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Abstract

Bookshelf type mechanisms are commonly used to explain antithetic accommodation of deformations caused by direct shear. Stress

analysis of such mechanisms have been proposed, mainly through the use of classic Mohr circle graphical constructions. The present work

introduces an alternative framework for analysis, the mechanics of generalized Cosserat continua, although maintaining the same tools

(Mohr circle construction). In this type of mechanics, kinematics of the material points incorporates independent rotational degrees of

freedom besides the classic translational ones. In the equilibrium equations, quantities involving moments are generated and the stress tensor

is in the general case non-symmetric. Such characteristics of generalized Cosserat continua make it suitable for the analysis of bookshelf

mechanisms, as these are, in essence, rotational antithetic mechanisms induced by shear stresses having different magnitudes in

perpendicular planes. The paper applies the mechanics of generalized continua to the analysis of a specific bookshelf mechanism, related to

crustal extension. In the Appendices, a review of the generalized Cosserat continua and details of the graphical Mohr circle representation of

stresses for such media are presented.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Bookshelf mechanism; Cosserat generalized continuum mechanics; Stress analysis; Mohr circles

1. Introduction

The analogy with a bookshelf type mechanism (Fig. 1) to

describe the antithetic accommodation of deformation

provoked by direct shear, or quasi-simple shear (Mandl,

2000), was initially proposed by Mandl (1987). Differently

from the ideal simple shear, in direct shear, the parallel rock

boundaries, where a constant normal stress is applied, are

allowed to dilate or contract perpendicularly to the shear

direction. Mandl (1987) analyzed the stress conditions that

would lead to the above mentioned mechanism using

conventional graphical representation of Mohr circles.

Subsequently, Mandl (1988) presented a number of natural

examples where the mechanism would be applicable.

Recently, Mandl (2000) extended the discussion of the

problem by giving it a role in the formation and analysis of

other structures such as shear joints, parallel faults produced

by horizontal extension and inversion of normal and reverse

faults.

Mandl (2000) distinguished two possible styles of

accommodation of deformation by the proposed bookshelf

mechanism (Fig. 1). The domino style is associated with an

extension parallel to the direction of shear and with a

contraction perpendicular to it. The dilational style, in

contrast, has a contraction in the shear direction and an

extension normal to this direction. In the domino style, the

formation of antithetic R0 (Riedel) faults occurs, whereas in

the dilational style, faults known as P0 type are formed (also

antithetic, Fig. 1).

Independent of style, the analogy, as originally proposed,

corresponds to a bookshelf with books, vertically disposed,

above which a horizontal rigid board is placed (Fig. 1).

Horizontal displacement of the board could in principle

simulate the effect of shear on a block located between

parallel faults or even strata of different competence on the

limb of a flexural slip fold (Mandl, 1988).
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Fig. 1 shows that the direction given to the displacement

of the upper board is not followed by the direction of sliding

between the books. In fact, they rotate, an essential feature

in order to accommodate the deformations. The surfaces of

contact between the books represent the parallel antithetic

faults. The books represent the blocks (lithons) separated by

the faults. The analogy, in this sense, may appear rather

exaggerated, as the books are rigid whereas real rock blocks

are relatively more deformable. This, however, does not

render it invalid qualitatively. The presence of rotations in

the mechanism can only be explained if one assumes the

existence of different values for shear stresses in the vertical

and horizontal planes, which will then give rise to non

equilibrated resultant moments. However, it is well known

from classical mechanics that shear stresses in perpendicu-

lar planes are of equal magnitude (Cauchy stresses

principle) and, as a consequence, the stress tensor is

symmetric (Mase and Mase, 1992).

The authors argue therefore that one cannot interpret, in a

theoretically consistent way, the bookshelf mechanism by

using classic continuum mechanics, as it presupposes equal

shear stresses in perpendicular planes, a fact that is

incompatible with rotations. However, the generalized

continuum mechanics of Cosserat (Cosserat and Cosserat,

1909) provides the necessary features to analyze the

problem:

(a) independent rotational degrees of freedom in addition

to the classic translational ones (see Appendix A, item

A1);

(b) shear stresses on perpendicular planes which are not

necessarily equal, but which are equilibrated through

the introduction of new quantities, the so-called

moment (or couple) stresses (see Appendix A, item

A2).

As a consequence, parameters with dimensions of length

appear in the stress–strain relationships and/or strength

criteria. This fact brings with it a scale dependency effect,

which is a well-known factor for geological materials in

general (Jaeger and Cook, 1979).

The pioneer work systematizing the generalized mech-

anics was made in France by Cosserat and Cosserat (1909).

The idea of an extension of the classic continuum, one

which incorporated independent rotational degrees of

freedom, as well as non symmetric shear stresses and

couple stresses, had already been suggested in the nine-

teenth century by important theoreticians in continuum

mechanics (Poisson, 1842; Cauchy, 1850; Saint Venant,

1869; Voigt, 1887). The theory remained practically

forgotten until the mid sixties when it was reexamined,

receiving a great theoretical impulse (Kröner, 1968). The

number of foreseen applications was, however, relatively

limited. One of the main suggestions at that time came from

Mindlin (1963), for studies on stress concentrations around

voids.

Lippmann (1969) pioneered the use of the theory to

describe yielding/failure of granular materials. Chappell

(1979), amongst others, proposed its use to describe the

mechanics of fractured media. The repercussion of the latter

work came years later through a publication by Besdo

(1985). In these works, a correct modelling of the

mechanical behaviour requires that the material points

have independent rotational degrees of freedom. This is in

fact, what distinguishes the kinematics of the Cosserat

generalized mechanics from the classical mechanics

(Appendix A, item A1).

In the 1980s, a growing interest in generalized mechanics

occurred, starting with the work of Mühlhaus and

Vardoulakis (1987), who proposed applications of the

theory to the modelling of localization of plastic defor-

mations in brittle materials. This problem is dependent on

the scale of the microstructure (grains) and a clear

independence was demonstrated between the rotations in

the interior of the localization zone and the rotations outside

this zone.

