Research Paper

Modelling and simulation of cross flow grain dryers

O.A. Khatchatourian a,*, H.A. Vielmob, L.A. Bortolaia a

a Department of Exact Sciences and Engineering, Regional University of the Northwest, Rio Grande do Sul, R. São Francisco, 501, 98700-000, Ijuí, RS, Brazil
b Department of Mechanical Engineering, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 425, 90050-170, Porto Alegre, RS, Brazil

A mathematical model, algorithm, and computer program were developed to simulate the performance of cross flow grain dryers and cross flow dryers with energy saving. The mass and heat transfer processes were described by a system of four non-linear partial differential equations. This system of equations was solved by the MacCormack method with time splitting. The Neumann method was used to determine convergence. The source-terms in these equations were computed by auxiliary semi-empirical equations obtained by experimental data from thin layer drying. Equipment developed to obtain these data permitted variation of the initial air humidity, temperature, and velocity. Fixed bed drying experiments were conducted to validate the model. Simulations using various control regimens were made to determine the impact on energy consumption and cross flow dryer performance due to recycling air exhausted from various stages of the dryer. An iterative process was used to determine the initial conditions at the entrance to each section of the dryer. The computer simulations were used to evaluate the non-uniformity of temperature and grain moisture content distributions in dryers, the duration of the drying process and the energy efficiency for each geometry and control regimen.

© 2013 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Due to the humid climate that occurs during the soya bean harvest, the moisture content of seed may be as high as 24–28% dry basis, (d.b.). Therefore practically all soya beans must be thermally dried before storage. Considering the amount harvested, even minor improvements and accelerations in the drying process will provide significant economic benefit.

Mathematical modelling and computer simulation are widely used to design dryers and develop efficient grain drying control systems (Courtois, Lebert, Lasseran, & Bimbenet, 1991; França, Fortes, & Haghighi, 1994; Han, Zuo, Zhu, Wu, & Liu, 2012; Liu & Bakker-Arkema, 2001). There are various mathematical models to describe the drying process. These models consider the heat and mass transfer between grain and air, the heat and moisture transfer inside the grain, deviations from the equilibrium state between the grain and drying air, and variations in the physical properties of air, water vapour, and grains due to variations in temperature and humidity (Barrozo, Felipe, Sartori, & Freire, 2006; Barrozo, Henrique, Sartori, & Freire, 1999; Brooker, Bakker-Arkema, & Hall, 1982; Luikov, 1966; Parry, 1985).

Generally these models represent a system of differential equations describing the energy and moisture transfer for an individual grain located in a layer, at the grain surface, and the
conservation of energy and mass at the boundary layer between the grain and humid air (Brooker et al., 1982; Khatchatourian & Oliveira, 2006). The nonlinearity of these equations does not allow for an analytical solution. The numerical methods used (finite difference method, finite element method, etc.) represent the integration domain (the drying chamber) as a set of subdomains in which any parameter, at any moment in time, is found by using simplified interpolation equations (usually linear or square-law). Since the size of the spatial elements is small, and the time step is small, the change in the parameters within a single element is insignificant; therefore to calculate the local mass flow and heat flow densities a thin-layer drying model can be used (Jayas, Cenkowski, Pabis, & Muir, 1991; Parti, 1993). Thus, the quality of thin-layer drying models essentially defines the simulation results for bulk drying.

This paper is dedicated to modelling of cross flow grain dryers (Fig. 1) widely used for drying of soya beans in the Rio Grande do Sul State, Brazil.

Cross flow grain dryers have been studied by several authors, for example, Barrozo, Felipe, Sartori, and Freire (2006), Eltigani and Bakker-Arkema (1987), Giner, Mascheroni, and Nellist (1996), Han et al. (2012), Mayta, Massarani, and Pinto (1996), Liu and Bakker-Arkema (2001), Moreira and Bakker-Arkema (1990), Platt, Rumsey, and Palazoglu (1991), Rumsey and Rovedo (2001), Tórrez, Gustafsson, Schrell, and Martínez (1998), Zhihuai and Chongwen (1999). Models used in earlier studies were presented in summary form in Laws and Parry (1983), and described in review by Parry (1985). However, to select the optimal scheme and parameters of cross flow grain dryers further investigation is required. Except for general recommendations based on the experiences and preferences of some authors (for example, Kemp, 1999; Marinos-Kouris, Maroulis, & Kiranoudis, 1998; Rumsey & Rovedo, 2001, etc.), no systematic studies on the selection of the optimal number of drying steps, the initial temperature distribution for each stage, the ratio of heights between the stages, the analysis of non-uniformity of temperature and moisture concentration, the impact of recirculating exhaust air from the drying zones into the previous chamber, occur in the literature. In particular, the calculation of the effect of recirculating exhaust air requires knowledge of the effect of increased initial air humidity on grain drying, and the authors have dedicated a lot of effort to study this effect (Khatchatourian, 2012).

