Humoral and cellular immune responses in dogs with inapparent natural *Leishmania infantum* infection

W. Coura-Vital\(^{a,b}\), M.J. Marques \(^c\), R.C. Giunchetti \(^{a,d}\), A. Teixeira-Carvalho \(^d\), N.D. Moreira \(^a\), J. Vitoriano-Souza \(^a\), P.M. Vieira \(^a\), C.M. Carneiro \(^a\), R. Corrêa-Oliveira \(^e\), O.A. Martins-Filho \(^d\), M. Carneiro \(^b\), A.B. Reis \(^a,e,*\)

\(^a\)Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
\(^b\)Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
\(^c\)Laboratório de Epidemiologia de Doenças Infecciosas e Parasitárias, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
\(^d\)Laboratório de Parasitologia Básica, Departamento de Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
\(^e\)Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil

Abstract

Molecular analysis, serology and immunophenotyping for T lymphocytes and their subsets, B lymphocytes and monocytes were performed on dogs naturally infected with *Leishmania infantum*. Animals were categorised as asymptomatic dogs I (AD-I), with negative serology and positive molecular results, and asymptomatic dogs II (AD-II), with positive serology and positive molecular results, and these were compared to symptomatic dogs (SD) and control dogs (CD).

AD-I exhibited immunophenotypic features similar to those of CD, including isotype profiles and concentrations of monocytes. Similar biomarkers were found in AD-II and SD, such as, higher levels of immunoglobulins IgG, IgG2, IgM and IgA and higher concentrations of eosinophils. High frequencies of T lymphocytes and CD4^+^ T cells were observed in both AD-I and AD-II compared to SD, whereas CD8^+^ T cells were higher only in AD-II compared with SD. Analysis of B lymphocytes revealed an increased frequency of this cell type only in AD-II animals compared with SD. Asymptomatic dogs appear to have a dichotomous infection spectrum that can influence the humoral and cellular immunological status during canine visceral leishmaniasis.

© 2011 Elsevier Ltd. All rights reserved.

Introduction

Leishmaniasis is endemic in 88 countries in tropical and subtropical regions of the Old and New World, with more than 350 million people exposed to the infection (Desjeux, 2001). The estimated incidence is 2 million new cases per year, with 0.5 million people exposed to the infection (Desjeux, 2001). The esti-

The Veterinary Journal 190 (2011) e43–e47
The aim of this study was to use the humoral and cellular immune response to explore the dichotomy in dogs with asymptomatic and symptomatic infection with *L. infantum* and to identify features that could be used to identify resistant and susceptible profiles.

Materials and methods

Dogs and experimental design

Forty-one mongrel dogs of either gender from the endemic area of Belo Horizonte, Minas Gerais, Brazil, were selected on the basis of serological tests (IFAT and ELISA, Biomanguinhos/Fiocruz) for *Leishmania* spp. Dogs with an IFAT titre <1/40 were considered to be seronegative and dogs with an IFAT titre ≥1/40 were considered to be seropositive and infected with *Leishmania* spp. Positive infection was confirmed by ELISA and PCR in at least one skin sample (Degrave et al., 1994) and the species of *Leishmania* responsible was determined by restriction fragment length polymorphism–PCR (Volpiní et al., 2004).

The study was conducted from June 2008 to August 2009 after approval by the ethical committee for the use of experimental animals of the Federal University of Ouro Preto (CETEA/UFOP 032/2007), Federal University of Minas Gerais (CETEA/UFMG 020/2007) and the Municipal Health Secretariat of Belo Horizonte City Council, Minas Gerais State, Brazil (CEP-SM/PAH 001/2008).

Selection and clinical classification of dogs

Dogs were selected and clinically classified according to the presence/absence of clinical signs: (1) asymptomatic, with no signs suggestive of disease; (2) symptomatic, with characteristic clinical signs of visceral leishmaniasis, such as opaque bristles, severe loss of weight, onychogryphosis, cutaneous lesions, apathy and keratoconjunctivitis; and (3) control dogs, classified according to negative serological and molecular results and absence of clinical signs.

Haematology

Peripheral blood (5 mL) from the brachiocephalic vein was collected into tubes containing ethylene diamine tetraacetic acid (EDTA) at a final concentration of 1 mg/mL. Erythrocytes and leucocytes were quantified using an automatic cell counter (Model 2800 Vet, Mindray). Differential leucocyte counts were performed by examination of at least 200 leucocytes in Giemsa-stained blood smears by light microscopy.

