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a b s t r a c t

Surgical scheduling is a challenging problem faced by hospital managers. It is subject to a wide range of

constraints depending upon the particular situation within any given hospital. We deal with the simultaneous

employment of specialised human resources, which must be assigned to surgeries according to their skills

as well as the time windows of the staff. A particular feature is that they can be assigned to two surgeries

simultaneously if the rooms are compatible. The objective is to maximise the use of the operating rooms. We

propose an integer model and integer programming based heuristics to address the problem. Computational

experiments were conducted on a number of scenarios inspired by real data to cover different practical

problem solving situations. Numerical results show that relaxations provide tight upper bounds, and relax-

and-fix heuristics are successful in finding optimal or near optimal solutions.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Operating room management has been recognised as a main

ource of income for hospitals. It is important to improve performance

y using surgical resources as efficiently and effective as possible. It

as been reported in the literature that the operating theatre is one

f the most critical and costly functional areas in a hospital (Guinet &

haabane, 2003). It represents a bottleneck in many hospitals and it

onsumes a significant amount of a hospital’s annual budget because

t typically utilises the most expensive resources. See, for instance,

he recent surveys by Cardoen, Demeulemeester, and Beliën (2010),

uerriero and Guido (2011), May, Spangler, Strum, and Vargas (2011)

nd Rais and Viana (2011). As in other service sectors, the decision

rocess comprises different decision levels – from capacity and facil-

ty planning to detailed scheduling.

In this paper, we concentrate on the detailed surgical scheduling

f elective patients on a daily basis. Elective patients are those for

hom the surgery is not completely unexpected and can be planned

n advance. Broadly speaking, surgical scheduling consists of the
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election of surgical interventions to be performed in each avail-

ble operating room along with dates, starting times and the allo-

ation of required resources. Surgical scheduling problems are very

ard to solve, and different optimisation modelling approaches have

een proposed in the literature to face different situations. Meskens,

uvivier, and Hanset (2013) observed from visits to several hospitals

hat problems are specific to each institution. Indeed, as also noted

y other authors, for instance, Cardoen et al. (2010); Riise and Burke

2011), each hospital has its own established practices reflecting spe-

ific constraints related to both human and material facets. These

pecific constraints may vary from medical staff availabilities (e.g.,

egular working hours or surgeon preferences) and patient priorities

e.g., children or diabetics) to operating room versatilities and the

imited capacity of human and material resources (e.g., number of

urses, auxiliary staff, medical instruments, recovery beds or places

n intensive care unities).

We deal with surgical scheduling in a hospital in Brazil. The hospi-

al has 14 non-identical operating rooms dedicated to elective inter-

entions – some are multifunctional, some have particular medical

evices installed that cannot be moved, and some are restricted in

ize. Each surgeon has a set of patients, so that each operation has

o be carried out by a specific surgeon. However, decisions assigning

urgeries to operating rooms is part of the problem, and scheduling

tarting times are subject to surgeries and surgeon’s time windows,
(EURO) within the International Federation of Operational Research Societies (IFORS).
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among other constraints. Time windows may capture patient pri-

orities in terms of time of the day that interventions must occur,

e.g., children should be operated upon early in the morning (Riise &

Burke, 2011) or there should be later starts for out-of-town patients

(Vijayakumar, Parikh, Scott, Barnes, & Gallimore, 2013). There are

also medical staff preferences, which can be viewed as an attempt to

improve working conditions (Roland, di Martinelly, Riane, & Pochet,

2010). The problem is also constrained by limited shared resources.

We may have surgery requirements on renewable and/or nonrenew-

able resources, a characteristic already observed in the case studied

by Roland et al. (2010). Renewable resources (human or material) are

those allocated to a surgery strictly for its duration, like nurses or aux-

iliary staff and medical equipment. On the other hand, nonrenewable

resources are those allocated to a surgery for the entire day, in our

case places in the intensive care utility.

A particular feature of our case study is the simultaneous em-

ployment of specialised human resources. Anaesthetists, for instance,

are identified due to specialities, training skills and availabilities. An

anaesthetist has his/her own time windows. Each surgery is associ-

ated with a subset of anaesthetists able to perform that intervention.

An anaesthetist can perform more than one intervention simultane-

ously depending upon the room in which the surgeries are taking

place. Thus, the simultaneous employment of specialised human re-

sources is constrained by room compatibilities. This leads to another

decision to be made jointly with assigning and scheduling surgeries,

as anaesthetists must be assigned and scheduled according to surgery

requirements and subject to room compatibilities and to their own

time windows. The objective is to maximise the use of the operating

rooms. In fact, recent surveys list a number of objectives studied in the

literature including minimisation of costs or makespan, and maximi-

sation of throughput or utilisation (Cardoen et al., 2010; Guerriero &

Guido, 2011; May et al., 2011). In our case, the manager of the hospital

where the study was conducted suggested the maximisation of the

utilisation of the operating rooms.

We propose an integer programming formulation to model the

particular surgical scheduling problem in hand. Preliminary compu-

tational experiments have shown that the linear relaxation of the

proposed model could provide good upper bounds to the optimal

solution values. Based on these early experiments, we decided to

develop integer programming-based heuristics to obtain high qual-

ity feasible solutions with a posteriori performance guarantees. The

heuristics in the first step draw from relaxation candidate assign-

ments of surgeries to rooms and periods, and then in the second step

they address a reduced model to obtain feasibility. We test the pro-

posed approaches on a variety of scenarios inspired from real data.

Computational results show that it is possible to find optimal or near

optimal solutions for most of the instances.

The paper is structured as follows. In the next section, we present

a literature review which is focused on deterministic models for sur-

gical scheduling. In Section 3, we formulate the integer programming

model. We describe, in Section 4, the integer programming-based

heuristics. In Section 5, we report on computational experiments

on real-based instances, and in the last section we draw concluding

remarks.

2. Literature review

Many modelling studies aimed at using surgical rooms efficiently

have been motivated by practical considerations and goals. Ozkarahan

(2000) proposed a goal programming model to assign surgeries to op-

erating rooms under a policy of reserving blocks of operating room

time for surgical specialties or authorised surgeons. Marcon, Khar-

raja, and Simonnet (2003) adapted the multiple knapsack model to

assign surgeries to operating rooms optimising measures related to

the risk of no realisation. Some authors have investigated applications

based on bin-packing to select surgeries that make efficient use of
vailable operating room time, see Dexter, Macario, and Traub (1999),

exter and Traub (2002), Dexter, Traub, and Macario (2003), Hans,

ullink, van Houdenhoven, and Kazemier (2008), van Houden-

oven, van Oostrum, Hans, Wullink, and Kazemier (2007). Guinet and

haabane (2003) proposed a model to assign surgeries to operating

ooms over a horizon of one or two weeks subject to time and capacity

onstraints. Santibáñez, Begen, and Atkins (2007) also dealt with time

nd constraints to manage a set of hospitals as a single system.

Jebali, Hadj Alouane, and Ladet (2006) addressed the daily schedul-

ng of a surgical centre with an assignment model of surgeries to oper-

ting rooms, taking into account capacity constraints such as opening

uration and overtime of operating rooms, the working time of sur-

eons, and the number of beds in the intensive care unit. The objective

s to minimise the costs associated to keeping patients waiting, and to

inimise undertime and overtime. Then, sequencing is modelled as

two-stage hybrid flow shop where the first stage is represented by

urgical rooms and the second stage by recovering beds. Analogies to

cheduling problems more often found in industrial applications were

lso exploited by Pham and Klinkert (2008). The authors introduced

n extension of the job shop with blocking to model the patient flow

omprising preoperative, perioperative and postoperative stages.

Hierarchical approaches in three stages have been proposed

Ogulata & Erol, 2003; Testi, Tanfani, & Torre, 2007). Ogulata and

rol (2003) developed models to select, in the first stage, patients

rom a candidate list. In the second stage, they are assigned to sur-

ical groups, and, in the final stage, operating rooms are determined

ndependently for each group. Testi et al. (2007) developed models to

istribute operating room time among surgical groups, and then to

uild a cyclic timetable that determines the surgical unit associated

ith each block of operating room time. The last stage is performed

y simulation. Testi and Tanfani (2009) proposed a model to assign

oth patient and surgical sub-speciality to operating rooms and days

ithin a planning horizon.

Augusto, Xie, and Perdomo (2008) developed a Lagrangian relax-

tion to a patient flow problem considering the transfer from the ward

o the operating room, the surgery, and the transfer to the recovery

ed. The model defines starting times for the different tasks in order

o minimise completion times subject to capacity constraints. The

ame authors (Augusto, Xie, & Perdomo, 2010) addressed the impact

f allowing patient recovery in the operating room when no recovery

ed is available. Marques, Captivo, and Pato (2012) proposed a model

o schedule elective surgeries on a weekly time horizon with the ob-

ective of maximising the operating rooms occupancy. The authors

onsidered different surgery priority levels, surgery time windows,

nd operating time limits.

