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a b s t r a c t

We show that the Kepler problem is projectively equivalent to null geodesic motion on
the conformal compactification of Minkowski-4 space. This space realises the conformal
triality of Minkowski, dS and AdS spaces.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Kepler problem can be rightly considered as a ‘golden classic’ in Hamiltonian dynamics for a host of reasons. It is
sufficiently realistic to describe within appropriate limits the dynamics of planets in the Solar System, and to some extent
classical scattering of pointlike electric charges, while at the same time it is important in the theory of integrable systems,
being superintegrable and with a large dynamical symmetry group. It can be taught at a simple level in an undergraduate
physics course of mechanics, as well as in a QuantumMechanics course since integrability holds in the quantum theory too.
At the same time a very extensive bibliography and books have been written on the subject and its generalisations, see [1,2]
and related works. The literature on the subject being fairly vast, we do not try in this brief letter to cover it in a complete
way but rather we try to point out the papers that aremost relevant to the line of thought pursued here, and refer the reader
to their bibliography to supplement what is missing.

An importantmoment in the history of the problem comeswith themodern, geometrical approach that can be attributed
to Fock and then Bargmann [3,4], who analysed the quantum mechanical Kepler problem, and showed that the SO(4)
symmetry of negative energy states is explained bymapping the Kepler problemwith a fixed energy to that of a free particle
on a 3-sphere embedded in 4-dimensional space. The classical description has been discussed and then generalised byMoser
and Belbruno. The former showed that the hypersurface of a given negative energy in phase space is homeomorphic to the
unit tangent bundle of the sphere S3 with the north pole excluded, the result being generalisable to general dimension
n [5]. Belbruno added the cases of positive energy, in correspondence to the three-hyperboloid H3, and zero energy which
corresponds to 3-dimensional Euclidean space [6].

It is well known that, at the level of the allowed shapes of trajectories of the Kepler problem, ellipses, parabolae and
hyperbolae are all related by projective transformations. Thus the question arises if it is possible to find a projective rela-
tion between different energy trajectories in the whole phase space. Recent work in the direction of relating geometrically
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trajectories of different energies has been done by Barrett, Keane and Simmons [7], who showed that the Kepler system is
related, for all values of the energy at the same time, to geodesic motion on 3-spaces of constant curvature k via canon-
ical transformations and reparameterisation of trajectories. The relation introduced between the Kepler problem and the
geodesic motion on constant curvature manifolds reminds somehow of coupling constant metamorphosis [8]. The two sys-
tems described are considered by the authors to be related but different, their Hamiltonians not being the same. Depend-
ing on whether k is positive, zero or negative one obtains geometrically the different dynamical symmetry algebras so(4),
iso(3) and so(3, 1) of the Kepler problem. In [9] 4-dimensional Einstein static spacetimes are studied, which are foliated by
the constant curvature 3-spaces mentioned above. These spaces are conformally flat and their conformal group is SO(4, 2).
Coordinates are found that put themetrics in amanifestly conformally flat form and the Lie algebra of conformal Killing vec-
tors is studied. Null geodesic motion in these space is special since admits the maximum number of conserved charges that
are linear in the momenta: they are generated by all the conformal Killing vectors. Keane [10] generalised the constructions
and described in detail the zero energy case and time dependent conserved quantities.

The current work is motivated from the desire to give a geometrical interpretation of the full dynamical group SO(4, 2)
of symmetries of the Kepler problem. An important role in discovering the nature of the above interpretation is played
by projective transformations in phase space: as will be seen in the following section, these allow a simple and elegant
reformulation of the classical Kepler problem in terms of null geodesics on a conformally flat Weyl space where the dy-
namical symmetry for all energies is manifest, thus displaying the strength of the technique used and completing the
geometrisation of the system. Different conformal classes are projectively related, and in fact one is dealing with null
geodesics on the space that realises the conformal triality of Mink, dS and AdS spaces [1,11,12]. In many respects we follow
a parallel line to that of Kean, Barrett and Simmons, the main difference being that we use projective geometry to show
the dual systems of Kepler and geodesic motion are projectively the same, and that the end result is null dynamics in a
4-dimensional Weyl space that includes at the same time all the values of the curvature: this is the conformal compact-
ification of Minkowski space and as shown it is related to the null lift of Kepler’s problem in phase space. In particular,
trajectories with different energy sign can be mapped one into the other via a projective transformation. Previous treat-
ments only considered the action of SO(2, 4) on standard Kepler trajectories, which does not change the sign of the energy.
We also show how to embed trajectories of the original Kepler problem in the space R2,4 which is used to describe the
conformal compactification ofMinkowski space, realising geometrically the action of SO(2, 4) on the projective trajectories.

