach[8], time integral approach1 [9], and specific
approaches[10] have been proposed in the literature.
Many of these approaches have well-known defi-
ciencies[11]. Among all, loss of context is the most
serious.

The proposed model is a hierarchical model. The
hierarchical topology yields to the model the power to
process efficiently the context information embedded
in the input sequences. The model does not suffer from
loss of context. On the contrary, it holds a very good
memory for past events, enabling it to produce better
forecasts. It has been applied to load data extracted
from a Brazilian electric utility, and compared to a
MLP model.

This paper is divided as follows. The second sec-
tion provides an overview of related research. The
third section presents the data representation. In the
fourth and fifth sections, the load forecasting models
and their training processes are respectively discussed.
The sixth section explains the HNM output mapping
process. The models are compared through forecast-
ing simulations in the seventh section. The last sec-
tion presents the main conclusions of the paper, and
indicates some directions for future work.

2. Related research

The importance of STLF has been increasing lately.
With deregulation and competition, energy price fore-
casting has become a valuable business. Bus-load fore-
casting is essential to feed analytical methods uti-
lized for determining energy prices. The variability
and non-stationarity of loads are becoming critical
owing to the dynamics of energy prices. In addition,
the number of nodal loads to be predicted does not
allow frequent interactions with load forecasting ex-
perts. More autonomous load predictors are needed in
the new competitive scenario.

1 Also known as leaky integral approach.

Artificial NNs have been successfully applied
to STLF. Many electric utilities, which had previ-
ously employed STLF tools based on classical sta-
tistical techniques, are now using NN-based STLF
tools.

Park et al.[6] have successfully introduced an ap-
proach to STLF which employs a NN as main part of
the forecaster. The authors employed a feed-forward
NN trained with the standard error back-propagation
(EBP) algorithm. Three NN-based predictors have
been developed and applied to short-term forecast-
ing of daily peak load, total daily energy, and hourly
daily load, respectively. Three months of actual load
data from Puget Sound Power and Light Company
have been used in order to test the aforementioned
forecasters. Only ordinary weekdays were taken into
consideration for the training data.

Another successful example of NN-based STLF can
be found in Lee et al.[12]. The authors employed a
MLP trained with EBP to predict the hourly load for
a lead time of 1–24 h. Two different approaches have
been considered, namely one-step ahead forecasting
(named static approach), and 1–24 steps ahead (named
dynamic approach). In both cases, the load was sep-
arated in weekday (Tuesdays through Fridays) and
weekend loads (Saturdays through Mondays).

Bakirtzis et al. [4] employed a single fully con-
nected NN to predict, on a daily basis, the load along
a whole year for the Greek power system. The au-
thors made use of the previous year for training pur-
poses. Holidays were excluded from the training set
and treated separately. The network was retrained daily
using a moving window of the 365 most recent in-
put/output patterns. More, the paper proposed another
procedure to 2–7 days ahead forecasting.

Papalexopoulos et al.[13] compared the perfor-
mance of a sophisticated regression-based forecasting
model to a newly developed NN-based model for
STLF. It is worth mentioning that the regression model
had been in operation in a North-American utility for
several years, and represented the state-of-art in the
classical statistical approach to STLF. The NN-based
model has outperformed the regression model, yield-
ing better forecasts. Moreover, the development time
of the neural model was shorter, and the development
costs lower in comparison to the regression model.
As a consequence, the neural model has replaced
the regression model. This report is important, for it



O.A.S. Carpinteiro et al. / Applied Soft Computing 4 (2004) 405–412 407

evaluates the operation of a neural model in a realistic
electrical utility environment.

Khotanzad et al.[14] describe the third generation
of an hourly STLF system, named artificial neural net-
work short-term load forecaster (ANNSTLF). Its ar-
chitecture includes only two neural forecasters—one
forecasts the base load, and the other predicts the
change in load. The final prediction is obtained via
adaptive combination of these two forecasts. A novel
scheme for forecasting holiday loads is developed as
well. The performance on data from ten different util-
ities is reported and compared to the previous gener-
ation forecasting system.

Finally, a comprehensive review of the application
of NNs to STLF can be found in Hippert et al.[15].
The authors examine a collection of papers published
between 1991 and 1999.

3. Data representation

This section introduces the data representation em-
ployed on the input layers of the load forecasting neu-
ral models. The input data consisted of sequences of
load data extracted from a Brazilian electric utility.
Different representations were tried out on each model.
The representations presented below produced the best
results for each model.