In recent years, some authors have developed branch-and-price

pproaches (Cardoen, Demeulemeester, & Beliën, 2009b; Fei, Chu,

eskens, & Artiba, 2008). Fei et al. (2008) focused on surgical cases

ssignment to operating rooms. The model takes into consideration

he room’s opening time and surgical deadlines to plan one week min-

mising undertime and overtime costs. The master problem partitions

urgeries into days, whereas the subproblem deals with opening du-

ation constraints to find an improving column. This approach was

xtended by Fei, Meskens, and Chu (2010) to consider daily schedul-

ng performed by a hybrid genetic algorithm. Cardoen et al. (2009b)

eveloped a branch-and-price approach over a multi-objective model

roposed by the same authors (Cardoen, Demeulemeester, & Beliën,

009a). The model decides which surgeries to start in each slot of

ach period, restricted to operating rooms and starting ranges that

ave been previously defined. Other constraints include the avail-

bilities of medical instruments and recovering areas and additional

leaning due to particular infection concerns. A column represents all

urgeries sequenced for a specific surgeon, and the pricing problem

s addressed by dynamic programming.

Roland et al. (2010) proposed a model dealing with different

spects of human and material resource management. Resource
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Table 1

Constraints typically modelled in the literature: Cap – capacity; T W – time windows; Pl H – planning horizon divided in days; Ud-Ov/Fx –

under-overtime and/or fixed costs; M-S – multi-stage; Ad Cl – additional cleaning; Sp H R – specialised human resources; Si Emp – simultaneous

employment of specialised human resources.

Constraints

Paper Cap T W Pl H Ud-Ov/Fx M-S Ad Cl Sp H R Si Emp

Guinet and Chaabane (2003) � � � �
Jebali et al. (2006) � � � �
Pham and Klinkert (2008) � � � �
Augusto et al. (2008) � �
Fei et al. (2008) � � � �
Cardoen et al. (2009a) � � �
Roland et al. (2010) � � � �
Riise and Burke (2011) � � � �
Marques et al. (2012) � � �
Ghazalbash et al. (2012) � � � �
Meskens et al. (2013) � � � �
Vijayakumar et al. (2013) � � � �
This paper � � � �

r

s

e

(

l

a

i

(

o

s

c

h

t

p

A

t

q

t

t

t

a

b

m

m

t

t

s

s

a

a

f

b

t

c

c

o

i

w

d

u

o

R

r

f

t

e

i

t

c

r

o

s

o

u

t

p

i

w

c

t

o

c

m

o

b

3

t

e

2

e

2

T

H

(

2

e

s

s

o

s

c

d

s

s

t

b

c

equirements are distinguished between renewable (e.g., medical

taff) and nonrenewable (e.g., pharmaceutical products). Surgeons

xpress preferences in terms of availabilities, and some medical staff

e.g., anaesthetists) do not participate during the whole surgery to al-

ow a broader coverage of all operating rooms. Riise and Burke (2011)

ddressed both the intervention assignment (i.e., the assignment of

nterventions to rooms and days) and the intervention scheduling

i.e., the sequencing of interventions within a day and room). The

bjective function comprises three objectives: patient waiting time,

urgeon overtime, and waiting time for children. The model can in-

orporate a master surgery scheduling plan where operating room

ours are divided into blocks and allocated to specialities, in addition

o an existing plan in which surgeries are classified into un-served,

lanned but not fixed, or fixed. Ghazalbash, Sepehri, Shadpour, and

tighehchian (2012) dealt with the distribution of surgeries in order

o ensure that residents and fellows have equal opportunities to ac-

uire experience in a training hospital. Jeang and Chiang (2012) have

aken into account surgeon availabilities and unfavourable surgery

imes to minimise the deviation between the total operation time and

he total available time in operating rooms. Vijayakumar et al. (2013)

imed to maximise a weighted sum of the number of surgeries to

e performed on a day-of-week and time-of-day basis. The authors

odelled their surgical scheduling case as a multi-bin, unequal-sized,

ulti-dimensional dual bin-packing problem. Constraints are related

o resource availabilities, patient priorities, and surgical times and

he specialities of surgeons. Meskens et al. (2013) proposed a con-

traint programming approach to deal with resource availabilities,

taff preferences, and affinities among staff members. The model has

multi-objective function by minimising makespan and overtime,

nd maximising affinities among members of the surgical team.

In Table 1, we summarise the main blocks of constraints typically

ound in the literature on detailed surgery scheduling. This provides a

road overview but it is important to note that different papers often

reat specific constraints differently within each block. The block of

onstraints that is common to all modelling approaches is the group of

apacity constraints. These constraints deal with the operating rooms

pening hours, medical staff working hours, or resources availabil-

ty. Time windows are often found in terms of the periods of the day

hen a surgeon is available to start a surgery. Most papers model the

aily scheduling with time-indexed formulations, and some authors

se an extra index for the day to cover a planning horizon. Under and

ver time have been considered when minimising operational costs.

oland et al. (2010) also considered a fixed cost to open an operating

oom during a day. Some authors have modelled the flow of patients

rom wards to operating rooms and then to recovery beds, charac-

erising the problem as a multi-stage scheduling problem. Cardoen
t al. (2009a) introduced a constraint to model additional cleaning

n order to avoid scheduling a surgery of a non-infected patient after

he surgery of an infected patient. In terms of modelling, the main

ontributions of our research are the treatment of specialised human

esources and the simultaneous employment of them. We have a set

f types of specialised human resources, and, on one hand, a sub-

et of such specialities that are needed to perform a surgery. On the

ther hand, we have for each of these specialities a set of individ-

als. For each speciality, we also specify a subset, along with their

ime windows, which are suitable to perform the given surgery. We

ropose a model that assigns, conjointly with the surgery schedul-

ng, suitable individuals of each speciality, satisfying the given time

indows constraints. Moreover, an individual of a given speciality

an perform more than one surgery simultaneously, as far as the dis-

ance between rooms where surgeries are taking place permits. Thus,

ur model takes into account the simultaneous employment of spe-

ialised human resources constrained by room compatibilities. Our

odelling treatment of specialised human resources and the feature

f simultaneous employment, to the best of our knowledge, has not

een studied so far in the literature.

. Mathematical modelling

As discussed in the previous section, one can find approaches in

he literature modelling particular cases which are found in differ-

nt countries. This includes, for examples, Belgium (Cardoen et al.,

009a, 2009b; Fei et al., 2010; Roland et al., 2010), Canada (Santibáñez

t al., 2007), France (Augusto et al., 2008; 2010; Guinet & Chaabane,

003; Marcon et al., 2003), Iran (Ghazalbash et al., 2012), Italy (Testi &

anfani, 2009; Testi et al., 2007), Netherlands (Hans et al., 2008; van

oudenhoven et al., 2007), Norway (Riise & Burke, 2011), Portugal

Marques et al., 2012), Turkey (Ogulata & Erol, 2003; Ozkarahan,

000), and USA (Dexter et al., 1999; Dexter & Traub, 2002; Dexter

t al., 2003; Vijayakumar et al., 2013). In this paper, we model a daily

urgical scheduling problem found at a hospital in Brazil. We next de-

cribe the details of the modelling approach. Table 2 gives an overview

f the required data to run the proposed model.

The day is divided in periods, and T is the set of periods. The set of

urgeons is denoted by C, and Tc � T is the subset of periods a surgeon

can start a surgery, i.e., set Tc accounts for the surgeon c time win-

ows. The set of surgeries is denoted by S, and Sc � S is the subset of

urgeries to be performed by surgeon c. Given a surgeon c � C and a

urgery s � Sc, Ts � Tc is the subset of periods a surgery can start, i.e.,

he surgery s time windows. The set of operating rooms is denoted

y R, and Rs � R is the subset of operating rooms where a surgery s

an take place. A room is in use with a surgery s during ds periods,
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Table 2

Summary of required data to run the integer programming model.

Sets Description

S Surgeries

C Surgeons

Sc � S Surgeries performed by surgeon c � C

R Operating rooms

Rs � R Operating rooms surgery s � S can take place

T Periods

Tc � T Periods surgeon c � C can start a surgery

Ts � Tc Periods surgery s � Sc can be started

K1 Renewable resources

Rk � R Operating rooms where resource k � K1 is installed

K2 Nonrenewable resources

E Types of specialised human resources

Es � E Types specialised human resources required to perform surgery s � S

Ae Individuals treated as specialised resources of type e � E

As
e ⊆ Ae Individuals of specialised resource type e � Es suitable to perform

surgery s � S

Ta
e ⊆ T Periods individual a � Ae can start a surgery

Parameters Description

ds Duration in periods of surgery s � S (room cleaning included)

d̄s Duration in periods of only the intervention of surgery s � S (room

cleaning excluded)

g1
sk

Amount of renewable resource k � K1 required to perform surgery

s � S

q1
k

Mobile units of renewable resource k � K1

g2
sk

Amount of nonrenewable resource k � K2 required to perform

surgery s � S

q2
k

Units of nonrenewable resource k � K2

qa Number of surgeries individual a � Ae(e � Es) can perform

simultaneously

brr̄ Whether or not a specialised resource can be employed

simultaneously in rooms r, r̄ ∈ R

e

w

i

a

c

T

s

o

t

i

f

m

a

m

t

f

m

i

b

l

which includes the time for cleaning. However, surgeons and other

medical staff as well are free to start another surgery when the inter-

vention itself is finished. The parameter d̄s accounts for the duration

of intervention only.