In relation to applications in geology, it appears that Biot

 

 

 

 

                                             

Fig. 1. (a) Analogy for the bookshelf mechanism (Mandl, 1988); (b) direct

shear; (c) domino and dilational styles.
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(1967) was the first to use the Cosserat mechanics. Biot

studied theproblemofbucklingofmultilaminated, anisotropic

rocks (e.g. Price and Cosgrove, 1990) and its relation with

formation offolds and, in particular, of kink bands.His results,

when using classic continuum, related the critical load causing

folding to a zero foldwave length, which is, clearly, a physical

inconsistency of the mathematical theory. This inconsistency

could be corrected through the introduction of the Cosserat

mechanics whereby the rock laminae were assigned thickness

and flexural strength.

This work presents an analysis of the stresses involved in

the bookshelf mechanism by using the graphical construc-

tion of the Mohr circle, as it has been done in the literature

(see Mandl, 1987; 1988, 2000). However, the approach used

differs from previous workers in that use is made of the

mechanics of Cosserat generalized continua, which is

thought to be a more adequate, if not a necessary basis,

for the correct treatment of the problem. A description of a

specific geological problem is presented, which is then

followed by an analysis using Mohr circles adapted for

Cosserat generalized continua. The Appendices give the

basic elements for the understanding of the mechanics of

Cosserat generalized continua and the adaptation of Mohr

circles for such media.

2. The problem

The problem to be analyzed here (Fig. 2) is a version of

the bookshelf mechanism that occurs under conditions of

crustal extension at the surface. This problem was

introduced by Ramsay and Huber (1987), from where Fig.

2 was extracted.

The decision to analyze this specific case instead of the

direct shear cases treated by Mandl is because it has a well

defined boundary condition: the free surface, represented by

a horizontal plane, is the Earth’s surface, where the tractions

are identically zero. Such a boundary condition, with values

known for both stress components, normal and shear, does

not exist in the analyses presented by Mandl.

The stress conditions at a point on the surface are illustrated

on Fig. 3. One can notice that in a horizontal plane,

sV ¼ sHV ¼ 0, where sV is the normal stress component

(vertical) and sHV the shear stress component. On a vertical

plane, sV and sVH are not necessarily zero. It should be noted

that sHV – sVH is mechanically sound when using the

Cosserat generalized mechanics (see Appendix A).

In the adopted notation, the first subscript for the stresses

represents the direction and, the second, the plane of action

of the component. Such ordering of subscripts is contrary to

what is generally found in texts dedicated to the stress

analysis in classical continua (Jaeger and Cook, 1979). The

reason for this is that the order becomes relevant as a

function of the asymmetry of the stresses in the Cosserat

generalized continua. The ordering appears as a conse-

quence of theoretical consistency when, in the process of

derivation, energy methods such as the Principle of Virtual

Work (Appendix A, item A3) are used (Germain, 1973;

Figueiredo, 1999).

A schematic illustration of the rigid blocks (assumed to

be rectangular) formed by antithetic faults is shown on Fig.

3. Their dimensions are represented by a base b and a height

h. The introduction of block dimensions to the problem is

another distinctive feature of the generalized mechanics in

relation to the classic mechanics. In the example, the block

dimensions (and shape) will make it possible to take into

consideration an additional strength mechanism, besides the

conventional Mohr–Coulomb one, which is related to the

friction between blocks (Jaeger and Cook, 1979).

This mechanism involves ‘rolling friction’ (Nascimento

and Teixeira, 1971; Fadeev and Kuzevanov, 1993) and is

related to the toppling (rotation) of the blocks. The equation

describing it is (see Appendix C):

sS ¼ sNtanw; ð1Þ

where sS is the shear stress, sN is the normal stress and

w ¼ tan21ðb=hÞ is the ‘rolling friction’ angle.

Eq. (1) provides, therefore, the value of the horizontal

component of shear necessary to topple (rotate) a rectangu-

lar block, having width b and height h, subjected to a normal

vertical stress sN. It has a similar form to the classical

Mohr–Coulomb equation describing the shear strength:

sS ¼ sNtanf; ð2Þ

where f is the classical friction angle and the remaining

symbols have the same meaning as in Eq. (1).

Additionally, a cohesive term could be added to both

Eqs. (1) and (2). Furthermore, due to the non-existence of

friction under tension (Jaeger and Cook, 1979), it is usual to

add a tension cut-off to Eq. (2):

sN # T ; ð3Þ

where T is the tensile strength of the medium.

3. Graphical stress analysis

The basic difference introduced by the Cosserat general-

ized formulation in relation to the graphical 2D representation,

givenby theMohr’s circle, is the fact that the circle canhave its

center located away from the normal stress axis. This is

because shear stresses in perpendicular directions (plotted as

diametrically opposite points on the circle) may have different

magnitudes. As a consequence, the principal planeswill be not

necessarily perpendicular (and therefore not necessarily

represented by diametrically opposite points). In addition,

principal stresses will no longer be the maximum and

minimum normal stress components at a point (Appendix B).

Regarding the analyzed problem, one can assume, in

principle, that before failure, themedium can be considered as

approximately homogeneous and, therefore, behaving as a

classical continuum. This fact does not alter the final
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conclusions of the analysis (as will be explained in the

sequence). It ultimately means that up to this point in the

analysis it is not necessary to consider any intrinsic structure of

the material. Such structure will appear later due to faulting.

In this case, vertical and horizontal planes will be

initially the principal planes, and a Mohr circle for a point

on the surface would be plotted with its center on the normal

stress axis (circle ‘a’ in Fig. 4), as usual. Because this Mohr

circle has its center on the normal stress axis, the shear

stresses of diametrically located points, which correspond to

the stresses on two perpendicular planes, are equal.