2. Main result

The Hamiltonian of the Kepler problem is

H =
1
2
pipi −

α

q
, (2.1)

where {qi, pj} are conjugate variables, i, j = 1, 2, 3, q =

qiqi and for simplicity in this work we exclude the configuration

space point q = 0. α > 0 is a constant. We consider the following null lift of the Hamiltonian:

H =
1
2
pipi −

p2y
q

− p2a + p2b, (2.2)

where we have added new conjugate variables {y, py}, {a, pa}, {b, pb}, the momenta being conserved. This is a null
Hamiltonian that projects to the original one if we impose H = 0, p2y = α, and then p2a = E, pb = 0 for positive energy
solutions of (2.1), pa = 0, p2b = −E for negative energy solutions, and pa = 0, pb = 0 for zero energy solutions. For reasons
that will become clear in a fewmoments, we choose to work in the open phase space region py > 0. We can exclude py = 0
since its associated geodesics are related to free motion as it can be seen from (2.2).

In [7] the following dual Hamiltonian is considered

G =
1
4


k +

pipi
2

2
q2, (2.3)

which can be canonically transformed into a geodesic Hamiltonian. As the authors note, G above can be formally obtained
by solving for α in (2.1), taking its square, setting −E = k, and promoting the result to a phase space function. This is quite
similar to what happens in coupling constant metamorphosis [8], with the exception of the procedure of taking the square
which is novel.

We now relate (2.1) and (2.3) projectively in phase space. As we have shown in a recent companion work [13] any null
geodesic Hamiltonian of the form 1

2g
AB(q)pApB, as isH above, defines a projective conic in tangent space, and any two lower

dimensional systems whose null lifts are related one to the other by a projective transformation are dual. In particular, one
can rescale the Hamiltonian H using a phase space factor Ω−2(q, p) ≠ 0 and obtain a new Hamiltonian

H̄ =
1
2
Ω−2(q, p)gAB pApB. (2.4)
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If H̄ generates evolution of trajectories associated to a parameter λ̄, and H to λ, then the equations of motion for the
variables (q, p) given by H̄ are mapped back to the original equations of motion of H after one makes the following change
of parameter on one trajectory at a time

dλ̄ = Ω2(q(λ), p(λ)) dλ, (2.5)
the result being valid for null geodesics only. We refer the reader to [13] for details.

In the present situationwewill perform two such reparameterisations. First choose the phase space factor to beΩ−2
= q:

we change parameter λ → λ′ with

dλ′
=

1
q(λ)

dλ, (2.6)

which transforms H into

H ′
=


1
2
pipi − p2a + p2b


q − p2y . (2.7)

This reparameterisation is valid only for trajectories that have q ≠ 0, so we are implicitly excluding collision trajectories.
The same change of parameter appears in [7], as well as other previous works in the literature, but not in the sense of acting
on a null lift. Although collisions seem to be excluded, λ′ is actually the Moser–Souriau parameter that ultimately enables
the regularisation of the Kepler problem. The global topology of the space of regularised motions is symplectomorphic to
one component of the nilpotent adjoint orbit of O(4, 2) [14,15].