Fig. 1 — Layout of continuous flow grain dryer with three drying stages and cooling chamber.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>grain surface area/volume ratio, m⁻¹</td>
</tr>
<tr>
<td>A</td>
<td>binary matrix</td>
</tr>
<tr>
<td>Aᵢ</td>
<td>lateral area of the air inlet, m²</td>
</tr>
<tr>
<td>Cₚg</td>
<td>specific heat of the grain, J kg⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Cₚv</td>
<td>specific heat of the water’s vapour, J kg⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Cₚw</td>
<td>specific heat of the water, J kg⁻¹ K⁻¹</td>
</tr>
<tr>
<td>F</td>
<td>column of the right sides</td>
</tr>
<tr>
<td>Hᵥ</td>
<td>latent heat of the water vaporization, J kg⁻¹;</td>
</tr>
<tr>
<td>kᵢ, k₂</td>
<td>proportionality coefficients,</td>
</tr>
<tr>
<td>L</td>
<td>bed height, column width, m</td>
</tr>
<tr>
<td>Lᵢ, Lⱼ</td>
<td>MacCormack’s operators</td>
</tr>
<tr>
<td>M</td>
<td>grain moisture content, decimal, d.b.</td>
</tr>
<tr>
<td>n</td>
<td>quantity of stages or constant</td>
</tr>
<tr>
<td>q</td>
<td>velocity factor, dimensionless</td>
</tr>
<tr>
<td>t</td>
<td>time, s</td>
</tr>
<tr>
<td>Tₐ</td>
<td>air temperature, ºC</td>
</tr>
<tr>
<td>Tᵢ</td>
<td>initial air temperature to stage i</td>
</tr>
<tr>
<td>Tₑ</td>
<td>grain temperature, ºC</td>
</tr>
</tbody>
</table>

Subscripts:

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>initial</td>
</tr>
<tr>
<td>1</td>
<td>first stage</td>
</tr>
<tr>
<td>2</td>
<td>second stage</td>
</tr>
<tr>
<td>a</td>
<td>air</td>
</tr>
<tr>
<td>c</td>
<td>cooling</td>
</tr>
<tr>
<td>e</td>
<td>equilibrium</td>
</tr>
<tr>
<td>g</td>
<td>grain</td>
</tr>
<tr>
<td>i</td>
<td>stage order number,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>column-vector of the unknown functions</td>
</tr>
<tr>
<td>Vₓ</td>
<td>horizontal air velocity, m s⁻¹</td>
</tr>
<tr>
<td>Vᵧ</td>
<td>grain velocity, m s⁻¹</td>
</tr>
<tr>
<td>W</td>
<td>air humidity, decimal</td>
</tr>
<tr>
<td>r</td>
<td>porosity, dimensionless</td>
</tr>
<tr>
<td>ρₐ</td>
<td>specific mass of the air, kg m⁻³</td>
</tr>
<tr>
<td>ρₑ</td>
<td>specific mass of the grain, kg m⁻³</td>
</tr>
<tr>
<td>Φₕ</td>
<td>heat flux, W m⁻²</td>
</tr>
<tr>
<td>Φₚ</td>
<td>mass flux, kg m⁻² s⁻¹</td>
</tr>
</tbody>
</table>

Fig. 1 — Layout of continuous flow grain dryer with three drying stages and cooling chamber.
The principal objectives of the present work were to:

a) create a mathematical model of drying of grains;
b) develop software for simulation of continuous cross flow dryer with multiple stages;
c) carry out simulations to evaluate the efficiency of various dryer control schemes.

2. Mathematical model

Figure 1 represents one of the continuous flow grain dryers investigated. It has three drying stages and one cooling chamber. Ambient air passes through the cooling chamber, it is then heated as it passed through the warm grain and is mixed with the heated furnace air. This mixture A passes through the grain in the third stage. Air leaving the third stage, mixes with the heated furnace air and the resulting mixture B enters in the second stage. Similarly, the mixture C enters in the first stage, heats up and dries the grain entering from above and used air is then exhausted to the atmosphere.