Fig. 4 shows the failure conditions through sliding, using

the classical Mohr–Coulomb strength envelope (with a

tension cut-off; Eq. (3)) together with a strength envelope

for toppling (rotation) given by the strength criterion for

rolling friction (represented by Eq. (1) with a cohesive term

added). The crustal extension at the point analyzed can be

represented in the Mohr space by a progressive reduction of

sH (hypothetically assumed to be initially compressive) and

 
 

Fig. 2. Bookshelf mechanism in crustal extension (Ramsay and Huber, 1987): (a) and (b) mechanism; (c) illustration of an outcrop.

Fig. 3. State of stress for a point on the surface.

Fig. 4. Mohr circles and strength envelopes for analysis of the bookshelf

problem under crustal extension (explanation of the various Mohr circles is

given in the text).
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by maintaining the stress vector on the horizontal plane (free

surface) equal to zero. This means that Mohr circles always

pass through the origin.

If the medium behaved as a classical continuum, the

point would be taken initially to the state of stresses

represented by circle (b). Failure occurs when the circle

touches the tensile strength envelope, as does circle (c), and

would generate vertical failure planes. For the stress path

followed, there is no possibility of shear failure of the

Mohr–Coulomb type. This is because the diameter of the

circle decreases constantly whilst the principal stresses are

compressive. The diameter of the circle is only able to

increase under tension where such criterion is no longer

valid because of the absence of friction, already pointed out

previously (Jaeger and Cook, 1979). Therefore, if it is

accepted that the medium behaves as a classical continuum,

the only explanation for the occurrence of failure by

extension on the Earth’s surface is the presence of tensile

stresses. The occurrence of such tensile stresses, however,

has not been supported either by experimental rock

mechanics (e.g. Amadei and Stephansson, 1997) or by

theoretical models (Sheorey, 1994). In addition, it is not

possible to explain the observed in-situ rotations.

There remains therefore no other alternative but to abandon

the axiom of symmetry in the classical stress tensor and to

allow sVH – 0, positive in the case of Fig. 4 and having the

effect of a counter-clockwise couple (the sign convention for

the Mohr circle is presented in Appendix B). At this stage, the

framework of the generalizedmechanics of Cosserat becomes

convenient as it incorporates asymmetric shear stresses.

Additionally, the other distinctive features of this mechanics

(mentioned in Section 2) are also present. The internal

structure represented by the blocks and its independent

rotations are clearly noticed. In the Cosserat generalized

mechanics, this structure will imply the existence of an

intrinsic scale, which appears as characteristic lengths in the

stress–strain relations and strength criteria, as shown in

Appendixes A (item A4) and C, respectively.

It should be noted that sHV is zero due to the boundary

condition (free surface), and that sVH ¼ 22sa; where sa ¼

ðsHV 2 sVHÞ=2: s
a is the so-called anti-symmetric stress, one

that quantifies the difference between shear stresses on

perpendicular planes (see Appendix A). This implies that the

circle, according to the Cosserat theory, will translate

perpendicularly to the normal stress axis a distance equal to

halfsVH (sVH=2 ¼
��sa

��), in the senseofnegativesS.This leads

to the situation represented by circle (d), which satisfies the

boundary condition at the free surface, similarly to the

previous classical stress circles. Circle (d) is able to displace,

though always passing through the origin (because sV ¼ 0),

until it touches the Mohr–Coulomb envelope. However, it

seems that blocks, generated by antithetic faults, can become

unstable before this occurs, as shear failure surface, having the

classic ^ðp=42 f=2Þ inclination to the vertical, are not

generally observed in these situations. In fact, failure may

occur when circle (d) reaches the rolling friction envelope

having an inclination angle w (see Section 2).

In Fig. 4, the Mohr–Coulomb envelope is plotted with a

friction angle of 458. This value should not be considered high

as it is known that sliding can be very dilatant for low levels of

normal stress (e.g. Goodman, 1976). In contrast, the rolling

friction angle is given a slightly exaggerated value of 358, so

that the respective envelope plots inside to the Mohr–

Coulomb envelope for compressive normal stresses. For this

rolling friction angle, the blocks in Fig. 3 have a width/height

ratio of 0.7. More slender blocks could be generated by this

antithetic failuremechanism, corresponding to lower values of

w. Therefore, failure could beevenmore likely than impliedby

Fig. 3 (because the respective envelope would lie below what

was illustrated there). Thus, by admitting the existence of an a

priori, intrinsic structure for the medium, the possibility of a

rotational failure (toppling of blocks) becomes plausible as an

alternative mechanism. This type of rotational failure causes

the appearance of associated faults (in this case antithetic), in

the same way as conventional faults are produced by simple

shear.

It is remarkable that for an antithetic failure to occur, a

minimal decrease in sH is required, in contrast to the

classical failure mode where all planes but the horizontal

must be under tensile stresses. Also, it is not necessary for a

contraction of the circle to occur, as failure can be reached

through its simple vertical translation. In the present

analysis, a decrease of sH was adopted, consistent with

crustal extension, which is evident from plate tectonics

studies (e.g. Mattauer, 1973).

There are very few planes under tension as a result of the

proposedmechanismand even those that do experience tensile

stresses, when compared with the classical values, are of very

small magnitude. The only way to generate classical shear

failure would be to increase the vertical stress, concomitant

with horizontal extension. This is clearly not possible in the

case under analysis, as a point on the surface is being

considered. As a result sV remains equal to zero.

It could be argued that faults are nucleated in the crust at

depth, i.e. with a positive value of sV. This would make the

classical shear mechanism more plausible, but this depth

factor in no way excludes the possibility of an antithetic

faulting, as demonstrated in several seismic profiles of

sedimentary basins (e.g. Mandl, 1988). Geological evidence

of the type shown in Fig. 2b, however, given by recent

sediments accumulated in sub-basins between toppled blocks,

seem to contradict the possibility that the antithetic faultswere

formed in depth (e.g. on the limbs of a flexural slip fold),

subsequently being brought to the surface by denudation.