The resources are classified into sets K1 and K2 of renewable and

nonrenewable resources, respectively. Given k � K1 (resp. k � K2), g1
sk

(resp. g2
sk

) is the amount of renewable (resp. nonrenewable) resource

k required to perform surgery s. A renewable resource k � K1 may

have a certain number q1
k

of mobile units, and may also be already

installed on a subset Rk � R of operating rooms. So, a surgery requiring

renewable resource k assigned to an operating room r � Rk does

not consume any of the q1
k

mobile units. On the other hand, when a

surgery which does not require renewable resource k is assigned to

an operating room r � Rk, the resource installed in that room stays

idle as it cannot be moved elsewhere. A nonrenewable resource k �
K2 has q2

k
units. An amount of g2

sk
must be reserved during the whole

day for a surgery s requiring resource k if s is to be performed, e.g., a

resource in an intensive care unit which is occupied for several hours.

The specialised human resources are treated differently because,

in our case, the employment of anaesthetists can be undertaken si-

multaneously, depending upon the rooms in which surgeries are tak-

ing place. Although motivated by a particular case, our description

enables the handling of different types of specialised resources. The

set of types of specialised resources is denoted by E, and Es � E is the

subset required to perform surgery s � S. Suppose, as an illustrative

example, E = {α, β}, i.e., the hospital counts specialised resources of

types α and β , Eṡ = {α} and Eŝ = {α,β} for surgeries ṡ and ŝ, respec-

tively. Given e � E, Ae is the set of individuals treated as specialised

resources of type e. For example, Aα = {α1, α2, α3} and Aβ = {β1,

β2}. It may happen, given s � S and e � Es, that not all the individ-

uals that belong to Ae are suitable for performing surgery s. Thus,

As
e ⊆ Ae is the subset of individuals of specialised resource type e suit-

able to perform surgery s. Suppose, in our example, Aṡ
α = {α1, α2},

Aŝ
α = {α2, α3}, Aŝ

β
= {β1}. An individual a � Ae can perform qa surg-
ries simultaneously, as far as the distance between rooms r and r̄

here surgeries are taking place permits. A parameter brr̄ is set to 1

f a specialised resource can be employed simultaneously in rooms r

nd r̄, and to 0 otherwise. Moreover, each individual a � Ae of spe-

ialised resource type e � E may have his/her own time windows. So,
a
e ⊆ T is the set of periods in which individual a can start a surgery.

We define two binary variables. The first, yr
st, has value 1 if surgery

� S is assigned to room r � Rs and starts in period t � Ts, and 0

therwise. The second, wa
st, has value 1 if surgery s � S is assigned

o individual a ∈ As
e of specialised resource type e � Es and starts

n period t ∈ Ta
e ∩ Ts, and 0 otherwise. The model can be written as

ollows:

ax
∑
s∈S

∑
r∈Rs

∑
t∈Ts

dsy
r
st (1)

∑
r∈Rs

∑
t∈Ts

yr
st ≤ 1 ∀s ∈ S (2)

∑
s∈Sc

∑
r∈Rs

t∑

l=t−d̄s+1|l∈Ts

yr
sl ≤ 1 ∀c ∈ C,∀t ∈ Tc (3)

∑
s∈S|r∈Rs

t∑
l=t−ds+1|l∈Ts

yr
sl ≤ 1 ∀r ∈ R,∀t ∈ T (4)

∑
s∈S

∑
r∈Rs\Rk

t∑

l=t−d̄s+1|l∈Ts

g1
skyr

sl ≤ q1
k ∀k ∈ K1,∀t ∈ T (5)

∑
s∈S

∑
r∈Rs

∑
t∈Ts

g2
skyr

st ≤ q2
k ∀k ∈ K2 (6)

∑
r∈Rs

yr
st −

∑
a∈As

e|t∈Ta
e

wa
st ≤ 0 ∀s ∈ S,∀e ∈ Es,∀t ∈ Ts (7)

∑
t∈Ts

∑
a∈As

e|t∈Ta
e

wa
st ≤ 1 ∀s ∈ S,∀e ∈ Es (8)

∑
s∈S|e∈Es

t∑

l=t−d̄s+1|l∈Ts∩Te
a

wa
sl ≤ qa ∀e ∈ E,∀a ∈ Ae,∀t ∈ Ta

e (9)

yr
st + wa

st +
t∑

l=t−d̄s̄+1|l∈Ta
e ∩Ts̄

(
yr̄

s̄l + wa
s̄l

)
≤ 3 ∀s, s̄ ∈ S,

∀e ∈ Es ∩ Es̄,∀a ∈ As
e ∩ As̄

e,∀r ∈ Rs,∀r̄ ∈ Rs̄, brr̄ = 0,∀t ∈ Ta
e ∩ Ts

(10)

yr
st ∈ {0, 1} ∀s ∈ S,∀r ∈ Rs,∀t ∈ Ts (11)

wa
st ∈ {0, 1} ∀e ∈ E,∀a ∈ Ae,∀s ∈ S,∀r ∈ Rs,∀t ∈ Ta

e ∩ Ts (12)

The objective function (1) maximises the occupation of the oper-

ting rooms. Constraint (2) ensures that a surgery is not performed

ore than once. An important issue when maximising the utilisa-

ion in a daily basis could be whether an operation would be carried

rom day to day without ever being scheduled. Thus, when using the

odel on a daily basis, it might be useful to introduce a slack variable

n constraint (2) to impose a surgery that has not been scheduled

y setting the slack variable associated to that surgery to zero. Over-

apping surgeries are avoided by constraints (3) and (4). The former
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revents a surgeon from starting a surgery without having finished

n earlier one. The latter prevents a room from being in use with two

urgeries at the same time. Note that a surgeon is free to start another

urgery as soon as intervention duration d̄s ends, while a room is

ccupied with a surgery for ds time periods. Capacity constraints (5)

nd (6) are associated with renewable and nonrenewable resources,

espectively. Constraints (7) and (8) associate specialised human re-

ources with surgeries. Whenever a surgery s is scheduled to start in a

eriod t � Ts, an individual a ∈ As
e of each type of specialised resource

� Es must be assigned as long as t belongs to his/her time win-

ows Ta
e . Constraint (9) bounds the number of surgeries an individual

an perform simultaneously. As already mentioned, the distance be-

ween two rooms r and r̄ may refrain an individual from performing

wo surgeries simultaneously. In this case, i.e., brr̄ = 0, constraint (10)

nsures that although an individual may be suitable to perform two

urgeries s and s̄ occurring simultaneously in rooms r and r̄, respec-

ively, he/she can only be assigned to one of them. Finally, constraints

11) and (12) define the domain of the variables.

. Integer programming-based heuristics

In many practical settings, integer programming formulations

ave been used to generate very good, but not necessarily optimal,

olutions, e.g., see Ball (2011) and Wolsey (1998). Preliminary com-

utational experiments have shown that the linear relaxation of (11)

nd (12) can produce very good upper bounds to the optimal solution

alues. For this reason, we use relaxations to propose two integer

rogramming-based heuristics, which can be implemented with a

ixed integer programming solver and we can assess the quality of

olutions found. The heuristics consist of two main steps: first draw

rom relaxation candidate assignments of surgeries to rooms and pe-

iods, then solve a reduced model to obtain feasibility.

.1. Relax-and-fix heuristic

We propose a relax-and-fix heuristic in which only the integrality

f w is dropped. In the first step we solve formulation (1)–(11) with

he LP relaxation of (12) to produce an upper bound and to construct a

et of candidate surgery assignments. Let ȳ be an optimal (integer) y-

ector to the relaxation. We denote by ϒ the set of candidate surgery

ssignments drew from the relaxation, i.e., ϒ contains each surgery

for which there exists a room ηs and a period τ s such that ȳ
ηs
sτs

= 1.

lthough the surgery assignments selected in ϒ are feasible in terms

f overlapping and renewable/nonrenewable resources, i.e., feasible

o constraints (2)–(6), there may be no assignment of specialised

esources which are feasible for constraints (7)–(10).

In the second step, we solve a reduced mixed integer program-

ing model to obtain feasibility. The idea is for every s � ϒ either to

uccessfully assign a specialised resource or to not perform s. Thus,

he binary variable wa
s takes value 1 if surgery s � ϒ is assigned to

ndividual a ∈ As
e of specialised resource type e � Es, and 0 otherwise.

ote now that variable w has a reduced dimension with respect to

he original model, since s starts in τ s if it is to be performed. The

ontinuous variable zs naturally takes value 0 or 1, 1 if surgery s � ϒ

s not to be performed, and 0 otherwise.