In summary, the cross flow drying model for these conditions is:

\[
\begin{align*}
\frac{\partial M}{\partial t} + V_x \frac{\partial M}{\partial x} + V_y \frac{\partial M}{\partial y} &= -\frac{q_1(t-1)}{\rho_1} - \phi_1 M_{eq}(T_1 - T_2) - \phi_1 M_{eq}(T_1 - T_3) \\
\frac{\partial W}{\partial t} &= \phi_1 M_{eq}(T_1 - T_2) + \phi_1 M_{eq}(T_1 - T_3) \\
\frac{\partial T}{\partial t} &= \frac{\alpha x}{\rho_2} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \frac{\alpha x}{\rho_2} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \frac{\alpha x}{\rho_2} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \frac{\alpha x}{\rho_2} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)
\end{align*}
\]

where \(M \) is the grain moisture content, \(W \) is the air humidity; \(x \) is grain surface area/volume ratio in m\(^{-1}\); \(H_1 \) is latent heat of the water vaporization in J kg\(^{-1}\); \(C_{pg} \) is the specific heat of the grain in J kg\(^{-1}\) K\(^{-1}\); \(C_{pw} \) is the specific heat of the water vapour in J kg\(^{-1}\) K\(^{-1}\); \(\rho_2 \) is the mass of the air in kg m\(^{-3}\); \(\rho \) is porosity; \(V_x \) is the air velocity in m s\(^{-1}\); \(V_y \) is the vertical velocity in m s\(^{-1}\); \(T_x \) is the air temperature in \(^\circ\)C; \(T_y \) is the grain temperature in \(^\circ\)C; \(\phi_m \) is the heat flux in W m\(^{-2}\).

Since the vertical component of the velocity is small relative to the velocities in the horizontal directions, the structure of the grain mass in a cross flow dryer is similar to the structure in a fixed-bed dryer. Therefore, it is not correct to take into account the convective term caused by the grain mass movement for cross-flow drying model, as suggested in some works (for example, in Parry, 1985; Rumsey, 1986; Rumsey & Rovedo, 2001).

The system of equations is obtained by means of the Lagrangian specification of the flow field and has some differences from the system of equations proposed in Brooker et al. (1982). For example, the terms, related with the vapour heating from \(T_2 \) to \(T_3 \), are included in the energy equation for the gas, but not for grain. In the equation for the enthalpy change of grain there is enthalpy of water that leaves the grain and then evaporates into the gas phase. There are also some partial derivatives for the parameters of moist air which were neglected by Brooker et al. (1982).

The heat flux, \(\Phi_{th} \), was calculated in accordance using the relationships, presented by Khatchatourian and Oliveira (2006). As their experimental study showed, the diffusion coefficient for soya bean seed has a variable value in a radial direction. Therefore, in this work, to determine the mass flux \(\Phi_{th} \), a two-compartment grain model for soya bean thin-layer drying was chosen. The mathematical model was presented by a system of two ordinary differential equations (Khatchatourian, 2012):

\[
\begin{align*}
\frac{\partial M_1}{\partial t} &= -k_1(M_1 - M_2); \\
\frac{\partial M_2}{\partial t} &= -k_1(M_2 - M_1) - q(k_2(M_0 - M_1)^{n-1}M_0^n)
\end{align*}
\]

where \(M_1 \) and \(M_2 \) are average relative moisture content of grain in the first and the second grain compartments respectively, \(k_1 \) and \(k_2 \) are proportionality coefficients, \(t \) is time in s, \(n \) is constant, \(q \) is a factor related with velocity influence.

The coefficient, \(k_3 \), is related with a diffusion coefficient in the first compartment and \(k_4 \) unites the effects of diffusion in the second compartment and convective transfer at the grain surface.