3.1. Data representation for HNM

Seven neural input units are used in the representa-
tion, as shown inTable 1. The first unit represents the
load at the current hour. The second, the load at the
hour immediately before. The third, fourth and fifth
units represent respectively the load at 24 h behind, at
1 week behind, and at 1 week and 24 h behind the hour
whose load is to be predicted. The sixth and seventh
units represent a trigonometric coding for the hour to

Table 1
Input variables for the HNM model

Input Variable name Lagged values (h)

1–5 Load (P) 1, 2, 24, 168, 192
6 HS 0a

7 HC 0a

a Lag 0 represents the hour to be forecast.

Table 2
Input variables for the MLP model

Input Variable name Lagged values (h)

1–4 Load (P) 1, 2, 24, 168
5 HS 0a

6 HC 0a

a Lag 0 represents the hour to be forecast.

be forecast, i.e., sin(2π·hour/24) and cos(2π·hour/24).
Each unit receives real values. The load data is prepro-
cessed using ordinary normalization (minimum and
maximum values in the [0, 1] range).

3.2. Data representation for MLP

The representation for the MLP is displayed in
Table 2. It is quite similar to that employed on the
input layer of the HNM. It includes all input units em-
ployed in the representation for the HNM, except the
unit which represents the load at 1 week and 24 h be-
hind the hour whose load is to be predicted. Six units
are thus used. The load values are also preprocessed
using ordinary normalization.

4. Load forecasting models

This section describes the loading forecasting mod-
els.

4.1. The HNM

The model is made up of two SOMs, as shown
in Fig. 1. Its features, performance, and potential are
better evaluated in[16,17].

V( t )
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Time  Integrator

Map
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Λ

Fig. 1. HNM.
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The input to the model is a sequence in time
of m-dimensional vectors, S1 = V (1),V (2), . . . ,
V (t), . . . ,V (z), where the components of each vector
are real values. The sequence is presented to the input
layer of the bottom SOM, one vector at a time. The
input layer has m units, one for each component of the
input vector V (t), and a time integrator. The activation
X(t) of the units in the input layer is given by

X(t) = V (t)+ δ1X(t − 1) (1)

where δ1 ∈ (0, 1) is the decay rate. For each input
vector X(t), the winning unit i∗(t) in the map is the
unit which has the smallest distance ψ(i, t). For each
output unit i, ψ(i, t) is given by the Euclidean distance
between the input vector X(t) and the unit’s weight
vector W i.

Each output unit i in the neighborhood N∗(t) of the
winning unit i∗(t) has its weight W i updated by

W i(t + 1) = W i(t)+ αΥ(i)[X(t)− W i(t)] (2)

where α ∈ (0, 1) is the learning rate. Υ(i) is the neigh-
borhood interaction function [18], a Gaussian type
function, and is given by

Υ(i) = κ1 + κ2e−κ3[Φ(i,i∗(t))]2/2σ2
(3)

where κ1, κ2, and κ3 are constants, σ is the radius of the
neighborhood N∗(t), and Φ(i, i∗(t)) is the distance in
the map between the unit i and the winning unit i∗(t).
The distance Φ(i′, i′′) between any two units i′ and i′′
in the map is calculated according to the maximum
norm,

Φ(i′, i′′) = max{|l′ − l′′|, |c′ − c′′|} (4)

where (l′, c′) and (l′′, c′′) are the coordinates of the
units i′ and i′′, respectively in the map.

The input to the top SOM is determined by the
distances Φ(i, i∗(t)) of the n units in the map of the
bottom SOM. The input is thus a sequence in time
of n-dimensional vectors, S2 = Λ(Φ(i, i∗(1))),Λ
(Φ(i, i∗(2))), . . . , Λ(Φ(i, i∗(t))), . . . , Λ(Φ(i, i∗(z))),
where Λ is a n-dimensional transfer function on a
n-dimensional space domain. Λ is defined as

Λ(Φ(i, i∗(t))) =
{

1 − κΦ(i, i∗(t)) if i ∈ N∗(t)
0 otherwise

(5)

where κ is a constant, and N∗(t) is a neighborhood of
the winning unit.

The sequence S2 is then presented to the input layer
of the top SOM, one vector at a time. The input layer
has n units, one for each component of the input vector
Λ(Φ(i, i∗(t))), and a time integrator. The activation
X(t) of the units in the input layer is thus given by

X(t) = Λ(Φ(i, i∗(t)))+ δ2X(t − 1) (6)

where δ2 ∈ (0, 1) is the decay rate.
The dynamics of the top SOM is identical to that

of the bottom SOM.