We define a potential conflict set �s, s � ϒ , which contains every

urgery s′ � ϒ − {s} that if started in τs′ will not be finished in τ s,

.e. �s = {s′ ∈ ϒ − {s}|τs − ds′ + 1 ≤ τs′ ≤ τs}. The set �̄s is defined

nalogously, except that only duration d̄s of the intervention itself is

onsidered. The set �r, r � R, contains candidate surgeries assigned

o room r, i.e., �r = {s � ϒ |ηs = r}. The reduced model can be written

s follows:

min
∑
s∈ϒ

dszs (13)
wa
s +

∑

s′∈�̄s|a∈Ae
s′ ,τs′ ∈Ta

e

wa
s′ ≤ qa ∀s ∈ ϒ,∀e ∈ Es,∀a ∈ Ae

s , τs ∈ Ta
e

(14)

wa
s + wa

s′ ≤ 1 ∀s ∈ ϒ,∀s′ ∈ �̄s, bηsηs′ = 0,∀e ∈ Es ∩ Es′ ,

∀a ∈ Ae
s ∩ Ae

s′ , τs ∧ τs′ ∈ Ta
e , qa > 1 (15)

∑
a∈Ae

s | τs∈Ta
e

wa
s + zs = 1 ∀s ∈ ϒ,∀e ∈ Es (16)

0 ≤ zs ≤ 1 ∀s ∈ ϒ (17)

wa
s ∈ {0, 1} ∀s ∈ ϒ,∀e ∈ Es,∀a ∈ Ae

s , τs ∈ Ta
e (18)

The objective function (13) minimises occupation losses due to

andidate surgery assignments that cannot be performed. Constraint

14) bounds the number of surgeries an individual of a specialised

esource type can perform simultaneously. Constraint (15) avoids the

ituation where an individual of a specialised resource type is as-

igned to two overlapping surgeries taking place in non compatible

ooms. Constraint (16) ensures that either a candidate surgery has a

pecialised resource assigned to or it cannot be performed. Finally,

onstraints (17) and (18) define the domain of the variables. Since w

s a binary variable, it follows from (16) that z assumes either 0 or 1.

At the end of the second step, the heuristic returns a feasible so-

ution with an occupancy of
∑

s∈ϒ ds(1 − z̄s), where z̄ is an optimal

-vector to formulation (13)–(18).

One may not solve formulation (1)–(11) with the LP relaxation

f (12) to optimality in order to obtain good feasible solutions to

he original problem. Indeed, we note, for instance, that high quality

olutions can be found when the formulation in the first step is solved

o an optimality gap of 5 percent.

.2. LP-based heuristic

We try to construct a larger set of candidate surgery assign-

ents by solving the LP relaxation of formulation (1)–(12). Let ȳ be

n optimal (not necessarily integer) y-vector to the LP relaxation.

iven a surgery s � S, let ηs be a room and τ s be a period yield-

ng the greatest ȳ value, i.e., (ηs, τs) = arg max(r,t)∈Rs×Ts{ȳr
st}. The set

= {s ∈ S | ȳ
ηs
sτs

≥ ρ} now contains each surgery s for which the as-

ignment variable to ηs and τ s in the LP optimal solution is greater

han or equal to a threshold value ρ . In addition to constraints (7)–

10), this set of candidate surgery assignments may not be feasible

ith respect to the overlapping constraints (3) and (4), and to the

esource constraints (5) and (6) as well.

In the second step, we solve a reduced mixed integer programming

odel consisting of constraints (13)–(18) and constraints (19)–(22)

iven below.

zs + zs′ ≥ 1 ∀c ∈ C,∀s ∈ Sc ∩ ϒ,∀s′ ∈ Sc ∩ �̄s (19)

zs + zs′ ≥ 1 ∀r ∈ R,∀s ∈ �r,∀s′ ∈ �r ∩ �s (20)

g1
sk(1 − zs)+

∑

s′∈�̄s |ηs′ �∈Rk

g1
s′k(1 − zs′) ≤ q1

k

∀k ∈ K1,∀s ∈ ϒ,ηs �∈ Rk (21)

∑
s∈ϒ

g2
sk(1 − zs) ≤ q2

k ∀k ∈ K2 (22)

Constraints (19) and (20) force one surgery to not be performed

or every pair of two overlapping surgeries having the same surgeon
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and/or room in common. The former prevents a surgeon from starting

a surgery without having finished one that was started earlier. The

latter prevents a room from being in use with two surgeries at the

same time. Constraints (21) and (22) ensure that candidate surgery

assignments which exceed renewable and nonrenewable resource

capacities (respectively) are avoided.

5. Computational experiments

We generated instances based on real data from a Brazilian hospi-

tal to analyse the performance of the proposed methods on a variety

of potential practical situations. However, we first discuss a real prac-

tical example to characterise a concrete case study.

5.1. A real example

The case study consists of 64 surgeries, which in practice means

two days of scheduling. In total, 43 surgeons are involved with this

set of surgeries. We have 24 periods of 30 minutes each. The sum of

the duration of all surgeries is 367 periods, and cleaning takes 1 pe-

riod after performing a surgery. There are two renewable resources:

3 mobile units of a microscope, and 5 mobile units of an image in-

tensifier, which has also another unit installed on an operating room.

The nonrenewable resource is an intensive care unit with 7 beds. The

hospital has 14 rooms, divided into two blocks, for elective surgeries.

Non-elective surgeries are undertaken in a third block of rooms. One

main block has 11 rooms, and an auxiliary block has 3 rooms. Most

of the surgeries, in this case 57 out of 64, have to be performed on

the main block because they require renewable and/or nonrenew-

able resources. Cardiac surgeries have to be performed on a specific

room. The same constraint applies to neurological surgeries, which

have to be performed on another specific room. However, these spe-

cific rooms are not exclusive for cardiac and neurological surgeries,

as other kinds of surgeries can be performed there as well. The spe-

cialised human resources are the 12 anaesthetists, which 6 of them

work the whole day, 2 only in the morning, and 4 only in the after-

noon. The set of surgeries each anaesthetist can perform is defined

based on professional skills and personal preferences. They may per-

form at most 2 surgeries simultaneously, as long as they occur in the

same block.

The integer model solved this case in 416 seconds on a Intel Core i3,

2.6 gigahertz with 4 gigabyte of RAM memory. In the optimal solution

found, a total of 49 surgeries were scheduled summing up 292 periods

of occupation. It corresponds to an utilisation of 87 percent. In the
Table 3

Instances HC, similar to the real case. UB – upper bound, LB – lower bound, g(percent) – perc

I |S| IP model LP-based heuristic

LB g(percent) t UB t LB t g(percent)

HC1 40 76 0.0 12 77 1 72 0 6.9

HC2 40 115 0.0 146 117 12 91 0 28.6

HC3 40 82 0.0 28 83 3 74 0 12.2

HC4 50 98 0.0 17,932 102 6 83 0 22.9

HC5 50 117 0.0 4113 120 17 95 0 26.3

HC6 50 77 0.0 34 79 2 70 2 12.9

HC7 60 95 0.0 62 97 6 87 0 11.5

HC8 60 107 0.0 14,090 110 10 94 0 17.0

HC9 60 89 0.0 34 90 3 83 0 23.3

HC10 70 81 0.0 60 81 7 72 0 12.5

HC11 70 99 0.0 65 100 5 86 0 16.3

HC12 70 100 0.0 49 103 5 89 0 15.7

HC13 80 101 0.0 118 103 12 92 0 12.0

HC14 80 121 0.0 96 123 15 99 0 24.2

HC15 80 112 0.0 260 113 24 90 0 25.6

HC16 90 102 0.0 138 102 14 97 0 5.2

HC17 90 100 0.0 98 101 7 82 0 23.2

HC18 90 101 0.0 128 102 7 93 0 9.7
ractice, the surgical scheduling is done manually, and utilisation

ates are about 45–50 percent. The hospital’s goal is to have more

han 60 percent of utilisation.

.2. Experimental platform

We conducted computational experiments using a variety of sce-

arios built with data presented in the previous section. All experi-

ents were carried out on an Intel Xeon X5690 @ 3.47 gigahertz with

4-CPU and 132 gigabyte of RAM memory running Linux. We con-

ucted experiments with the integer model, the LP-based heuristic,

he relax-and-fix heuristic, and the relax-and-fix heuristic with first

tep solved to an optimality gap of 5 percent (denoted relax-and-fix 5

ercent). All the proposed models and methods were coded in AMPL

nd solved by CPLEX version 12.4 with parameters presolve = 1,

arallelmode = 1 to enable deterministic parallel search mode, and

imelimit = 21,600 seconds. Constraint (10) was treated with pa-

ameter lazy when running the integer model and the first step of

he relax-and-fix heuristics. Parameter mipemphasis was set to 1 in

the first step of the relax-and-fix 5 percent to emphasise feasibility

over optimality, and set to 0 otherwise.

In total 144 instances were generated. All instances are available

upon request. Several features, like the number of rooms and re-

sources, are fixed to those found in practice; while others, like the

number of surgeries and the number of surgeries anaesthetists can

perform simultaneously, were generated from values consistent with

the hospital’s practice to cover diverse situations. The following data is

fixed for all instances. The hospital has 14 rooms for elective surgeries.

There are two renewable resources, i.e., |K1| = 2, and one nonrenew-

ble resource, i.e., |K2| = 1. There are 6 surgeons, i.e., |C| = 6. A day is

ivided in 24 periods, i.e., |T| = 24. Different scenarios containing 3

nstances for each value of |S| = 40, 50, 60, 70, 80, 90 were generated

y varying configurations from the basic scenario as described in the

ext section.