ELISA for immunoglobulin isotype profile

ELISAs were performed to determine the anti-*Leishmania* immunoglobulin pattern using soluble *L. infantum* (MHOM/BR/1972/BA46) promastigotes antigen (SLA) (Rosário et al., 2005; Reis et al., 2006c). The protein concentration was quantified by the Lowry method, adjusted to 1 mg/mL, and samples were stored at −70 °C. Ninety-six well microplates (MaxiSorp, Nalgene Nunc) were coated with SLA at a concentration of 2 µg/well, left overnight at 4−8 °C and then washed. Serum samples were added to the wells at a dilution of 1:80, followed by washes after the addition of goat anti-dog IgG1 (anti-heavy chain specific) conjugated with peroxidase, IgM (anti-heavy chain specific) and IgE (anti-chain specific) or sheep anti-dog IgG and IgG2 (both anti-heavy chain specific) (Bethyl Laboratories). Wells were washed and then the substrate and chromogen (O-phenylenediamine, Sigma–Aldrich) were added. The absorbance was read on an automatic ELISA microplate reader (EL 800G FC, Bio-Tek) at 492 nm. The concentrations of conjugate were determined by a block titration method with positive and negative standard sera. The conjugates anti-IgG1, IgM, IgG and IgE were used at a dilution of 1:1,000, anti-IgG was used at a dilution of 1:8,000 and anti-IgG2 was used at a dilution of 1:16,000.

Immunophenotyping by flow cytometry

Immunophenotyping of peripheral blood by flow cytometry was performed as described by Reis et al. (2005). After a pre-fixation step, erythrocytes were lysed in 1 mL EDTA-treated whole blood by the slow addition of 13 mL fluorescence-activated cell sorter (FACS) lysis solution (Becton Dickinson), followed by incubation for 10 min at room temperature (RT). After centrifugation (450 g for 10 min at RT), the pellet was resuspended in 500 mL phosphate-buffered saline (PBS) supplemented with 1% fetal bovine serum (PBS–1% FBS). Using 96-well U-bottom plates (Limbro Biomedicals), 30 µL prefixed leucocyte suspension were incubated at RT for 30 min in the dark with 30 µL monoclonal antibodies (mAbs) diluted previously in PBS–1% FBS.

The mAbs used in the study were diluted purified anti-canine CD5 (1:800, rat IgG2a, clone YKH3222.3), anti-canine CD4 (1:1,000, rat IgG2a, clone YKDX02.9) and anti-canine CD8 (1:800, rat IgG1, clone YCATESS5.9) (Serotec). Undiluted fluorochrome isothiocyanate (FITC)-labelled mouse anti-human CD21 (5 µL, mouse IgG1, clone DBIA; Immunotech) and diluted phycoerythrin (PE)/Cy5-conjugated mouse anti-human CD14 (50 µL, 1:200, mouse IgG2a, clone TÜK4; Serotec) were also used in direct immunofluorescence procedures. Cells were also incubated in the same conditions in the presence of 60 µL of diluted FITC-conjugated sheep anti-rat IgG polyclonal antibody (1:100 or 1:200; Serotec).

Before flow cytometric data collection and analysis were performed, labelled cells were fixed for 30 min with 200 µL FACS fix solution (10.0 g/L paraformaldehyde, 10.2 g/L sodium cacodylate, 6.6 g/L sodium chloride; pH 7.2). Flow cytometric measurements were performed on a FACSScan (Becton Dickinson) and analysed using CellQuest software (10,000 events acquired per sample). The results were expressed in absolute counts (cell number/mm³) through the product of the percentage of positive cells (CD5+, CD4+, CD8+ and CD21+) within gated lymphocytes by absolute lymphocyte counts. Absolute counts for T lymphocyte subsets were also calculated as the sum of absolute values of CD4+ plus CD8+ cells. The absolute counts for monocytes were the products of CD14+ cells within un gated leucocytes by the total leucocyte counts.

Statistical analysis

Statistical analysis was performed using Graphpad Prism 5.0. The normality of the data was assessed using the Kolmogorov–Smirnoff test. Considering the non-parametric nature of all data sets, Kruskal–Wallis tests were used to investigate differences between the four groups, followed by Dunn’s test for pairwise comparisons. Differences were considered to be significant at *P* < 0.05.