4.2. The MLP

One single hidden layer with one to three hidden
neurons is used. An usual hyperbolic activation func-
tion is adopted in the hidden layer. In the output layer,
it is adopted a linear activation function. Only one unit
is used on the output layer.

5. Training processes

This section describes the HNM and MLP training
processes.

5.1. HNM training process

Two different HNMs are conceived. The first one is
required to foresee the time horizon from the first to the
sixth hour. This is due to the fact that the load series un-
der consideration presents two distinct periods—from
the first to the sixth hour, and from the seventh to the
24th hour.

The training of the two SOMs of the HNM model
takes place in two phases—coarse-mapping and
fine-tuning. In the coarse-mapping phase, the learning
rate and the radius of the neighborhood are reduced
linearly whereas in the fine-tuning phase, they are
kept constant. The bottom and top SOMs were trained
respectively with map sizes of 15 × 15 in 700 epochs,
and 18 × 18 in 850 epochs. It was used low values
for decay rates—0.4 and 0.7 for the bottom and top
SOMs, respectively. According to Carpinteiro [16],
low decay rates reduce the memory size for past
events. By using low decay rates, it is thus reduced
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the memory for the former day predictions. The initial
weights were given randomly to both SOMs.

The forecasting of the remaining time—seventh to
24th hour—is addressed by the second model. The
same training process previously described is applied
to this model too. Nevertheless, medium values for de-
cay rates—0.5 and 0.8 for the bottom and top SOMs,
respectively—were used instead. These new values for
decay rates extend the memory size for past events
[16], and consequently, yield more accurate predic-
tions on large horizons.

The training set comprised 2160 load patterns, span-
ning 90 days. They were taken from November 1994 to
January 1995. The maximum electric load fell around
3900 MW. There was no particular treatment for hol-
idays.

5.2. MLP training process

Six-week windows were taken for training, with
data grouping according to the day of the week. For
each day of the week, a MLP was trained, applying the
backpropagation algorithm with cross-validation. Dif-
ferent partitions for the training and testing sets were
randomly created every 50 epochs.

The 24 load forecasts are computed after the
one-step ahead training. The load forecasters are re-
trained at the end of the day. The training window is
then moved 1 day forward, and the forecasts for the
next 24 h are performed.

The training set comprised the same 2160 load pat-
terns employed on the HNM training process. There
was no particular treatment for holidays, as well.

6. HNM output mapping process

The output of the top SOM of the HNM model rep-
resent the forecast load. The forecast load produced
by the top SOM at hour t corresponds to the sequence
of load patterns presented to the input layer of the
bottom SOM until hour (t− 1). Feedback is thus pos-
sible at any moment, by presenting the forecast load
at hour t to the input layer, in order to generate the
forecast load at hour (t + 1). This procedure is car-
ried out 24 times, leading a recursive load forecast-
ing scheme, ranging from the first to the 24th hour
ahead.

The training set is employed to map the HNM out-
put. After the training phase, the training set is input
again, pattern by pattern, in a sequence. As the load
patterns in the training set are all known, it is possible
to identify which activated areas in the map of the top
SOM are associated with these patterns.

For instance, let the sequence of vectors S = V (1),
V (2), . . . ,V (t), . . . ,V (z), be the representation of
the load patterns P(1),P(2), . . . ,P(t), . . . ,P(z).
After inputting V (1), a winning unit i∗(1) as well as
the units in its neighborhood N∗(1) in the map are
activated. The winning unit i∗(1) thus represents the
forecast load at time 2, that is, the load pattern P(2).

Following this mapping process, it is thus feasible
to identify which winning unit is associated with a cer-
tain load pattern, and then attach to that unit that load
value. Such a process has nonetheless two weaknesses.
First, it may be possible that a winning unit respond
to more than one load pattern. In this case, it is at-
tached to that unit the mean of the load values of those
patterns.

Second, it may be possible that an unit never re-
spond to any pattern, as well. In such case, it is
attached to that unit the mean of the load values of
the winning units in its neighbourhood. A new map-
ping process which avoids these weaknesses is under
development.

7. Results

The forecasts were performed on the HNM and
MLP models. A comparison of both models was
also performed. The mean absolute percentage error
(MAPE), mean square error (MSE), mean error (ME),
and maximum percentage error (MAX) were used to
evaluate the models.