The second equation in the system Eq. (2) represents the influence of the initial grain moisture content (\(M_0 \)) and the air humidity through equilibrium moisture content (\(M_0 \)) on the drying rate. Applying the inverse problem method, the coefficients \(k_1 \) and \(k_2 \) were obtained for different initial grain moisture contents and temperatures at the same velocity \(V_x = 0.9 \) m s\(^{-1}\) (\(q = 1 \)). As experimental data show (Khatchatourian, 2012) the coefficients \(k_1 \) and \(k_2 \) depend on temperature. The influence of initial grain moisture content on \(k_1 \) and \(k_2 \) can be neglected. To take into account the influence of velocity on drying, the coefficient \(k_2 \) was multiplied by a factor:

\[
q = 1.25 - 1.1e^{-1.53q1.248-1.12q6}
\]

The factor is equal to 1 when \(V_x = 0.9 \) m s\(^{-1}\) (basic velocity) and \(M_0 = 0.16 \).

The initial and boundary conditions for grain mass in each stage depend on the parameters in the output of the previous stage located immediately above. Furthermore, the inlet air humidity (boundary condition for air humidity) depends on the amount of air recirculation. In other words, these conditions depend on the number of stages and the scheme of distribution and recirculation of air.

Figure 2 shows some schemes of dryers which were considered in this work.

For Scheme 3 (Fig. 2), which corresponds to the layout of a cross flow grain dryer with three drying stages (Fig. 1), the initial and boundary conditions for stage i were described as follows:

The boundary conditions:

\[
\begin{align*}
M_1(t, x, 0) &= M_0; T_1(t, x, 0) = T_g0; T_1(t, 0, y) = T_0; T_2(t, 0, y) = T_0; \\
M_2(t, x, 0) &= T_0; T_2(t, 0, y) = T_0; \\
M_3(t, x, 0) &= T_0; T_3(t, 0, y) = T_0;
\end{align*}
\]

The boundary conditions for variables \(M_4(t, x, H_1), T_4(t, x, H_1), M_5(t, x, H_1 + H_2), T_5(t, x, H_1 + H_2), M_6(t, x, H_1 + H_2 + H_3), T_6(t, x, H_1 + H_2 + H_3), \) \(W_1, W_2, W_3 \) were determined during the calculations by iterative process.
The initial conditions:

\[M_i(0, x, y) = M_0; T_g(0, x, y) = T_{g0}; W_i(0, x, y) = W_0; T_{ai}(0, x, y) = T_{g0} \]

where the indices \(a, g, c \) correspond to air, grain and the cooling chamber respectively.

3. Solution of the partial differential equations

The system (hyperbolic) of partial differential quasi-linear equations was rewritten in the matrix form:

\[
\frac{\partial U}{\partial t} + A \left(\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y} \right) \left(V_x, V_y \right) = F(t, x, y, U)
\]

where \(U \) is the column-vector of the unknown functions; \(A \) is the binary matrix; \(F \) is the column of the right sides of the system (1):

\[
U = \begin{bmatrix} T_a \\ T_g \\ W \\ M \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad F = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}.
\]

To solve the system, a two-dimensional MacCormack’s method with scheme “time-split” (MacCormack, 1971; MacCormack & Paullay, 1972) was used.

The iterative MacCormack’s method with the “time-split” transforms the two-dimensional problem in sequence of one-dimensional problems. Considering the differential operator \(L_x \), related to the spatial variable \(x \):

\[U_{i}^{n+1} = L_x(\Delta t_x)U_{ij}^n \]

The MacCormack’s method (MacCormack, 1969) corresponds to the sequence of operations:

Predictor:

\[U_{ij}^n = \frac{1}{2} \left(U_{ij}^n + U_{ij}^{n-1} \right) - \Delta t_x V_x \left(U_{i+1, j}^n - U_{ij}^n \right) + \Delta t_x F_{ij}^n \]

Corrector:

\[U_{ij}^{n+1} = \frac{1}{2} \left(U_{ij}^n + U_{ij}^{n-1} \right) - \Delta t_x V_x \left(U_{ij}^n - U_{ij}^{n-1} \right) + \Delta t_x F_{ij}^n \]

Assuming \(V_x \) and \(V_y \) as constants, the operator \(L_x \) for the half time-step and the derivatives with respect to \(x \), is composed of:

Predictor:

\[U_{ij}^{n+1/2} = U_{ij}^n - \frac{\Delta t_x V_x}{2\Delta x} \left(U_{i+1, j}^n - U_{ij}^n \right) + \frac{\Delta t_x F_{ij}^n}{2} \]

The asterisk (*) is used to denote the parameters with intermediate time steps. The equations for the variables \(T_g \) and \(X_g \) don’t contain the terms with the velocities.