4. Conclusions and suggestions for additional

applications

The present work analyzes the bookshelf mechanism by

using Mohr circles for a generalized Cosserat continuum.

R.P. de Figueiredo et al. / Journal of Structural Geology 26 (2004) 1931–1943 1935



This analysis takes into consideration distinct strength

envelopes for the two possible failure mechanisms; one

involving rotation (antithetic faulting) and the other sliding.

The main features of the theory of the generalized Cosserat

continuum have been described with particular reference to

those pertinent to the problem of the bookshelf mechanism.

The bookshelf mechanism can be interpreted in a simple

way by using the mechanics of generalized Cosserat

continua. By using this theory that takes into account

rotations and the anti-symmetric portion of the stress tensor

s a, it is possible to explain the formation of antithetic faults.

This type of faulting is related to rolling friction, which

implies a lower strength when compared with sliding related

faulting. By using the Cosserat theory it is not necessary to

appeal for the unlikely tensile stresses in practically all

planes, as required for classical failure mechanisms.

Furthermore, through the use of Mohr circles and a Cosserat

continuum, the analyses provides a way to incorporate

rotations and s a (i.e. ðsHV 2 sVHÞ=2), both of which are

responsible for the development of rotational antithetic

faults. This is not possible when using the classical

continuum, which does not incorporate these quantities.

Several problems in structural geology can be investi-

gated under the framework of the theory of Cosserat

generalized continua. An example is the problem of folding

of multilaminated media as presented initially by Biot

(1967) and complemented by Latham (1985a,b). Other

problems, all of them involving rotations, include the

analysis of the simple shear tectonics and its anastomosed

patterns (in particular, the genesis of Riedel type fractures,

R and R0), sigmoidal veins (Figueiredo and Vargas, 2001),

the formation of kinkbands, etc. This paper aimed to

demonstrate that Cosserat mechanics is not only appropriate

for analysis of the bookshelf mechanism, but also for all

geological processes that involve rotational antithetic

mechanisms of deformation.
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Appendix A. The mechanics of 2D Cosserat generalized

continua

In its classic description, a continuum is a continuous

distribution of particles, which are represented geometri-

cally by a material point having cartesian coordinates xi
(i ¼ 1–3), with reference to a fixed system of orthogonal

axes and characterized kinematically by a displacement

vector ui. In contrast, in the generalized continuum

description, each point is seen as a particle having small

dimensions, which is itself a small continuum around that

point (Fig. A1). The kinematical characterization of the

point or of the material particle strictu sensu, requires a

refinement in relation to the classical continuum. The

complexity of this refinement gives rise to the differences

between the various generalized theories that have been

proposed (Kröner, 1968).

In the Cosserat theory, the pioneer amongst the

generalized theories, the material particle is rigid and has

microrotations vc
i as additional degrees of freedom to ui.

This way, in such a continuum, the particle will have the

degrees of freedom of a rigid body positioned in xi. The

gradients of microrotations, named curvatures, are added to

the classical components of strain constituting a non-

symmetric tensor as shown in item A2 of this Appendix.

Through the Principle of Virtual Work (Chou and

Pagano, 1967; Germain, 1973), it is possible to conjugate

energetically the kinematical measures of the generalized

continuum to their corresponding statical quantities, as

briefly discussed in item A3 of this Appendix. As a result,

the couple stress tensor, which is conjugate to the

curvatures, and the force stress tensor of Cosserat,

analogous to the classic stress tensor (although non-

symmetric), can be obtained. This asymmetry is particularly

important to explain the bookshelf mechanism.

With the above mentioned static-kinematic refinements,

the Cosserat theory allows representation of flexural and

torsional effects, which are not present in the classic

continuum. In contrast, the dimensions of the material

particle, here denominated characteristic length, introduce a

dependence on its underlying basic structure in the

constitutive description (Jaeger and Cook, 1979).

In the particular case of rock masses, the rigid material

Fig. A1. Degrees of freedom for a material point in a Cosserat generalized

continuum.
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particles of the Cosserat continua are able to represent the

blocks formed between pre-existing geological disconti-

nuities. This is so because these blocks are in general more

rigid than the entire rock mass, where the deformability is

concentrated on the interfaces (Goodman, 1976). In the

sequence, a brief description of the kinematics of a 2D

Cosserat continuum, restricted to small strains, is presented.

A few remarks will be made about the constitutive relations

for an isotropic linear elastic material and pertinent strength

criteria.

A1. Kinematics

Consider a plan of deformations parallel to Cartesian

orthogonal axes (x1, x2). xi (i ¼ 1, 2) are the coordinates of a

material point in a 2D Cosserat continuum. A rigid

microparticle is associated with each point and, in the

center of mass of the particle, a new local rigid cartesian

coordinate system is located. During the deformation

process, each particle moves ui and may suffer a rotation

vc
3 (Fig. A1). The subscript indicates that the rotation occurs

around the axis x3, normal to the plan of deformations, and

the superscript is used to distinguish the Cosserat micro-

rotations from the conventional macrorotations, which are in

principle independent. This fact is crucial for the develop-

ment of Cosserat theory, where the rotations bear no

interdependence with the translational degrees of freedom,

as occurs with the macrorotations of the classic mechanics.

The strain quantities in a Cosserat continuum are gij and

ki, named, respectively, ‘relative strains’ (non-dimensional)

and ‘curvatures’ (with dimensions of inverse of length),

which are defined in 2D as:

g11 ¼ ›1u1; g12 ¼ ›2u1 þ vc
3;

g22 ¼ ›2u2; g21 ¼ ›1u2 2 vc
3;

k1 ¼ ›1v
c
3; k2 ¼ ›2v

c
3 ðA1Þ

where ›i(·) represents a gradient of (·) in the direction of i.