We report computational results got with the proposed models

nd methods on Tables 3–10. The tables have all the same structure.

bjective function values are given in periods of occupation of the

perating rooms, and running times are given in CPU seconds with

PLEX parameter clocktype = 1. The first two columns present the

dentification and the number of surgeries of each instance. Then,

he next three columns present results obtained running the integer

odel (1)–(12). We report LB as the best feasible solution obtained,

(percent) as the optimality gap returned by CPLEX, and the user CPU

ime as the sum of AMPL _solve_user_time and _ampl_user_time.
entage gap given by UB−LB
LB

, t – computational time in seconds.

Relax-and-Fix heuristic Relax-and-Fix 5 percent

t UB t LB t g(percent) t LB g(percent) t

2 76 57 76 0 0.0 58 76 1.3 2

19 115 5 115 0 0.0 22 114 2.6 21

6 82 3 82 0 0.0 17 80 3.8 15

11 98 90 98 0 0.0 109 98 3.1 24

25 117 34 114 0 2.6 63 111 5.4 46

9 77 2 77 0 0.0 20 74 4.1 19

11 95 2 95 0 0.0 27 95 1.1 26

17 107 282 107 0 0.0 314 105 2.9 32

6 89 2 89 0 0.0 18 86 3.5 17

14 81 3 81 0 0.0 36 79 2.5 31

14 99 3 99 0 0.0 49 96 3.1 43

10 100 10 100 0 0.0 39 97 4.1 29

25 101 4 101 0 0.0 67 101 0.0 61

24 121 8 121 0 0.0 58 120 2.5 48

37 112 6 112 0 0.0 74 109 2.8 68

28 102 5 102 0 0.0 74 99 3.0 68

15 100 3 100 0 0.0 53 100 0.0 51

18 101 3 101 0 0.0 59 98 4.1 56
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Table 4

Instances HB, compatible with adjacent room only. UB – upper bound, LB – lower bound, g(percent) – percentage gap given by UB−LB
LB

, t – computational time in seconds.

I |S| IP model LP-based heuristic Relax-and-Fix heuristic Relax-and-Fix 5 percent

LB g(percent) t UB t LB t g(percent) t UB t LB t g(percent) t LB g(percent) t

HB1 40 76 0.0 31 77 2 71 0 8.5 14 76 1 76 0 0.0 14 75 1.3 16

HB2 40 115 0.0 398 117 15 103 0 13.6 59 115 82 115 0 0.0 122 113 1.8 81

HB3 40 82 0.0 122 83 7 79 0 5.1 33 82 6 82 0 0.0 32 82 1.2 33

HB4 50 98 2.0 21,816 102 15 82 0 24.4 54 98 90 98 0 0.0 126 97 3.1 55

HB5 50 112 4.5 22,140 120 25 92 0 30.4 89 117 170 117 0 0.0 229 113 3.5 392

HB6 50 77 0.0 82 79 7 66 0 19.7 45 77 3 77 0 0.0 48 77 0.0 48

HB7 60 95 0.0 922 97 13 87 0 11.5 58 95 4 95 0 0.0 59 94 2.1 58

HB8 60 107 0.0 4654 110 29 94 0 17.0 82 107 6 107 0 0.0 69 105 1.9 67

HB9 60 89 0.0 64 90 6 74 0 21.6 30 89 30 89 0 0.0 61 88 1.1 52

HB10 70 81 0.0 150 81 17 71 0 14.1 77 81 4 81 0 0.0 74 81 0.0 72

HB11 70 99 0.0 142 100 16 95 0 5.3 96 99 10 99 0 0.0 103 99 0.0 102

HB12 70 100 0.0 146 103 11 88 0 17.0 62 100 5 100 0 0.0 63 100 0.0 74

HB13 80 101 0.0 309 103 66 91 0 13.2 183 101 237 101 0 0.0 370 101 2.0 148

HB14 80 121 0.0 198 123 40 94 0 30.9 129 121 190 121 0 0.0 291 121 1.7 119

HB15 80 112 0.0 1331 113 33 94 0 20.2 182 112 22 112 0 0.0 163 112 0.9 173

HB16 90 102 0.0 324 102 27 94 0 8.5 164 102 8 102 0 0.0 162 102 0.0 151

HB17 90 100 0.0 180 101 19 79 0 27.8 115 100 6 100 0 0.0 118 100 0.0 111

HB18 90 101 1.0 21,749 102 18 94 0 8.5 133 101 156 101 0 0.0 285 101 1.0 161

Table 5

Instances HA, with 40 percent less individuals considered as specialised resources. UB – upper bound, LB – lower bound, g(percent) – percentage gap given by UB−LB
LB

, t –

computational time in seconds.

I |S| IP model LP-based heuristic Relax-and-Fix heuristic Relax-and-Fix 5 percent

LB g(percent) t UB t LB t g(percent) t UB t LB t g(percent) t LB g(percent) t

HA1 40 75 0.0 72 75 0 57 0 31.6 5 75 6 75 0 0.0 12 65 15.4 3

HA2 40 115 0.0 896 117 5 95 0 23.2 19 115 9872 115 0 0.0 9889 114 2.6 26

HA3 40 82 0.0 696 83 1 75 0 10.7 12 82 1 82 0 0.0 13 81 2.5 9

HA4 50 98 0.0 12,068 102 4 81 0 25.9 19 98 104 98 0 0.0 122 96 4.2 14

HA5 50 117 0.0 2399 120 11 94 0 27.7 30 117 10 107 1 9.3 33 108 8.3 44

HA6 50 77 0.0 15 79 1 71 0 11.3 12 77 1 77 0 0.0 14 75 4.0 11

HA7 60 95 0.0 54 97 10 86 0 12.8 25 95 2 95 0 0.0 27 92 3.3 20

HA8 60 103 0.0 229 108 6 77 3 40.3 23 103 95 91 1 13.2 117 97 8.2 162

HA9 60 65 0.0 11 65 1 52 0 25.0 7 65 1 65 0 0.0 12 62 4.8 10

HA10 70 81 0.0 30 81 4 63 0 28.6 19 81 2 81 0 0.0 21 79 2.5 17

HA11 70 99 0.0 36 100 4 89 0 12.4 26 99 5 99 0 0.0 35 96 4.2 26

HA12 70 100 0.0 30 103 4 87 0 18.4 21 100 15 100 0 0.0 37 100 0.0 24

HA13 80 101 0.0 78 103 14 87 0 18.4 50 101 3 101 0 0.0 49 98 4.1 40

HA14 80 121 0.0 43 123 6 105 0 17.1 28 121 3 121 0 0.0 34 120 0.8 35

HA15 80 112 0.0 283 113 13 100 0 13.0 38 112 5 112 0 0.0 39 108 3.7 42

HA16 90 102 0.0 91 102 10 84 0 21.4 54 102 3 102 0 0.0 55 100 2.0 49

HA17 90 100 0.0 149 101 7 88 0 14.8 42 100 7 100 0 0.0 51 100 1.0 56

HA18 90 101 0.0 144 102 10 86 0 18.6 42 101 93 101 0 0.0 135 98 4.1 45

Table 6

Instances HE, with two types of specialised resources, i.e., |E| = 2. UB – upper bound, LB – lower bound, g(percent) – percentage gap given by UB−LB
LB

, t – computational time in

seconds.

I |S| IP model LP-based heuristic Relax-and-Fix heuristic Relax-and-Fix 5 percent

LB g(percent) t UB t LB t g(percent) t UB t LB t g(percent) t LB g(percent) t

HE1 40 76 0.0 49 77 5 67 0 14.9 27 76 2 76 0 0.0 6 74 4.1 6

HE2 40 115 0.0 1121 117 27 99 0 18.2 78 115 8 115 0 0.0 45 115 0.9 44

HE3 40 82 0.0 72 83 8 73 0 13.7 39 82 5 82 0 0.0 34 81 2.5 29

HE4 50 98 0.0 347 102 720 81 0 25.9 763 98 21 98 0 0.0 66 95 4.2 44

HE5 50 117 0.0 1457 120 2134 93 0 29.0 2206 117 511 112 0 4.5 580 111 5.4 255

HE6 50 77 0.0 79 79 7 70 0 12.9 48 77 3 77 0 0.0 39 75 2.7 43

HE7 60 95 0.0 212 97 1545 83 0 16.9 1600 95 11 95 0 0.0 70 95 1.1 112

HE8 60 107 0.9 21,765 110 553 93 0 18.3 626 107 1717 107 0 0.0 1795 105 3.8 71

HE9 60 89 0.0 209 90 12 73 0 23.3 49 89 8 89 0 0.0 53 84 6.0 46

HE10 70 81 0.0 163 81 28 66 0 22.7 98 81 5 81 0 0.0 79 81 0.0 80

HE11 70 99 0.0 546 100 20 84 0 19.0 105 99 5 99 0 0.0 97 98 1.0 89

HE12 70 100 0.0 724 103 41 80 0 28.8 118 100 319 100 0 0.0 400 98 3.1 231

HE13 80 101 0.0 368 103 2708 94 0 9.6 2822 101 7 101 0 0.0 139 101 0.0 133

HE14 80 121 0.0 432 123 80 104 0 18.3 194 121 276 121 0 0.0 414 121 0.8 160

HE15 80 112 0.0 2052 113 2491 87 0 29.9 2610 112 71 112 0 0.0 216 110 2.7 350

HE16 90 102 0.0 297 102 1070 89 0 14.6 1190 102 8 102 0 0.0 154 102 0.0 141

HE17 90 100 0.0 193 101 375 82 0 23.2 474 100 12 100 0 0.0 122 100 1.0 118

HE18 90 101 0.0 359 102 55 87 0 17.2 182 101 48 101 0 0.0 183 101 0.0 155
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Table 7

Instances HL, with time windows only for the specialised resources. UB – upper bound, LB – lower bound, g(percent) – percentage gap given by UB−LB
LB

, t – computational time in

seconds.