The investigated dryer outline designs are shown in Figure 2.
Corrector:
\[
U_{ij}^{n+1/2} = \frac{1}{2} \left[U_{ij}^n + U_{ij}^{n+1/2} - \frac{\Delta t_i V_j}{2\Delta x} \left(U_{ij+1}^{n+1/2} - U_{ij-1}^{n+1/2} \right) \right] + \frac{\Delta t_i F_{ij}^{n+1/2}}{2}
\]
(11)

The operator \(L_x \) for full time step and the derivatives with respect to \(y \) is formed:

Predictor:
\[
\overline{U}_{ij}^n = U_{ij}^n - \frac{\Delta t_i V_j}{\Delta y} \left[U_{ij+1}^n - U_{ij-1}^n \right] + \Delta t_i F_{ij}^n
\]
(12)

Corrector:
\[
U_{ij}^{n+1} = \frac{1}{2} \left[U_{ij}^n + U_{ij}^{n+1/2} - \frac{\Delta t_i V_j}{2\Delta x} \left(U_{ij+1}^{n+1/2} - U_{ij-1}^{n+1/2} \right) \right] + \frac{\Delta t_i F_{ij}^{n+1/2}}{2}
\]
(13)

And again the operator \(L_x \):

Predictor:
\[
\overline{U}_{ij}^{n+1/2} = U_{ij}^n - \frac{\Delta t_i V_j}{2\Delta x} \left[U_{ij+1}^{n+1/2} - U_{ij-1}^{n+1/2} \right] + \Delta t_i F_{ij}^{n+1/2}
\]
(14)

Corrector:
\[
U_{ij}^{n+1} = \frac{1}{2} \left[U_{ij}^n + U_{ij}^{n+1/2} - \frac{\Delta t_i V_j}{2\Delta x} \left(U_{ij+1}^{n+1/2} - U_{ij-1}^{n+1/2} \right) \right] + \frac{\Delta t_i F_{ij}^{n+1/2}}{2}
\]
(15)

The software was developed in Dev-Pascal 1.9.2 (distributed under the GNU General Public License, http://www.bloodshed.net/devpascal.html) and consists of tools for geometry construction and mesh generation. Three iterative processes were used for simulation: a) the first (internal) was used for each time step to compute the source terms (due to their non-linearity); b) the second (intermediate) was used to determine the boundary conditions between stages and air humidity in the side entrance to each stage (which depends on the composition of the air furnace + fresh air + air recirculation); c) the third iterative process (external) was applied to calculate the drying time to achieve the required average moisture content of grain in the dryer outlet (15% d.b.), i.e., to calculate the vertical velocity \(V_y \). The stability analysis was realised using the Neumann method; the time steps \(\Delta t_x, \Delta t_y \) and the length intervals \(\Delta x, \Delta y \) were chosen to satisfy the Courant–Friedrichs–Lewy condition (Courant, Friedrichs, & Lewy, 1967).

4. Validation of the developed model

To validate the developed model, experiments on the drying dynamics of soya beans in a fixed bed were conducted and the comparisons were made between values obtained experimentally and by the simulations. Figure 3 shows the experimental equipment used to study the drying dynamics in the fixed bed. The equipment consists of a ventilating fan, orifice plate, heat booster, steam generation and injection systems, a data acquisition system, and the drying chamber. The drying

Fig. 3 – Experimental equipment.

Fig. 4 – Comparison between experimental and predicted grain temperatures in different sections of drying chamber.
tests were conducted for soya bean in the temperature range 70–110 °C and velocity range 0.2–0.9 m s⁻¹. The drying chamber consisted of seven sections, each measuring 0.05 x 0.13 x 0.13 m with total height of 0.35 m. Each section has a height of 0.05 m; the chamber was insulated with glass wool.

Each section was removable and had a perforated screen on the bottom. The experiments were conducted using four sections of the drying chamber, resulting a bed height of 0.2 m. Temperatures of air and grain were measured in all four sections by Type-K thermocouples with precision allowing the determination of the variation of moisture content in each section. The grain temperature was measured by placing a Type-K thermocouple junction at the centre of an individual seed located 0.01 m from the outlet of each section.

The comparison between the experimental data for soya beans (Ta = 100 °C; Va = 0.5 m s⁻¹) and simulation results for the fixed bed are shown in Figs. 4–6. Figure 4 shows the dynamics of variation of the grain temperature along the measuring chamber. The layers that are closer to the input section, heated much faster than the layers at the exit of the chamber. Accordingly, the drying process (Fig. 5) was non-uniform with the layers near the air inlet (x/H = 0.25) drying faster. Layers at the exit of the chamber (x/H = 1.0) dried more slowly. The variation of the calculated and measured air temperature in the drying process is shown in Fig. 6.