One can demonstrate (Figueiredo, 1999) that these

quantities are objective, i.e. they are invariant with respect to

rigid body movements, and can be used in the formulation of

constitutive laws (Mase and Mase, 1992). As g12 – g21; it is

noticed that gij is non-symmetric in the non-trivial case where

vc
3 – 0: It should be noted also that the symmetric part of gij,

gðijÞ ¼ ðgij þ gjiÞ=2; coincideswith the classic strain tensor, e ij,

while its anti-symmetric part g½ij� ¼ ðgij 2 gjiÞ=2; is the

difference between the macrorotations, V12 ¼ v3 ¼ ð›2u1 2

›1u2Þ=2; and the Cosserat microrotations vc
3 (i.e.

g½21� ¼ v3 2 vc
3). An illustration of the kinematics rep-

resented by the expression of g12 is shown in Fig. A2.

The particular case, in which the Cosserat microrotations

coincide with the rigid body macrorotations, i.e. when v3 ¼

vc
3; was considered by Mindlin (1963) and used by Biot

(1967). This case is important only where the medium

remains elastic. In the plastic domain, micro and macro-

rotations can be significantly different (Cosserat and

Cosserat, 1909; Mühlhaus and Vardoulakis, 1987), as is

generally the case in structural geology and particularly in

the analysis of bookshelf mechanisms.

A2. Statics

A 2D Cosserat continuum contains six static quantities,

energetically conjugate (through the Principle of Virtual

Work) to the kinematic quantities defined in item A1.

Therefore, besides the conventional stress tensor sij,

hereafter denominated force stress tensor, there are two

additional components of couple (or moment) stresses mi ¼

m3i (i ¼ 1, 2), with dimensions of moment by units of area.

In a plan element of infinitesimal dimensions dx1 and dx2
parallel to the coordinate axes (Fig. A3), it is assumed that

an average value can be adopted for the distribution of force

stress vectors and couple stresses on their faces. Moreover,

it is also possible to neglect the terms higher than the first

order, in a Taylor series approximation of the stress

components on a face xi þ dxi; as function of those on

face xi. By stating the equilibrium of forces according to the

directions x1 and x2, the following relationships between

force stresses in a Cosserat continuum are obtained:

›1s11 þ ›2s12 þ F1 ¼ 0 ðA2aÞ

›1s21 þ ›2s22 þ F2 ¼ 0 ðA2bÞ

where Fi are body forces. In analogy, by stating the moment

equilibrium in relation to the central point of the element

Fig. A2. Kinematic relationships for g12.

R.P. de Figueiredo et al. / Journal of Structural Geology 26 (2004) 1931–1943 1937



one has:

›1m1 þ ›2m2 þ ðs21 2 s12Þ þQ ¼ 0 ðA3Þ

where Q is a body moment.

From Fig. A3 and the above mentioned moment

equilibrium relations, we note that the shear components

do not vary between a face in xi and its neighbor at

xi þ dxi: That does not mean, however, that their non-

uniformity was disregarded. What happens is that the

moments of the first degree terms, in the Taylor series

for such components, would be infinitesimals of higher

order and, therefore, would end eliminated. Physically,

this can be understood as the existence of a higher

gradient for couple stresses than for force stresses in the

scale of an infinitesimal element.

In dynamic problems, inertia effects can be included in

body forces and moments according to d’Alembert’s

principle (Teodorescu, 1975). Eq. (A3) shows that where

non-zero couple stress gradients occur, the shear stresses

s12 and s21 are not necessarily equal. One concludes

therefore that the force stress tensor sij is, in general, non-

symmetric, similarly to the tensor of relative deformation

mentioned previously.

Symmetry will occur in the static case if and only if

couple stresses, although present, are self-equilibrated

(body moments can generally be disregarded), or when

they are identically zero as in classical continuum. In

dynamic problems, the microinertial effects included in

body moments in Eq. (A3) can by themselves generate the

asymmetry of force stresses.

The force stresses can be split into their symmetric,

sðijÞ ¼ ðsij þ sjiÞ=2; and anti-symmetric s½ij� ¼ ðsij 2 sjiÞ=2

components. Particularly, these components are denoted by

sð12Þ ¼ ðs12 þ s21Þ=2 ¼ ss and s½12� ¼ ðs12 2 s21Þ=2 ¼ sa:

It should be noted that for the normal stress sðiiÞ ; sii and

s½ii� ; 0: s s corresponds to the classical shear stresses and

provokes only distortion of the material points. s a, which is

related to the couple stresses by the Eq. (A3), produces

exclusively rotation (Fig. A4). The understanding of the

way that each component acts on the deformation of the

generalized continuum, is important for formulation of

strength criteria. These criteria must be specific for each

failure mechanism. s s may generate sliding while s a may

generate toppling (rotation).

It is remarkable that Ramsay (1967) had already

noticed the ‘need’ of an asymmetry in the stress tensor.

Even based in mechanically inconsistent concepts and

apparently not aware of the generalized theory of

Cosserat, that author suggested that part of the deviatoric

tensor would ‘not be in equilibrium’, what was called by

him the ‘disequilibrium component’ (Ramsay, 1967, p.

283). This is precisely the anti-symmetric portion of the

shear stresses (s a) that, as described previously, is

responsible for the asymmetry of the force stress tensor

of Cosserat. Perhaps, it was not by chance that Ramsay

(1967) concluded the existence of this non equilibrated

component, based on his perception that rigid rotations of

points of the medium (microrotations) were commonly

independent of the rigid body rotations (macrorotations,

V12 ¼ v3 ¼ ð›2u1 2 ›1u2Þ=2) and would require the

definition of associated stresses. What perhaps was not

fully perceived by Ramsay (1967) is that there is no

disequilibrium, but the existence of couple stresses that

oppose the effect of anti-symmetric shear stresses. This is

exactly what is expressed by Eq. (A3).