I |S| IP model LP-based heuristic Relax-and-Fix heuristic Relax-and-Fix 5 percent

LB g(percent) t UB t LB t g(percent) t UB t LB t g(percent) t LB g(percent) t

HL1 40 120 0.0 423 122 21 101 0 20.8 63 120 8 120 0 0.0 56 117 2.6 60

HL2 40 132 0.0 1284 134 26 117 0 14.5 77 132 415 132 0 0.0 476 130 3.1 68

HL3 40 114 0.0 136 114 11 112 0 1.8 63 114 10 114 0 0.0 76 110 3.6 70

HL4 50 165 1.2 21,825 168 97 138 0 21.7 185 166 9488 166 0 0.0 9596 165 1.8 263

HL5 50 153 0.7 21,792 154 63 122 0 26.2 129 153 5347 153 0 0.0 5414 153 0.7 295

HL6 50 132 0.0 1276 134 41 126 0 6.3 141 132 3317 132 0 0.0 3445 130 3.1 191

HL7 60 173 0.6 21,860 174 95 155 0 12.3 169 173 1435 173 0 0.0 1530 169 3.0 105

HL8 60 163 9.8 21,744 181 3607 137 0 32.1 3698 178 2160 178 0 0.0 2257 178 1.7 545

HL9 60 156 1.9 21,761 161 91 126 0 27.8 170 159 15,466 159 0 0.0 15,569 159 0.6 714

HL10 70 153 0.7 22,366 156 95 117 0 33.3 179 154 2566 154 0 0.0 2663 149 4.7 301

HL11 70 177 0.0 6703 179 139 137 0 30.7 308 179 21,611 177 0 1.1 21,823 177 1.1 374

HL12 70 173 1.7 21,778 177 111 121 0 46.3 194 174 3987 174 0 0.0 4079 170 4.1 254

HL13 80 191 1.0 21,799 193 5802 148 0 30.4 5990 193 21,616 191 0 1.0 21,822 187 3.2 2521

HL14 80 186 0.0 18,997 187 148 157 0 19.1 267 186 2355 186 0 0.0 2508 185 1.1 835

HL15 80 184 0.0 18,944 186 297 141 0 31.9 492 184 3873 184 0 0.0 4086 183 1.6 445

HL16 90 180 0.0 8212 181 327 148 0 22.3 543 180 4194 180 0 0.0 4470 180 0.6 830

HL17 90 – – 21,768 192 3551 138 0 39.1 3710 192 21,607 188 0 2.1 21,782 188 2.1 11,669

HL18 90 189 0.5 21,835 190 318 139 0 36.7 536 190 21,610 189 0 0.5 21,845 188 1.1 450

Table 8

Instances HS, with no time windows. UB – upper bound, LB – lower bound, g(percent) – percentage gap given by UB−LB
LB

, t – computational time in seconds.

I |S| IP model LP-based heuristic Relax-and-Fix heuristic Relax-and-Fix 5 percent

LB g(percent) t UB t LB t g(percent) t UB t LB t g(percent) t LB g(percent) t

HS1 40 120 0.0 312 122 22 104 0 17.3 73 120 550 120 0 0.0 610 118 3.4 64

HS2 40 132 0.0 458 134 14 116 0 15.5 71 132 234 132 0 0.0 291 131 2.3 76

HS3 40 114 0.0 199 114 11 110 0 3.6 70 114 6 114 0 0.0 77 114 0.0 68

HS4 50 165 1.2 21,875 168 67 144 0 16.7 165 167 21,605 166 0 0.6 21,720 162 3.7 165

HS5 50 153 0.7 22,020 154 82 141 1 9.2 177 153 365 153 0 0.0 475 153 0.7 118

HS6 50 132 0.0 1283 134 41 126 0 6.3 152 132 3378 132 0 0.0 3485 130 3.1 197

HS7 60 173 0.0 5048 174 82 158 0 10.1 170 173 1406 173 0 0.0 1515 170 2.4 116

HS8 60 177 0.6 21,694 181 129 131 0 38.2 243 178 1846 178 0 0.0 1979 177 2.3 350

HS9 60 160 0.6 21,734 163 94 124 0 31.5 228 160 991 160 0 0.0 1125 159 1.9 315

HS10 70 154 1.3 21,961 156 160 120 0 30.0 335 154 905 154 0 0.0 1080 154 1.3 287

HS11 70 177 0.0 7961 179 181 137 0 30.7 353 177 1218 177 0 0.0 1396 175 2.3 233

HS12 70 174 0.6 21,919 177 105 136 0 30.1 215 174 5598 174 0 0.0 5710 174 1.7 327

HS13 80 189 2.1 21,846 193 285 146 0 32.2 474 191 3778 191 0 0.0 3987 186 3.8 413

HS14 80 186 0.0 3675 187 92 149 0 25.5 244 186 77 186 0 0.0 271 186 3.8 217

HS15 80 184 0.5 21,822 186 281 152 0 22.4 529 184 5320 184 0 0.0 5610 182 2.2 636

HS16 90 180 0.0 11,031 181 246 148 0 22.3 544 180 3630 180 0 0.0 3940 180 0.6 582

HS17 90 185 3.2 21,897 192 197 136 0 41.2 411 191 21,609 188 0 1.6 21,877 185 3.8 2182

HS18 90 188 1.1 21,852 190 308 149 0 27.5 564 189 1880 189 0 0.0 2186 188 1.1 533

Table 9

Instances HLA, with 40 percent less individuals as specialised resources and time windows for them. UB – upper bound, LB – lower bound, g(percent) – percentage gap given by
UB−LB

LB
, t — computational time in seconds.

I |S| IP model LP-based heuristic Relax-and-Fix heuristic Relax-and-Fix 5 percent

LB g(percent) t UB t LB t g(percent) t UB t LB t g(percent) t LB g(percent) t

HLA1 40 120 1.7 21,640 122 9 90 0 35.6 27 120 7 120 0 0.0 10 118 3.4 28

HLA2 40 131 0.8 21,778 134 9 112 0 19.6 37 132 664 132 0 0.0 682 131 2.3 42

HLA3 40 114 0.0 155 114 8 108 0 5.6 37 114 16 114 0 0.0 38 112 1.8 43

HLA4 50 165 1.2 21,674 168 1577 124 0 35.5 1621 168 21,604 166 0 1.2 21,640 165 1.8 627

HLA5 50 150 2.7 21,643 154 31 139 0 10.8 64 154 21,643 151 0 2.0 21,671 144 6.9 563

HLA6 50 132 0.0 1643 134 12 125 0 7.2 59 132 358 132 0 0.0 398 129 3.9 57

HLA7 60 173 0.6 21,728 174 93 136 0 27.9 152 173 126 173 0 0.0 171 168 3.6 83

HLA8 60 124 30.6 21,651 162 2717 116 0 39.7 2764 162 1384 160 0 1.3 1422 160 1.2 986

HLA9 60 136 1.5 21,663 138 58 94 0 46.8 98 138 12 138 0 0.0 46 136 1.5 55

HLA10 70 152 2.6 22,622 156 83 114 0 36.8 128 156 21,605 154 0 1.3 21,644 151 3.3 75

HLA11 70 177 0.0 12,288 179 130 129 0 38.8 227 179 21,745 177 0 1.1 21,847 172 4.1 114

HLA12 70 174 0.6 22,282 177 79 127 0 39.4 139 174 7434 174 0 0.0 7478 171 2.3 76

HLA13 80 – – 22,288 193 2660 134 0 44.0 2761 193 21,606 187 2 3.2 21,700 185 4.3 157

HLA14 80 185 1.1 21,730 187 934 160 0 16.9 986 186 292 186 0 0.0 352 181 3.3 91

HLA15 80 184 0.0 5047 186 171 136 0 36.8 238 186 21,619 184 0 1.1 21,723 184 1.1 116

HLA16 90 175 3.4 21,779 181 2980 134 0 35.0 3112 181 21,694 177 0 2.3 21,820 173 4.6 178

HLA17 90 104 83.6 21,722 191 4944 126 0 51.6 5081 191 21,609 187 0 2.1 21,739 184 3.8 15,657

HLA18 90 149 27.5 21,770 190 262 152 0 25.0 398 190 21,607 189 0 0.5 21,749 186 2.1 3218
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Table 10

Instances HLB, with adjacent room compatibility only and time windows for the specialised resources. UB – upper bound, LB – lower bound, g(percent) – percentage gap given by
UB−LB

LB
, t – computational time in seconds.