Results

Reclassification according to serological, molecular and clinical features

Dogs with no clinical signs and negative serological and molecular results were included in the control group (CD, *n* = 7). Seronegative dogs without clinical signs but positive molecular results for *L. infantum* were classified as asymptomatic dogs I (AD-I, *n* = 8).

Dogs with positive serology and molecular results for *L. infantum* but no clinical signs were classified as asymptomatic dogs II (AD-II, *n* = 10). Dogs with clinical signs and positive serological and molecular results were classified as symptomatic dogs (SD) (*n* = 16) (Table 1).

Haematology

There were lower concentrations of eosinophils in AD-II and SD compared with AD-I and CD and lower concentrations of lymphocytes in SD compared with AD-II (Table 2). Symptomatic *L. infantum* infection was associated with decreased erythrocyte counts and haematocris in AD-II compared with AD-I and CD (*P* < 0.05) and decreased haemoglobin concentrations in SD compared to other groups (*P* < 0.05).

Anti-Leishmania immunoglobulin isotypes

Concentrations of IgG, IgG1, IgG2, IgM, IgA and IgE in AD-I were similar to CD (Fig. 1). There were increased IgG, IgG2, IgM and IgA concentrations in AD-II and SD compared with AD-I and CD.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Serodiagnosis</th>
<th>Molecular diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IFAT and ELISA</td>
<td>PCR–RFLP</td>
</tr>
<tr>
<td>Control (CD)</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Asymptomatic (AD-I)</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Asymptomatic (AD-II)</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Symptomatic (SD)</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

IFAT, Indirect fluorescent antibody test; ELISA, Enzyme-linked immunosorbent assay; PCR–RFLP, Polymerase chain reaction–restriction fragment length polymorphism.

W. Coura-Vital et al. / The Veterinary Journal 190 (2011) e43–e47
Concentrations of IgE were lower in AD-I compared with SD (P < 0.05). There were no significant differences in concentrations of IgG1 between groups.

Immunophenotyping of circulating T lymphocytes and their subsets

AD-I and AD-II had increased concentrations of T lymphocytes compared with SD (P < 0.05). AD-I and AD-II had higher counts of CD4+ T lymphocytes than SD, whereas AD-II, but not AD-I, had higher counts of CD8+ T lymphocytes than CD and SD. There was a decreased ratio of CD4+:CD8+ in AD-II and SD as compared with CD (Fig. 2).

Immunophenotyping of circulating B lymphocytes and monocytes

AD-II and CD had higher concentrations of CD21+ B lymphocytes than SD (Fig. 3). AD-II and SD had lower concentrations of monocytes than AD-I and CD.

Discussion

In the current study, we identified lower concentrations of eosinophils in AD-II and SD compared with AD-I and CD. Decreased concentrations of eosinophils have been identified previously in Leishmania-infected dogs with clinical signs (Reis et al., 2006a), as well as in dogs with medium and high parasite densities in spleen and skin (Guerra et al., 2009).

AD-II and SD had higher levels of IgG, IgG2, IgM and IgA than AD-I or CD, whereas AD-I and CD had similar immunoglobulin isotype profiles. These findings suggest that AD-I are in the initial phase of CVL, whereas AD-II are unable to control the parasitism, as indicated by intense polyclonal activation (Reis et al., 2006c; Teixeira Neto et al., 2010). None of these isotypes can confer protective immunity against L. infantum.

High concentrations of IgG2 are associated with clinical signs in dogs with leishmaniasis (Bourdoiseau et al., 1997; Cavaliero et al., 1999; Boceta et al., 2000; Solano-Gallego et al., 2000; Cardoso et al., 2007), whereas high concentrations of IgG1 are present in asymptomatic carriers (Reis et al., 2006c). Although IgM usually is considered to be an immunological marker for the acute phase of parasitic disease, it has been demonstrated that this immunoglobulin also can be detected during the chronic phases of CVL (Genaro et al., 1992; Reis et al., 2006c; Rodriguez-Cortes et al., 2007). Reis et al. (2006c) suggest that IgA reactivity is a marker for tissue parasite density in CVL. SD had higher concentrations of IgE than AD-I. Increased levels of IgE have been associated with severe forms of the disease and elevated tissue parasite densities, as well as with the T helper type 2 immune response profile (Reis et al., 2006c; Guerra et al., 2009).