Fig. A3. Force and moment equilibrium for an infinitesimal element of Cosserat generalized continuum.

Fig. A4. Interpretation of the effect of the symmetric and anti-symmetric

components of shear stresses (Mindlin, 1963).
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A3. Virtual Work Principle

In mechanics, displacements are concrete quantities,

having a physical existence, while forces (and stresses) are

postulated and abstract. It is therefore instructive to

introduce and define the latter through the virtual work

they produce under given virtual displacements. The

proposition, in a general way, consists of obtaining the

statics of the medium from the kinematics, through the

Principle of Virtual Work (Chou and Pagano, 1967). When

the kinematic description is refined, as in the case of

generalized continua, it is natural that new static quantities

are sought through its energetic dualities (conjugations),

expressed in the Principle of Virtual Work (Germain, 1973).

Used in this form, this principle constitutes a method

through which it is possible to define, in a systematic way,

the statics and the boundary conditions (Germain, 1973),

justifying, for example, the appearance of the couple

stresses in the Cosserat theory.

The application of the method starts by establishing the

virtual work of the internal forces for the generalized

medium. This virtual work has to be a quantity invariant

with respect to rigid body motion (axiom of objectivity of

the virtual work of internal forces; Germain, 1973). So the

objective tensors gij and ki will be used in the expression of

the virtual work. Specifically for the development of the

current section, we will use the tensorial (indicial) notation

(Chou and Pagano, 1967) with their usual conventions such

as, for example, the implicit summation for repeated

subscripts (Einstein’s convention). In the present work,

due to the fact that only plane problems are being treated,

the range of variation of the subscripts will be i,j ¼ 1, 2. In

indicial notation, the above mentioned tensors can be

written as gij ¼ ›jui þ eij3v
c
3 and ki ¼ ›iv

c
3;where eij3 is the

permutation (or alternating) tensor in 2D (Chou and Pagano,

1967). It is assumed that the medium occupies a volume V

with boundary G. In this case, the virtual work of the internal

forces (dW I) will be given by:

dW I ¼
ð
V
ðsijdgij þ midkiÞdV ðA4Þ

where the tensorial coefficients sij and mi are the introduced

static variables, which are associated, in energy, with the

adopted kinematics.

d in Eq. (A4) indicates that the kinematic quantities are

virtual. If kinematically admissible, i.e. satisfying the

boundary conditions, these quantities do not interfere with

the equilibrium (Chou and Pagano, 1967). Apart from that

they are entirely arbitrary and by consequence independent.

In the case of classic continuum, the only term present in the

integrand would be the first. Rewriting Eq. (A4), consider-

ing the definitions of the kinematic tensors, gives:

dW I ¼
ð
V
½sijð›jdui þ eij3dv

c
3Þ þ ðmi›idv

c
3Þ�dV ðA5Þ

and, therefore

dW I ¼
ð
V
½sij›jdui þ sijeij3dv

c
3 þ mi›idv

c
3�dV

¼
ð
V
½sij›jdui þ 2sadvc

3 þ mi›idv
c
3�dV ðA6Þ

where an equivalent form of the second term was used on

the right hand side of the equality. This results from the

definition given to s a in item A2 that, in indicial notation, is

sa ¼ 1
2
eij3sij (Chou and Pagano, 1967). By applying the

rules of differentiation of a product to the first and third

terms of the integrand of Eq. (A6), or, what is the same,

integrating by parts leads to:

dW I ¼
ð
V
{½›jðsijduiÞ2 ›jsijdui� þ 2sadvc

3

þ ½›iðmidv
c
3Þ2 ›imidv

c
3�}dV ðA7Þ

By applying the Gauss–Ostrogradski divergence theo-

rem (Chou and Pagano, 1967) to the first and fourth terms

and putting dvc
3 in evidence in the third and fifth terms,

gives:

dW I ¼ 2
ð
V
›jsijduidV 2

ð
V
ð›imi 2 2saÞdvc

3dV

þ
ð
G
sijduinjdGþ

ð
G
midv

c
3nidG; ðA8Þ

where ni is the unit normal vector pointed to the exterior of

G.

The form of the expression of virtual work of the internal

forces, extended to a Cosserat continuum (Eq. (A4)),

motivates further extension to quantify the virtual work of

the external forces (dWE); for body forces (dWE
V ) and

surface forces (dWE
G ):

dWE
V ¼

ð
V
FiduidV þ

ð
V
Qdvc

3dV ; ðA9aÞ

dWE
G ¼

ð
G
tiduidGþ

ð
G
mdvc

3dG; ðA9bÞ

dWE ¼ dWE
V þ dWE

G ; ðA9cÞ

where Fi is a body force, ti is a surface traction, Q is a body

moment, and m is a surface moment. This extension of dWE

is due to the fact that in classical continuum, the existence of

a stress tensor (a second order tensor) in the internal work

leads to the appearance of force vectors (first order tensors)

in the external work. By analogy, existing vector of couple

stresses in the internal work, one scalar quantity (body and

surface moments, zero order tensors) in the external work

should appear.

The following step is the application of the virtual work

principle itself. It establishes that for statically admissible

fields of stresses, i.e. those that satisfy the differential

equations of equilibrium (Eqs. (A2a), (A2b) and (A3)) and

the natural boundary conditions, the virtual work of the
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external forces on any assumed, equally admissible,

kinematic fields is equal to the work performed by the

internal forces, i.e. dW I ¼ dWE.

This is the direct statement of the principle. The inverse

statement, which is used in the present work, establishes

that, if for the static fields assumed, dW I ¼ dWE, consider-

ing all admissible kinematic virtual fields, then the former

(static fields) will be statically admissible. This inverse

statement allows the obtaining of equilibrium equations and

the natural boundary conditions as follows.