We now perform a non-trivial, phase space dependent rescaling of H ′ times the factor Ω−2
=

 1
2pipi − p2a + p2b


q+ p2y:

this gives a new Hamiltonian

H̄ =


1
2
pipi − p2a + p2b

2

q2 − p4y, (2.8)

where

dλ̄ =


1
2
pipi − p2a + p2b


q(λ′) + p2y

−1

dλ′. (2.9)

The reader can notice that this is a null lift of (2.3) upon identifying k = −E. The rescaling factor is never zero since from the
conditionH ′

= 0 = H we get p2y = α =
 1
2pipi − p2a + p2b


q(λ′). Nowwe perform the following canonical transformation:

Y =
y

√
2py

,

p2y =
√
2Py, (2.10)

which is defined in the open region Py > 0. This has the effect of replacing the p4y term in (2.8) with 2P2
y . Next, we perform

the canonical transformation of [7]:

qi =
1

2
√
2


Q 2Pi − 2(Q · P)Q i , (2.11)

pi = −2
√
2
Q i

Q 2
, (2.12)

complemented by A = pa, PA = −a, B = pb, PB = −B. This transforms the Hamiltonian H̄ into

H̄ = 4


1
2


1 −

(A2
− B2)Q 2

4

2

PiPi −
P2
y

2


, (2.13)

where A2
− B2

= E. This null Hamiltonian can be interpreted in two ways. On the one hand it is the null lift associated
to positive energy geodesic motion on a 3-dimensional Riemannian manifold that is conformally flat, of constant curvature
k = −E, written in stereographic coordinates, as noticed in [7]. There the authors state that the geodesicmotionHamiltonian
and the Kepler problem Hamiltonian (2.1) are related but different Hamiltonians, however in our null projective approach
we have just shown that they are obtained from the same projective null Hamiltonian and therefore represent the same
dynamics. On the other hand, the null Hamiltonian (2.13) describes null geodesics on an Einstein static spacetime that is
conformallyMinkowskian, as discussed in [9,10]. Thus the present approach encompasses both types of discussions.We also
notice that in our framework what matters is not the specific metric but its Weyl class. TheWeyl space we have found is the
conformally flat 4-dimensional space that hosts the conformal triality of Minkowski, de Sitter and anti-de Sitter spaces [12],
that will be discussed in more detail in the next section.

We nowbriefly discuss conserved quantities. Suppose that C(q, p) is a conserved quantity for a null geodesic Hamiltonian
H , {C, H} = 0 where {·, ·} is the Poisson bracket. It is clear that, in our projective approach, C will also be conserved for
a rescaled Hamiltonian H̄ = Ω−2(q, p)H , using the on-shell condition H = 0. From this we can infer that conserved
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quantities for the null Hamiltonians (2.2), (2.13) can be obtained from those of flat Minkowski space. In particular, the
conformal group SO(2, 4) of flat Minkowski space acts as a symmetry algebra for H̄ . The explicit change of variables that
conformally maps the Einstein static metric of (2.13) into Minkowski space can be found in [9]. In the next section we will
see how the action of SO(2, 4) on the projective curves described in this section can be described geometrically by mapping
these curves into curves in a projective cone in a six-dimensional ambient space.

3. Conformal triality

We are dealing with a Weyl 4-dimensional space that includes Mink, dS and AdS spaces. The fact that these are
conformally related, together with the fact that the Lie algebra of the Kepler problem is so(2, 4) have a profound common
origin. It is known in fact that the conformal group of 4-dimensional Minkowski space is locally isomorphic to O(2, 4), and
to our knowledge the first discussion of the origin of these results is due to [11]. Similar arguments have been discussed
among others by [1,12], and in particular we will refer to the former for a detailed discussion. We remind the reader of
the original arguments and then show how they apply to the present problem. One can consider R2,4 with coordinates
(T , V ,W , X1, X2, X3) and Lorentzian metric η = diag(−1, −1, 1, 1, 1, 1). The null cone N given by points that satisfy

− T 2
− V 2

+ W 2
+ X2

1 + X2
2 + X2

3 = 0 (3.1)

is left invariant by the action of O(2, 4). If we consider the intersection of N with the null hyperplane V − W = 1 then we
can use (T , X1, X2, X3) as coordinates, and the induced metric on the intersection is

ds2 = −dT 2
+ dX2

1 + dX2
2 + dX2

3 . (3.2)