Comparative analysis of the calculated and experimental results shows that the developed model adequately described the processes involved in the drying process. There was a small tendency for a lag in time between the predicted and experimental data which can be neglected since calculations of drying in this case will guarantee that the required grain moisture is achieved at the selected drying time.

Figure 7 shows a significant variation in humidity in the fixed bed. Air humidity reaches a maximum after 10–20 min of drying, that undoubtedly affects the local process of drying and therefore the influence of air humidity should be considered in the calculations.

5. Simulation of results

Using the developed model, various numerical simulations were made. Initially, the influence of airflow direction reversals along the height of the dryer on the non-uniformity of grain temperature and moisture content distributions was studied. Subsequently the influence of air humidity increase caused by reuse of drying air on the drying dynamics and drying time was studied.

5.1. Influence of number of airflow direction reversals

Various dryers with the same overall column height (10.47 m) composed of the several equal drying stages were compared (Fig. 2 shows the first six schemes with drying stages numbered from 1 to 4). Each a dryer had a 2.13 m height cooling chamber. For each subsequent stage there was a consecutive reversal of the airflow direction. The initial temperatures for all stages were set to 100 °C.

The distribution of the grain moisture content in outlet cross-section of studied dryers (curves number corresponds to dryers order number in Table 1) is non-uniform and this non-uniformity depends strongly on the dryer outline (Fig. 8).

Figure 9 shows the influence of stage number on distribution non-uniformity of grain moisture content and grain temperature in outlet cross-section of dryer (at the cooling inlet). A non-uniformity was estimated by means of the maximum relative difference of grain temperature

\[\delta T = \sqrt{\int_0^1 (T - T_{\text{mean}})^2 \, dx / T_{\text{mean}} \cdot 100\%} \]

and

\[\delta M = \sqrt{\int_0^1 (M - M_{\text{mean}})^2 \, dx / M_{\text{mean}} \cdot 100\%} \]

(triangular points). As it was expected, the airflow direction reversal reduces the
non-uniformity of all parameters in outlet cross-section of dryer.

There is a general tendency for the non-uniformity of temperature and grain moisture content distributions in outlet cross-section of dryer to decrease as the number of stages increases. These relationships have local minima (for even values of the number of stages), and the local maxima (for odd values).

This is a consequence of the fact that for an even number of stages there are the same inlet conditions of the drying air to both sides of the column.

The minimum of the moisture content non-uniformity, achieved with two stages, is a global, and the increase in the number of stages (for odd values) increases (for even values of the number of stages), and the local maxima (for odd values).

It can be concluded that among the considered dryers, the scheme with two stages is the most acceptable. With a relatively small increase in drying time, this scheme presents the output parameters field with the least non-uniformity, and the possibility for energy saving is high (up to 34%).

To regenerate the heat, the air, heated by contact with hot grain in previous stages, was mixed, with furnace air at 300 °C. Air velocity in each stage was equal. Air humidity at the inlet to each stage depended on the fraction and humidity of the reuse air.

5.2. Influence of air humidity increase caused by reuse of drying air

Figure 11 shows the effect of additional humidity caused by air reused, on the drying process in a dryer with four stages. This effect is significant for last layers of the upper stage (stage 1). When the grain moves down, this influence diminishes and becomes negligible near the exit section of the dryer. Calculations show that the drying time for the dryer with four stages is increased by less than 1% in the case of air reuse by increasing the air humidity at the inlet to each stage. At the same time the heat recovery under these conditions can reach 45% (Fig. 10).

Subsequently, the influence of the initial temperature distribution in the air inlet of each stage was studied. To equalise the consumption of energy per unit of time for each studied scheme the sum of the products of initial temperature on the lateral area of stage was kept constant, i.e.: \(\sum_{i=1}^{n} T_i A_i = \text{constant} \), where \(T_i \) is the initial temperature of the air to stage \(i \), \(A_i \) is the lateral area of the air inlet, \(i \) is the stage order number, \(n \) is the quantity of stages.

Table 1 shows the initial temperatures of the air for the studied dryers, their non-uniformity characteristics, energy saving and relative drying time.