A mathematical statement of the principle (dW I ¼ dWE),

through Eqs. (A8), (A9a) and (A9b), is therefore:

2
ð
V
›jsijduidV 2

ð
V
ð›imi 2 2saÞdvc

3dV

þ
ð
G
sijduinjdGþ

ð
G
midv

c
3nidG

¼
ð
V
FiduidV þ

ð
V
Qdvc

3dV

þ
ð
G
tiduidGþ

ð
G
mdvc

3dG; ðA10Þ

As the variations of ui and vc
3 in Eq. (A10) are arbitrary

and independent, it is possible to equate directly their

coefficients and transform it into two new equations; the first

common to the classical continuum and the second specific

to the generalized Cosserat continuum, which are:

2
ð
V
›jsijduidV þ

ð
G
sijduinjdG

¼
ð
V
FiduidV þ

ð
G
tiduidG; ðA11aÞ

and

2
ð
V
ð›imi 2 2saÞdvc

3dV þ
ð
G
midv

c
3nidG

¼
ð
V
Qdvc

3dV þ
ð
G
mdvc

3dG ðA11bÞ

By reorganizing the terms, we obtain:

ð
V
{ð›jsij þ FiÞdui}dV þ

ð
G
½ðti 2 sijnjÞdui�dG ¼ 0 ðA12aÞ

and

ð
V
{ð›imi 2 2sa þQÞdvc

3}dV

þ
ð
G
½ðm2 miniÞ�dv

c
3dG ¼ 0 ðA12bÞ

These equations will only be satisfied for arbitrary

variations if, simultaneously in each one of them, the

integrands of the volume and surface integrals are zero. So

the equilibrium equations

›jsij þ Fi ¼ 0; ðA13aÞ

and

›imi 2 2sa þQ ¼ 0; ðA13bÞ

are obtained, which are equivalent to Eqs. (A2a), (A2b) and

(A3) written in indicial notation, and the natural boundary

conditions

ti ¼ sijnj ðCauchy stress equation applied to GsÞ ðA14aÞ

and

m ¼ mini: ðA14bÞ

To evaluate the integrals in the equations above, it is

necessary to assume that boundary G is defined in

complementary parts Gu, Gv, Gs and Gm. The natural

boundary conditions in Eqs. (A14a) and (A14b) are

prescribed on Gs and Gm, respectively. The essential

boundary conditions related to ui and vc
3 are prescribed on

Gu and Gv, respectively.

A4. Stress–strain relationships

The equations for the linear elastic isotropic behaviour of

a 2D Cosserat continuum involve four parameters. They can

be written as (Teodorescu, 1975):

l; G; Gc and B ¼ 2Gl2;

where l andG are analogous to Lame’s classical parameters

(Jaeger and Cook, 1979), Gc is an anti-symmetric (or

rotational) shear modulus, B is a flexural modulus (having

dimension of force) and l is the characteristic length of the

medium.

The stress–strain relations is stated as:

sij ¼ lekkdij þ ðGþ GcÞgij þ ðG2 GcÞgji; ðA15aÞ

and

m3i ¼ mi ¼ Bki: ðA15bÞ

Eq. (A15a) can be rewritten as:

sij ¼ lekkdij þ 2Ge ij þ 2Gcg½ij�; ðA15cÞ

in function of the symmetric and anti-symmetric parts of the

relative deformations defined in item A1 of this Appendix. It

can be noted that two new parameters appear: Gc, which

relates the anti-symmetric parts of the force stresses and the

relative strains and l, which introduces flexural effects (and

by consequence scale effects) in the medium, indirectly

measuring the dimensions of its internal structure. In this

case, where the material is isotropic, only one characteristic

length exists.

Additional strength criteria must also be introduced for

the definition of the Cosserat generalized continuum. These
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strength criteria represent the additional failure mechanisms

induced by the anti-symmetric force stresses and by couple

stresses. For the analysis of the bookshelf mechanism

focused on in this paper, a criterion representing failure by

rotation was given by Eq. (1).

Appendix B. The 2D Mohr circle for Cosserat

continuum

In the generalized Cosserat continuum, like in the

classical continuum, the force stresses in 2D can be

represented graphically by a circle in the Mohr stress

space, i.e. the space of normal stresses versus shear stresses

(sN £ sS). This type of representation is derived in the

present Appendix.

Fig. A5 shows a free body diagram where the

components of force stresses are indicated. The faces of

the diagram are oriented perpendicular to the coordinate

axes and to a unit vector ni making an angle a (arbitrary) to

the x axis.This unit vector has components

ðn1; n2Þ
t ; ðcosa; senaÞt, while the components of a vector

si, parallel to the plane, are ðs1; s2Þ
t ; ð2sena; cosaÞt:

By imposing an equilibrium of forces along the

coordinate axes, it is possible to determine the respective

components of the vector of force stresses, ti, in the plane

normal to ni (hereafter designated by plane a), knowing that

ti ¼ sijnj. The projection of ti over ni and si will give,

respectively, the normal (sN) and shear (sS) stress

components in plane a as:

sN ¼ tini ¼ sijnjni; ðA16aÞ

sS ¼ tisi ¼ sijnjsi: ðA16bÞ

These expressions, in extended form, are:

sN ¼ s11cos
2aþ s22sen

2a

þðs12 þ s21Þsenacosa; ðA17aÞ

sS ¼ s21cos
2a2 s12sen

2a

þðs22 2 s11Þsenacosa; ðA17bÞ

or, in terms of 2a:

sN 2 1
2
s11 þ s22

� �

¼ 1
2
s11 2 s22

� �
cos2aþ 1

2
s12 þ s21

� �
sen2a; ðA17cÞ

sS 2
1
2
s21 2 s12

� �

¼ 1
2
s22 2 s11

� �
sen2aþ 1

2
s12 þ s21

� �
cos2a: ðA17dÞ

Squaring both sides and adding Eqs. (A17c) and (A17d)

we arrive at the equation of a circle in the plane (sS,sN):

sN 2 sm

� �2
þ sS þ sa
� �2

¼
s11 2 s22

2

� �2
þ

s12 þ s21

2

� �2
; ðA18Þ

where sm ¼ ðs11 þ s22Þ=2 and sa ¼ ðs12 2 s21Þ=2 are,

respectively, the average normal stress and the anti-

symmetric shear stress. Therefore the locus of the states of

force stresses in 2D represented on plane is a circle, as in the

classical continuum. The difference is that its center

undergoes a translation 2s a in a direction perpendicular

to the axis of normal stresses, being therefore located in the

point of coordinates (sm, 2 s a).