I |S| IP model LP-based heuristic Relax-and-Fix heuristic Relax-and-Fix 5 percent

LB g(percent) t UB t LB t g(percent) t UB t LB t g(percent) t LB g(percent) t

HLB1 40 120 0.0 9069 122 37 94 0 29.8 119 120 194 120 0 0.0 210 120 0.0 35

HLB2 40 131 1.5 21,969 134 39 122 0 9.8 137 132 330 132 0 0.0 388 132 1.5 62

HLB3 40 114 0.0 485 114 57 102 0 11.8 163 114 12 114 0 0.0 76 114 0.0 71

HLB4 50 164 1.8 21,802 168 2858 134 0 25.4 2999 167 21,612 166 0 0.6 21,724 162 3.7 310

HLB5 50 74 108.1 21,763 154 96 128 0 20.3 230 153 16,308 149 0 2.7 16,383 145 6.2 1604

HLB6 50 132 0.0 4405 134 126 127 0 5.5 351 132 337 132 0 0.0 483 132 0.8 269

HLB7 60 173 0.0 4715 174 105 154 0 13.0 263 173 1708 173 0 0.0 1809 171 1.7 125

HLB8 60 108 67.6 21,817 181 2729 131 0 38.2 2925 178 7572 175 0 1.7 7711 178 0.7 7637

HLB9 60 153 3.9 21,792 161 197 126 0 27.8 342 160 21,608 154 0 3.9 21,729 153 4.6 158

HLB10 70 150 4.0 21,950 156 217 115 2 35.6 406 154 2895 154 0 0.0 2937 152 2.0 1921

HLB11 70 177 0.6 22,071 179 287 157 0 14.0 682 179 21,619 177 0 1.1 21,711 177 1.1 797

HLB12 70 173 1.2 21,870 177 219 118 0 50.0 398 174 13,475 174 0 0.0 13,514 168 4.8 661

HLB13 80 189 2.1 22,123 193 1651 159 0 21.4 2082 193 21,716 191 0 1.0 21,837 187 3.2 1155

HLB14 80 185 0.5 21,968 187 790 154 0 21.4 1026 186 650 184 0 1.1 712 176 6.2 1323

HLB15 80 184 0.0 21,038 186 13,682 158 0 17.7 14,201 186 21,626 184 0 1.1 21,879 178 4.5 2029

HLB16 90 180 0.6 22,217 181 9412 129 0 40.3 9831 181 21,687 180 0 0.6 21,798 180 0.7 4147

HLB17 90 – – 22,887 192 21,659 142 0 35.2 22,061 191 21,624 175 0 9.1 21,823 151 26.5 21,975

HLB18 90 185 2.7 21,819 190 6847 143 0 32.9 7383 189 21,694 188 0 0.5 21,966 186 2.2 4040

I

r

r

fi

w

t

t

a

_
t

L

o

l

c

p

(

t

a

l

_
s

m

m

o

g

m

l

L

p

c

i

m

i

m

t

v

5

w

t

t

w

c

r

c

F

u

i

t

a

b

r

s

d

s

1

t

R

t

f

c

r

1

t

b

a

t

i

a

L

s

t

1

v

C

m

s

b

s

r

n the columns related to the LP-based heuristic (cf. Section 4.2) we

eport UB as the upper bound due to LP-relaxation, the user CPU time

eturned by AMPL _solve_user_time to solve LP-relaxation (i.e., the

rst step of the heuristic), LB as the best feasible solution obtained

ith the reduced model (13)–(22) (i.e., the second step of the heuris-

ic), the user CPU time returned by AMPL _solve_user_time to solve

he reduced model, g(percent) as the percentage gap between UB

nd LB given by UB−LB
LB

, and the user CPU time as the sum of AMPL

total_solve_user_time and _ampl_user_time. The columns related

o the Relax-and-Fix heuristic are analogous to those related to the

P-based heuristic, except that we report UB as the upper bound

btained with the relaxation of (12) and LB as the best feasible so-

ution obtained with the reduced model (13)–(18). In the last three

olumns, which are related to the Relax-and-Fix 5 percent, we re-

ort LB as the best feasible solution obtained with the reduced model

13)–(22), g(percent) as the percentage gap computed with respect

o the upper bound returned by CPLEX when the procedure stops

t the first step (not necessarily with an optimal solution to the re-

axation of (12)), and the total user CPU time as the sum of AMPL

total_solve_user_time and _ampl_user_time (including the two

teps of the heuristic, given that the time needed to solve the reduced

odel is negligible).

Note that each column g(percent) is computed solely with infor-

ation obtained by the respective method, and not with respect to

ptima or best known upper bounds. As such, each column g(percent)

ives the posteriori performance guarantees obtained with each

ethod. Average gaps with respect to optimal or best known so-

utions are presented in an overview at the end of this section. In the

P-based heuristic, the threshold value ρ can be tuned to size the

roblem to be solved in the second step of the heuristic. Preliminary

omputational results have shown that the reduced model (13)–(22)

s solved very quickly. For this reason we set ρ to 0.01, and take al-

ost all surgeries with an active y variable in the LP-relaxation of the

nteger model (1)–(12) to build set ϒ (cf., Section 4.2). Thus, we give

ore options to the reduced model without significantly increasing

otal computational times as the second step of the heuristic is solved

ery quickly.

.3. Basic scenario

The parameter values for these basic instances, denoted by HC,

ere generated from guidelines provided by the staff charged with
he surgical scheduling at the hospital. The rooms are divided into

wo groups, one with 3 rooms and another with 11 rooms. The rooms

ithin each group are compatible with the simultaneous use of spe-

ialised resources, but no simultaneous use can be undertaken with

ooms belonging to different groups. There is just one type of spe-

ialised human resource, i.e., |E| = 1, with 10 individuals, i.e., |A| = 10.

or each instance, between 30 percent and 50 percent of the individ-

als belonging to A are able to perform 2 surgeries simultaneously,

.e., qa = 2, while the others are unable to perform surgeries simul-

aneously, i.e., qa = 1. The duration of surgeries were generated from

discrete uniform distribution between 1 and 11 periods. The distri-

ution of surgeries among surgeons to form each set Sc was done at

andom. Each surgery s has a probability of 90 percent to require a

pecialised human resource. Individuals from A were chosen at ran-

om to form As. Also, for each surgery s, rooms from R were cho-

en at random to form Rs. Each surgery s has a probability between

0 percent and 20 percent to require renewable resources, and be-

ween 0 percent and 15 percent to require the nonrenewable ones.

esource capacities were generated from a discrete uniform distribu-

ion between 1 and 6 for renewable resources, and between 3 and 6

or the nonrenewable resources. A room has a probability of 2 per-

ent to have a renewable resource installed. Resources are used at the

ate of one per surgery when needed, i.e., g1
sk

and g2
s are either 0 or

. The medical staff work in morning shifts, in afternoon shifts, or for

he whole day. So, time windows intervals were randomly chosen as

eing the first 12 periods, the last 12 periods, or all the 24 periods.

Table 3 presents results obtained for the HC instances. We were

ble to solve to optimality all these instances, although computa-

ional times to run the integer model are considerably high for some

nstances. The proposed model provides tight LP-relaxation bounds,

s can be seen on column UB of the LP-based heuristic. However,

P-relaxation solution values were not useful to derive good feasible

olutions, as one might have expected. Indeed, the LP-based heuris-

ic did not have a good performance returning gaps of more than

0% for almost all instances. The relax-and-fix has been shown to be

ery efficient on these instances which are similar to the real case.

omputational times are moderate, even on the instances which the

odel has taken a long time to run, and it was able to find optimal

olutions for all instances except HC5. For this instance, the upper

ound obtained in the first step is optimal, but the set of surgeries

elected are not feasible with respect to the assignment of specialised

esources. The reduced model (13)–(18) runs extremely quickly. The
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Table 11

Overview on the performance of each method.

IP model LP-based heuristic Relax-and-Fix heuristic Relax-and-Fix 5 percent

gap(percent) gap(percent) gap(percent) gap(percent)

Max Av Best Av-t Max Av Best Av-t Max Av Best Av-t Max Av Best Av-t Open

HC 0.0 0.0 18 2081 26.4 14.2 0 16 2.6 0.1 17 64 5.4 2.0 5 36 0

HB 4.5 0.2 15 4153 28.7 14.6 0 89 0.0 0.0 18 133 3.5 0.7 11 106 0

HA 0.0 0.0 18 962 33.8 18.6 0 26 13.2 1.3 16 594 15.4 3.5 2 35 0

HE 0.0 0.0 18 1691 28.7 17.8 0 735 4.5 0.2 17 249 6.0 1.6 8 117 0

HL Inf – 12 15,250 43.8 23.3 0 940 0.0 0.0 18 7972 3.6 1.2 6 1110 3

HS 1.6 0.2 13 13,810 38.2 21.4 0 279 0.0 0.0 18 4219 2.7 0.9 6 382 2

HLA Inf – 7 18,061 48.4 29.0 0 996 0.0 0.0 18 11,452 4.9 1.8 2 1231 9

HLB Inf – 8 18,098 47.5 22.6 0 3644 1.7 0.1 16 12,149 15.9 2.2 7 2684 9
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relax-and-fix 5 percent seems to be a fast alternative to obtain good

results, because within a minute the heuristic returned solutions with

a posteriori performance guarantee of no more than 5.4 percent and

it obtained 5 out of 18 optima.