It is interesting to note that both the maximum relative difference between the parameters and the standard deviation from the mean can be used for comparison to non-uniformity of the dryer, because the correlation coefficient between them is greater than 0.995. Comparative analysis of the effectiveness of these dryers can be made using Fig. 12, which shows a total non-uniformity of the temperature and concentration fields. Lowering the temperature of the stages that are close to the cooling reduces the non-uniformity of the temperature field (dryers 4, 9 and 11). Increasing the length of continuous domains with high temperature reduces the non-uniformity of the moisture content field (dryers 2, 5, 6, 8, 10 and 11). Despite the fact that concentration non-uniformity is minimal for the dryer 2 (two stages with the same inlet temperature), the lowest total non-uniformity is achieved for the dryer 8 (three stages with temperatures 100–120–80 °C, respectively), the second lowest is for dryer 6, and the third for dryer 2.

Simulation results of dryer 6 are shown in Figs. 13–16. The values of the parameters were taken as follows: \(H_1 = H_2 = H_3 = 3.49 \, \text{m} \); \(L = 0.167 \, \text{m} \); air velocity \(V_a = 0.4 \, \text{m s}^{-1} \); mass flow rate \(M_0 = 0.22 \) (d.b.); \(T_{a0} = 20 \, \text{°C} \); \(T_{a1} = 120 \, \text{°C} \); \(T_{a2} = 100 \, \text{°C} \); \(T_{a3} = 80 \, \text{°C} \); \(T_{ac} = 25 \, \text{°C} \).

It can be seen in Fig. 13 that the drying process in the initial \((x/L = 0) \) and final \((x/L = 1) \) sections occurs the most rapidly. In the middle section \((x/L = 0.5) \) drying curve lags behind the average. Air and grain temperatures in the different cross-sections (Figs. 14 and 15) differ significantly in only the first stage. For subsequent stages the temperature difference decreases.

Air humidity at the outlet of the first stage varies significantly with height (Fig. 16). For subsequent stages this difference is not very large. The highest moisture air for drying enters the first stage, because this air contains all the moisture received from the grain in second and third stages. As the air temperature at the inlet of the cooling chamber was chosen relatively low \((T_a = 25 \, \text{°C}) \), the variations in grain moisture and air humidity inside the cooling chamber were not great. This allows monitoring of the completeness of the drying process in any section of the cooling chamber.

Comparative analysis of the calculations made for Schemes 3 and 5 (from Fig. 2) with \(T_{a1} = 120 \, \text{°C} \); \(T_{a2} = 100 \, \text{°C} \); \(T_{a3} = 80 \, \text{°C} \); \(T_{ac} = 25 \, \text{°C} \), shows that Scheme 3 results in a large reduction in energy (Fig. 18, solid points) despite the fact that
the average percentage of recycled air is greater for Scheme 5 (Fig. 18, open points). This is due to the fact that the used air, exhausted from the third stage and having a higher average temperature than exhausted from the first stage, in Scheme 5 is exhausted to the atmosphere, but in Scheme 3 it is applied for reuse. In addition, there is a small increase of the drying time for Scheme 5 (between 2 and 3%). This increase is related to the influence of the initial air humidity at the inlet to each stage. A comparison between Figs. 16 and 17 shows that air humidity at the entrance to the stages 2 and 1 (Scheme 3) is less than for the corresponding stages 2 and 3 of Scheme 5. Similar results were obtained when comparing Schemes 2 and 6 (from Fig. 2).

As Fig. 18 shows, the energy savings increases when the temperature of the heated furnace air increases, since the fraction of reuse air in mixture rises.

6. Conclusions

A mathematical model, algorithm and computer program for the simulation of cross flow dryers with exhaust air recirculation, were developed. The iterative MacCormack’s method with “time-split”, which transformed the two-dimensional problem into a sequence of one-dimensional problems, was successfully applied for the solution of a system of non-linear partial differential equations. The simulations for the studied dryer outlines showed good performance of the developed program.

Non-uniformity of the temperature and moisture concentration fields in outlet cross-section of cross flow dryers depends strongly on the grain dryer outline and can be significant.

Reversing the airflow direction equalises the distribution of parameters in the transverse dryer direction. At the same time, the optimal reversal number is one or two (i.e. two or three stages). The influence of the increase of the air humidity due to reuse of air on the dryer performance can be neglected.