Table 2

<table>
<thead>
<tr>
<th>Haematological parameter</th>
<th>Clinical groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD</td>
</tr>
<tr>
<td>Erythrocytes (million/mm³)</td>
<td>6.8 ± 0.4</td>
</tr>
<tr>
<td>Haemoglobin (g%)</td>
<td>17.0 ± 0.6</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>49.1 ± 2.0</td>
</tr>
<tr>
<td>Leucocytes (<10³/mm³)</td>
<td>13.4 ± 3.5</td>
</tr>
<tr>
<td>Granulocytes</td>
<td>10.1 ± 3.6</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>7.9 ± 3.8</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>2.1 ± 0.8</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>2.1 ± 0.8</td>
</tr>
<tr>
<td>Monocytes</td>
<td>1.1 ± 0.6</td>
</tr>
</tbody>
</table>

Results are shown as the average values ± standard deviation.

^a Statistically significant differences compared with CD.
^b Statistically significant differences compared with AD-I.
^c Statistically significant differences compared with AD-II.

Fig. 1. Anti-Leishmania immunoglobulin isotype reactivities in dogs naturally infected with Leishmania infantum, categorised according to their clinical status as asymptomatic dogs I (AD-I), asymptomatic dogs II (AD-II) and symptomatic dogs (SD). Uninfected dogs were used as a control group (CD). The results are expressed as optical density values for each immunoglobulin isotype in box plot format highlighting the gap of 50% of data set measurement and the median and maximum and minimum values. ^{a,b} Significant differences at P < 0.05 compared with CD, AD-I and SD, respectively.
AD-I and AD-II had similar total concentrations of CD5+ T lymphocytes, with the main contribution being from CD4+ T lymphocytes, whereas CD8+ T lymphocytes were only high in AD-II. The lower CD4+:CD8+ ratio in AD-II and SD suggests a distinct cellular immune response after seroconversion and disease progression. A more intense parasite load in AD-II and SD may augment the production of CD8+ T lymphocytes and polyclonal immunoglobulin activation, resulting in increased concentrations of IgG. Progressive disease in CVL is associated with suppression of cell-mediated immunity (Pinelli et al., 1994; Reis et al., 2009, 2010). Increased levels of CD8+ T lymphocytes are evident in asymptomatic dogs with a low parasite load (Reis et al., 2006b; Guerra et al., 2009). The absolute number of CD8+ T lymphocytes could be used to discriminate between AD-I and AD-II. However, further studies are required to confirm this hypothesis.

Concentrations of CD21+ B lymphocytes were increased in AD-II but decreased in SD, as described previously (Reis et al., 2006b, 2009; Giunchetti et al., 2008). Analysis of lymphoid organs from dogs naturally infected with *L. infantum* revealed hyperplasia of B cells, mainly plasma cells, associated with increased concentrations of anti-*Leishmania* antibodies (Martinez-Moreno et al., 1993). AD-I and CD had an increased frequency of CD14+ monocytes compared with AD-II and SD, suggesting that higher counts of CD14+ monocytes in AD-I could be important in the control of tissue parasite load and the establishment of resistance mechanisms during ongoing CVL.

Conclusions

AD-I had elevated counts of circulating eosinophils, CD14+ monocytes and T lymphocytes, particularly CD4+ T lymphocytes, whereas AD-II had higher counts of T lymphocytes mainly due to increased CD8+ T lymphocytes and accompanied by a decreased CD4+:CD8+ ratio. AD-I exhibit a resistance phenotype, whereas AD-II exhibit a susceptibility phenotype.

Conflict of interest statement

None of the authors of this paper has a financial or personal relationship with other people or organisations that could inappropriately influence the content of the paper.

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brazil (FAPEMIG Grant: CBB – APQ-3073-4.01/07), Programa de Pesquisa para o SUS (PPSUS/MS/CNPq/FAP-
References

Reis, A.B., Teixeira-Carvalho, A., Giunchetti, R.C., Guerra, L.L., Carvalho, M.G., Mayrink, W., Genaro, O., Correa-Oliveira, R., Martins-Filho, O.A., 2006b. Phenotypic features of circulating leucocytes as immunological markers for clinical status and bone marrow parasite density in dogs naturally infected by Leishmania chagasi. Clinical and Experimental Immunology 146, 303–311.