Fig. A6 shows a Mohr circle for the state of stress

represented in Fig. A5. In the adopted convention, the

tensile stresses are positive. Therefore, the shear stresses

(symmetric and anti-symmetric) are plotted as positive

when producing clockwise rotating couples, i.e. dextral

shear in geological nomenclature (see Chou and Pagano,

1967, section 1.5).

All the elegant graphical solutions of structural geology

problems obtained with the Mohr circle in the classical

continuum (Mandl, 2000), are possible in the Cosserat

continuumwith minimal adaptations. Values and orientations

of principal stresses,whichmaynot bemutually perpendicular

andmay not even exist, if the value ofs a is such that the circle

does not intercept the sN axis, can be determined by

procedures as those used in classical continuum. The same

applies to the determination of maximum and minimum

normal stresses (which no longer coincide with the principal

stresses) and to the calculation of the maximum shear stress.

The concept of pole, or origin of planes (point P in Fig. A6), is

equally valid in the graphical construction.
Fig. A5. Free body diagram for a 2D state of stress of an infinitesimal

element.
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Fig. A7 shows the effect of the anti-symmetric part of the

shear stresses in inducing failure in a point of the medium.

Through the displacement in a direction perpendicular to the

normal stress axis, the circle may become tangent to one

strength envelope without increasing its diameter. This

corresponds to an exclusive increase of the anti-symmetric

part of the stresses, which, as mentioned before, is related to

rotations (as occurs in the bookshelf mechanism).

For three-dimensional states of stresses, the graphical

representation cannot be given by a combination of three

circles in the plane sS £ sN as in classical continuum (e.g.

Jaeger and Cook, 1979). The representation for the total

(non-symmetric) stress tensor (Unterreiner, 1995) is given

by more complex curves (planar sections of quadric

surfaces), which reduces its applicability.

Nikolaevski (1996) introduced the couple stresses,

together with force stresses, in the equilibrium of moments

in the free-body diagram of Fig. A5. By doing so, the

pertinent space of stresses becomes three-dimensional

(sS £ sN £ m) and its projection on a plane takes to an

elliptical form for the graphical representation of the 2D

stress tensor. In the authors’ opinion, the implications of this

form, as well as of the possible variants of Cosserat Mohr

circles, in the analysis of geological structures, deserves

appreciation.

Some works (e.g. Lister and Williams, 1983; Means,

1983; De Paor and Means, 1984; Bobyarchick, 1986)

involve the use of Mohr circles that may not be centered in

the abscissa axis. These are circles for displacement or

velocity gradients, which are non-symmetric second order

tensors, similar to the force stress tensor in the Cosserat

theory. These circles have been described by Prager (1961)

and are not the same as the Mohr circles for strain quantities

of Cosserat continua, described in item A1. In the Cosserat

mechanics, rotations are independent of displacements. In

contrast, for the above mentioned displacement gradients,

rotations are their anti-symmetric portion and, as a

consequence, dependent on them. These circles have been

utilized in the kinematic analysis of shear zones (Simpson

and De Paor, 1993). They are not able, however, to take into

account the independence of the rotations in the interior of

the shear zones in relation to rotations in the remaining

medium (Mühlhaus and Vardoulakis, 1987). This is only

possible by using Cosserat Mohr circles for strain.

Appendix C. A strength criterion for rolling friction:

toppling of blocks

Consider rectangular blocks ABCD, with height h, width

b and unit thickness perpendicular to their plane, as

illustrated in Fig. A8. Assume that a normal stress sN and

 

Fig. A6. Mohr circle for a 2D Cosserat generalized continuum.

Fig. A7. Failure produced by anti-symmetric stresses.

Fig. A8. Moment equilibrium for a block considering a toppling failure

criterion.
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a shear stress sS act on the horizontal planes, according to

Fig. A8, and that there is cohesion available in all vertical

planes, between adjacent blocks. The moment equilibrium

for a given block in the medium, relative to the point A, is:X
MA ¼ ðsSbÞh2 ðchÞb2 ðsNbÞb ¼ 0;

where SMA is the summation of non zero moments of the

various forces in relation to point A. Simplifying the above

expression gives:

sS ¼ sNðb=hÞ þ c:

By calling b=h ¼ tanw, we have:

sS ¼ sNtanwþ c; ðA19Þ

where w denotes an angle representative of the slenderness

of the blocks and is defined as the rolling friction angle. Eq.

(A19) represents the required shear stress for the blocks to

topple (roll), and is analogous to Eq. (1) with a cohesion

term included.
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cristallisés. Mémoires de l’Académie des Sciences, Paris, 18.

Prager, W., 1961. Introduction to Mechanics of Continua, Ginn and

Company, Boston.

Price, N.J., Cosgrove, J.W., 1990. Analysis of Geological Structures,

Cambridge University Press, Cambridge.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks, McGraw-Hill, New

York.

Ramsay, J.G., Huber, M., 1987. The Techniques of Modern Structural

Geology—Volume 2: Folds and Fractures, Academic Press, London.

Saint Venant, A.J.C.B., 1869. Note sur les valeurs que prennent les
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