Figs. 2 and 3 show the actual load and forecast
load for two particular days. The first one—Friday, 3
February 1995—is a typical weekday, and the second
one—Tuesday, 7 February 1995—is a special week-
day.

A typical weekday is one whose load patterns share
some similarity with the load patterns of the same
weekdays in former weeks. For instance, the load pat-
terns for Tuesdays tend to display a similar behavior.
Yet, when an unexpected event, such as a holiday, hap-
pens on one of those Tuesdays, it changes that fairly
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Fig. 2. Actual load and forecast load for 3 February 1995.

stationary behavior. Such holiday is then said to be a
special weekday. Special weekdays break down fore-
casters, for they perform much better on typical than
on special weekdays.

Table 3 presents the performance of the forecasters
for 1–24 step ahead predictions on those weekdays.
Table 4 displays a global average evaluation for those
days.

The results from the HNM are very promising. On
the typical day, HNM performed better than MLP

Fig. 3. Actual load and forecast load for 7 February 1995.

on MAPE and MSE. In its turn, it performed worse
than MLP on ME and MAX. The results presented in
Table 3 show that HNM yielded 13 better hourly per-
centage errors, and 11 worse percentage errors than
MLP.

On the special day, the performance of HNM was
significantly superior than that of MLP on MAPE,
MSE, ME, and MAX. All 24 hourly percentage errors
yielded by HNM were much better than that yielded
by MLP.
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Table 3
Hourly percentage error for 3 and 7 February 1995

Time (h) 3 February 7 February

MLP HNM MLP HNM

1 0.92 1.70 7.88 0.11
2 0.28 0.99 7.98 1.14
3 1.92 2.19 8.76 0.41
4 3.57 0.70 6.14 0.58
5 4.48 0.68 6.09 0.12
6 3.97 0.71 6.37 1.04
7 2.70 1.47 4.23 2.98
8 2.32 0.76 4.07 0.43
9 5.12 2.26 2.72 1.31

10 4.78 0.94 1.99 1.75
11 2.79 0.74 4.28 1.90
12 1.37 2.37 4.83 1.02
13 2.50 3.90 6.18 1.04
14 2.92 4.01 7.49 3.54
15 4.51 3.19 6.57 0.90
16 4.58 3.89 5.41 0.63
17 0.54 5.36 6.76 1.86
18 3.48 2.49 6.27 6.11
19 3.75 2.24 6.28 1.85
20 1.31 2.74 3.72 1.81
21 1.62 0.75 2.90 2.19
22 0.96 2.77 5.74 1.24
23 1.16 4.12 7.78 6.38
24 1.91 4.89 11.56 8.30

The superior performance displayed by HNM
seems to be justified by its superior capacity to en-
code context information from load series in time,
and to memorize that information in order to produce
better forecasts.

The forecasting errors were fairly high, however,
even for the HNM model. The load patterns were di-
vided into seven groups, each one corresponding to
a specific weekday. An analysis of those groups of
patterns was then performed. It was observed that the
training patterns within each group did not share much

Table 4
Overall evaluation of the forecasters for 3 and 7 February 1995

Errors 3 February 7 February

MLP HNM MLP HNM

MAPE (%) 2.64 2.33 5.92 2.03
MSE (MW2) 10156 8675 36259 7885
ME (MW) −51.50 52.99 180.65 8.70
MAX (%) 5.12 5.36 11.56 8.30

similarity between themselves. More, the difference
was significant when comparing them with the testing
patterns. Another Brazilian electric utility was con-
tacted to provide us with more relevant and enlarged
sequences of load data.

8. Conclusion

The paper presents a novel artificial neural model
to the problem of STLF. The model has a topology
made up of two SOM networks, one on top of the
other. It encodes and manipulates context information
effectively.

Some conclusions may be drawn from the exper-
iments. First, the knowledge representation proposed
for the HNM inputs seems to be adequate. It supplied
the model with the necessary information to make it
produce correct predictions.

Second, the HNM performance on the forecasts was
much better than that of the MLP. The results obtained
have shown that the HNM was able to perform effi-
ciently the prediction of the electric load in short fore-
casting horizons.

Third, it is worth mentioning that MLP has been
widely employed to tackle the problem of STLF so
far. The results obtained thus suggest that HNM may
offer a better alternative to approach such problem.

A research and development project for a Brazilian
electric utility is under course. The research will focus
on the effects of the HNM time integrators on the
predictions in order to produce a better adaptability.
Besides, it will focus on the study of its performance
on larger load databases. The forecasts should also
span a larger number of days in order to be more
significant statistically.
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