Upward motion of the reuse air from stage to stage, i.e. against the direction of motion of the grain mass, gives higher energy savings compared with downward motion.

For three-stage dryers, the use of the different initial air temperatures for different stages allows to obtain a more uniform distributions of temperature and moisture content, if to use the maximum temperature in the second stage and the minimum temperature in the third stage. For a two-stage dryer, the use of the same inlet air temperature in the both stages is preferred.

Validation of the software using experimental data for the full-scale dryers is required.

Table 1 - Simulation details of studied dryers: number of stages, initial temperatures of the air, non-uniformity characteristics, energy saving and relative drying time.

<table>
<thead>
<tr>
<th>Simulation number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of stages</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Initial temperature, °C</td>
<td>100</td>
<td>100</td>
<td>120</td>
<td>30</td>
<td>100</td>
<td>120</td>
<td>120</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>ΔT<sub>max</sub>, %</td>
<td>38.3</td>
<td>33.3</td>
<td>17.7</td>
<td>49.3</td>
<td>34.3</td>
<td>19.8</td>
<td>38.9</td>
<td>16.3</td>
<td>52.4</td>
<td>31.7</td>
<td>49.2</td>
</tr>
<tr>
<td>ΔM<sub>max</sub>, %</td>
<td>39.5</td>
<td>15.0</td>
<td>31.8</td>
<td>24.8</td>
<td>19.0</td>
<td>23.2</td>
<td>31.8</td>
<td>19.6</td>
<td>30.6</td>
<td>19.6</td>
<td>20.9</td>
</tr>
<tr>
<td>ΔT, %</td>
<td>11.3</td>
<td>10.1</td>
<td>5.2</td>
<td>15.3</td>
<td>11.0</td>
<td>6.5</td>
<td>12.4</td>
<td>5.3</td>
<td>16.7</td>
<td>10.1</td>
<td>15.7</td>
</tr>
<tr>
<td>ΔM, %</td>
<td>11.4</td>
<td>4.0</td>
<td>9.4</td>
<td>7.0</td>
<td>5.2</td>
<td>6.1</td>
<td>9.2</td>
<td>5.1</td>
<td>9.1</td>
<td>5.0</td>
<td>5.9</td>
</tr>
<tr>
<td>Energy saving, %</td>
<td>7.45</td>
<td>33.6</td>
<td>30.3</td>
<td>34.8</td>
<td>41.0</td>
<td>39.7</td>
<td>39.9</td>
<td>40.3</td>
<td>40.2</td>
<td>40.8</td>
<td>40.7</td>
</tr>
<tr>
<td>Relative drying time</td>
<td>1.00</td>
<td>1.05</td>
<td>1.07</td>
<td>1.02</td>
<td>1.09</td>
<td>1.09</td>
<td>1.10</td>
<td>1.08</td>
<td>1.08</td>
<td>1.07</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Fig. 8 – Grain moisture content distribution in outlet cross-section of studied dryers (curves number corresponds to the simulations in Table 1).

Fig. 9 – Influence of number of stages on the non-uniformity of grain temperature and moisture content in outlet cross-section of dryer (at the cooling entry).
Fig. 10 – Influence of number of stages on energy saving and drying time.

Fig. 11 – Influence of additional humidity caused by air reuse on drying in a four stage dryer (outline design 4 in Fig. 2); continuous line: without air reuse; dash dot line: with air reuse.

Fig. 12 – Mean square deviations of grain temperature and moisture content in outlet cross-section of studied dryers (simulation details in Table 1).

Fig. 13 – Distribution of moisture content of grain for the simulation 6 (Table 1) at a steady state.

Fig. 14 – Distribution of grain temperature for the simulation 6 (Table 1) at a steady state.

Fig. 15 – Distribution of air temperature for the simulation 6 (Table 1) at a steady state.
The distance from the grain inlet, m

Fig. 16 – Distribution of air humidity for the simulation 6 (Table 1) at a steady state.

The distance from the grain inlet, m

Fig. 17 – Distribution of air humidity for the outline design 5 (Fig. 2) at a steady state.

Fig. 18 – Influence of the temperature of heated furnace air on the energy reduction (solid points) and average percentage of recycled air (open points): square points, outline design 3; triangular points, outline design 5 (Fig. 2).

Acknowledgements

The first and second authors are grateful to CNPq for research grants (process N° 313706/2009-3 e N° 475237/2009-9).

REFERENCES