Thus we can identify the intersection with 4-dimensional Minkowski space,Mink4. Now consider the set [N] of unoriented
lines on N , i.e. sets of points identified under the relation (T , V ,W , X1, X2, X3) ∼ λ(T , V ,W , X1, X2, X3) for λ ≠ 0, and such
that (3.1) holds. Then, every element of [N] that can represented by coordinates with V ≠ W will intersect the hyperplane
V −W = 1 in a unique point, and can be put in a one to one correspondence with a point inMink4. However, there are also
elements of [N] with coordinates such that V = W , and these never intersect Mink4. These elements, according to (3.1),
describe a light cone in Mink4 and therefore can be considered points at infinity. The result is that [N] can be thought of as
Mink4 with its points at infinity added. We notice that points on N can be described by the coordinates

T = r cos y, V = r sin y,

(W , X1, X2, X3) = rV α(θ i), (3.3)

where α = 1, . . . , 4, i = 1, 2, 3, and V α satisfies V αV α
= 1, and thus is a vector on S3 parameterised by coordinates θ i.

From this we see that (y, θ i) can be taken as local coordinates for [N], which is then homeomorphic to (S1 × S3)/Z2. Being
a compact space, it is known as the conformal compactification of Mink4.

While there is no natural metric on [N], we can consider a set of representative points on N by taking a (local)
cross-section of N given by points of the type (3.3) with r = r(y, θ i). Then we can consider the induced metric on the
cross section, which is given by

ds2 = r2(y, θ i)

−dy2 + ds2S3


, (3.4)

i.e. it is conformal to a Robertson–Walker spacetime with constant positive curvature on the equal time slices, using the
same variables (y, θ i) defined above. Since such space is conformally flat, this includes the Minkowski space described
earlier. Then [N] is a conformal manifold, that is a manifold equipped with a metric defined modulo conformal rescalings:
different cross sections correspond to different rescalings.

Going back to the results of the previous section, for each choice of the evolution parameter λ the Hamiltonian (2.13)
describes null geodesic motion on one possible cross-section, and vice-versa: the independence on the choice of parameter
points out to the existence of a curve on [N] that is independent on the cross-section used. We now want to define a more
precise correspondence between the null geodesics of (2.13) and curves on [N], and we will do this by first embedding the
former into special curves on N as follows. Consider a curve on N with equation

λ → r(λ)P(λ), (3.5)

where P(λ) is the embedding of S1 × S3 ⊂ R2,4 given by (3.3) for r = 1. The vectors ∂P
∂y ,

∂P
∂θ i

form a basis for the tangent
space of S1 × S3, and together with P they form a basis for the tangent space of N . We will define geodesics on [N], in the
sense of zero acceleration curves, by asking that the second derivative of (3.5) has zero components along ∂P

∂y and ∂P
∂θ i

. Then
one finds the following equation for xµ

= (y, θ i)

ẍµ
+ Γ µ

ρσ ẋ
ρ ẋσ

+
d ln r2

dλ
ẋµ, (3.6)

where Γ µ
ρσ are the Christoffel symbols of the induced Robertson–Walker metric for r = 1, and r is an arbitrary function

of λ. This is a geodesic equation on S1 × S3 with a non-affine parameter, where the affine parameter µ is recovered using
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d
dµ = r2 d

dλ . Since these are unparameterised null geodesics of S1 × S3, then they can be mapped into the geodesics of
(2.13). Summarising, we have proven that null geodesics of (2.13), which are the Kepler motions identified under projective
transformations, are in one-to-one correspondence with geodesics on [N].

We make a final observation. It seems from (2.13) that, after a canonical transformation, the null lift manifold of the
original Kepler problem corresponds locally to the six dimensional space described in this section. For one might use the
coordinate A2

− B2 to parameterise which type of section of N one is taking, whether it is the intersection with a sphere, a
hyperboloid, or a hyperplane, together with the radius of curvature of the former two, and the coordinates y, Qi to describe
the section. Lastly one could use a different combination of A, B to parameterise the direction perpendicular to the null cone
N . This seems locally correct but whether, or how, it can extended to a global result is a different statement that we do not
investigate here.

Concluding, we believe that the technique used here, projective transformations in phase space, with the vast amount of
freedom associated to it, will stimulate further research in the field of Hamiltonian dynamics and integrable systems.
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