5.4. Scenarios varying specialised resources

We generated three different scenarios, from the basic one, by pa-

rameters associated to specialised resources were varied. Each of the

instances denoted HB, HA and HE was generated from its counterpart

of HC by changing one parameter at a time: compatibility between

rooms, the cardinality of set A, and the cardinality of set E. In HB in-

stances, rooms are no longer divided into groups, and parameter brr̄,

cf., constraint (10), assumes 1 only if rooms r and r̄ are adjacent to

each other. HA instances have 40 percent less individuals considered

as specialised human resources than HC instances. In HE instances,

we consider two types of specialised resources, i.e., E = {1, 2}. Type 1 is

the type of specialised resource already present in HC instances. Type

2 was generated with 7 individuals, i.e., |A2| = 7. For each instance,

between 30 percent and 50 percent of the individuals belonging to A2

are able to perform 2 surgeries simultaneously, each surgery s has a

probability of 90 percent to require a specialised human resource of

type 2, and individuals from A2 were chosen at random to form As
2.

Note that a surgery may require both specialised resources, just one

of them, or none of them.

Tables 4–6 present results for the HB, HA and HE instances, re-

spectively. The parameter of compatibility between rooms and the

cardinality of E impacts upon the performance of solving the prob-

lem with the integer model, as for 4 instances the model exceeded

the time limit without closing the optimality gap. The relax-and-fix

performed well to the varying of these parameters. In fact, it obtained

all optima for instances HB and HE, except for HE5. It did this in

reasonable computational times, except for HE8 which took longer

than 10 minutes. The relax-and-fix 5 percent also performed well on

instances HB and HE, presenting small gaps and reasonable compu-

tational times. It obtained optimal solutions for 11 and 8 instances,

respectively. On the other hand, the HA instances were easier for

the integer model to solve due to the reduced number of variables.

They were also more challenging to the relax-and-fix heuristics which

present larger gaps than observed in the previous instances, due to

fewer possibilities to make solutions feasible in the second step. In

terms of LP-relaxation, although the model still provides tight LP-

relaxation upper bounds with the modified parameters, the LP-based

heuristic had a poor performance, with some very high gaps. We re-

mark that, for some instances, the LP-based heuristic takes longer to

run than the Relax-and-Fix heuristics because in the latter cases con-

straint (10) was treated with parameter lazy when running their first

step. Indeed, it was observed that with a simple experiment of remov-

ing constraint (10) to run the linear relaxation of the integer model

the computational times of the LP-based heuristic were significantly
reduced. i
.5. Scenarios varying time windows

We generated scenarios varying time windows, also taking the HC

nstances as a starting point. The HL instances have time windows only

or the specialised resources, i.e., Tc = Ts = T and Ta
e ⊆ T, while the HS

nstances have no time windows at all. Tables 7 and 8 present results

or instances HL and HS, respectively. Because time windows allow us

o eliminate variables in time indexed models, these instances were

uch harder to solve due to the increasing number of variables. We

ere not able, by running the integer model, to close the optimality

aps for 10 instances of each scenario within the time limit, and even

o obtain a feasible solution for instance HL17. On the other hand, with

elax-and-fix, we were able to close the optimality gaps for most of

he instances. Nevertheless, these results were obtained with high

omputational times, and five instances remain open: HL13, HL17,

L18, HS5, HS17. The relax-and-fix 5 percent has been shown to be

n efficient alternative to tackle these harder instances, as it obtained

esults with a posteriori performance guarantee of less than 5 percent

including 5 of HL and 6 of HS optima) in reasonable computational

imes, except for instance HL17 which took longer than the others.

We then generated critical scenarios in terms of specialised re-

ources. Surgeon and surgery time windows have been removed from

nstances HA and HB to generate instances HLA and HLB, respectively.

o, in these instances, in addition to only specialised resources being

ubject to time windows, HLA has 40 percent less individuals, and

LB has only adjacent rooms which are compatible with each other.

ables 9 and 10 present results for instances HLA and HLB, respec-

ively. These seem to be the hardest instances in our suite of exper-

ments. We were not able, neither with the integer model nor with

he relax-and-fix, to close the optimality gaps for half of the instances

f each scenario. The relax-and-fix 5 percent again has been shown

o be the best alternative to tackle these harder instances, as it ob-

ained results with a posteriori performance guarantee of less than

percent, except for instance HLB17. In most of the cases it did so

ith reasonable computational times.

.6. Overview

Table 11 gives an overview on the performance of each method

n terms of solution quality and computational time. The first column

dentifies the scenario, and then, for each method, we present the

aximum and the average percentage gaps with respect to optima or

o best known solution values, the number of best solutions obtained,

nd the average computational time in seconds. The last column re-

orts how many instances out of 18 for each scenario remain open

fter considering best upper and lower bounds obtained in the exper-

ment. The gap is computed as (BLB−LB)
LB

, where BLB is the optimum

r the best know lower bound and LB is the lower bound obtained

y the method. The maximum gap is indicated with “inf” when the

nteger model was not able to find a feasible solution for at least one

nstance within the time limit of 21,600 seconds, and in this case the
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Fig. 1. Percentage of surgeries performed with respect to the total of surgeries.
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verage gap is not computed. This happened for some instances with

ess restrictive time windows, which seem to be harder. For such sce-

arios, namely HL, HS, HLA, and HLB, the integer model needed high

omputational times, very often reaching the time limit without prov-

ng optimality. As has already been observed, the LP-based heuristic

ails in obtaining high quality feasible solutions although the linear

elaxation provides good upper bounds. The relax-and-fix strategy

as been shown to be quite successful as it obtains optimal or near

ptimal solutions for all scenarios. The Relax-and-Fix heuristic ob-

ained consistently the best solutions, although it needed in average

bout 3 hours of computational time for the harder instances such as

LA and HLB. The Relax-and-Fix 5 percent has been shown to be an

ffective alternative, obtaining small average gaps to optima or best

nown lower bounds in acceptable average computational times (less

han 1 hour).

Fig. 1 shows, in percentage, optimal solution values (or best known

olution values when optima are not available) with respect to the

rivial upper bound if all surgeries could be performed, i.e., �s�Sds.

art (a) refers to instances with more restrictive time windows. A

ar refers to the average over the three instances for each cardinality

f S in each scenario HC, HB, HA, and HE. We see that instances are

ot “loose” since solution values are at most 60 percent of the trivial

ound, and for larger instances these values are not even 40 percent.

art (b) refers to scenarios HL, HS, HLA, and HLB with less restric-

ive time windows. The less restrictive time windows have a great

mpact on the number of surgeries that can be actually scheduled,

nd solution values are at least about 50 percent of the trivial bound.

his second group of instances have an increasing number of vari-

bles and they seem to be harder since 23 out of 72 instances remain

pen.
. Concluding remarks

We have addressed a surgery scheduling problem from a hospi-

al in Brazil. In particular, we have modelled the simultaneous em-

loyment of specialised human resources, which in our case were

naesthetists. This enlarged the decision space since the assignment

f anaesthetists to surgeries must be carried out jointly with the

cheduling and assignment of surgeries to rooms. We developed in-

eger programming based heuristics decoupling decisions into two

teps because the integer model has been shown to provide tight

ounds. We generated instances inspired by real data in order to

onduct computational experiments on a number of scenarios cover-

ng different practical situations. The proposed relax-and-fix heuristic

as been successful in finding optimal or near optimal solutions, and

variant that stops with a gap of 5 percent when assigning surgeries

o rooms has been shown to be an effective alternative finding good

uality solutions in less than 1 hour on average.

It could be observed that sometimes the Relax-and-Fix heuristic

as selected (in its first step) surgeries leading to an optimal objec-

ive function value, but which were not feasible in terms of specialised

esources assignment. Thus, there may have many combinations of

urgeries leading to optimal values, some of them feasible in terms

f specialised resources assignment and some of them not. Based

n this observation, a line of future research is to introduce ideas

f local branching (Fischetti & Lodi, 2003) in the second step of the

euristic. The reduced model would not only decide on assignment

f specialised resources, but also decide on changing the allocation

f some surgeries to rooms and periods within neighbourhoods ob-

ained through the introduction of local branching cuts. The purpose

f local branching neighbourhoods would be to rearrange a subset of

urgeries among rooms and periods to increase the number of surg-

ries that can actually be scheduled with a successful assignment of

pecialised resources. Another line of research is to develop a meta-

euristic that first uses heuristic rules to select surgeries, and then

pplies the reduced model to assign specialised resources. In a VNS

Hansen, Mladenović, & Moreno Pérez, 2010) like manner a shak-

ng phase could make changes rearranging and/or increasing the set

f surgeries proposed to be scheduled, whereas the reduced model

ould impose feasibility.
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