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Abstract

Two important tools in seismic processing––Kirchhoff migration and demigration

operators––are the basis for many imaging problems solution. Due to high numerical

and computational requirements, the use of those tools for three dimensions are very

computation-costly. This fact has motivated us to investigate Kirchhoff migration oper-

ations for simpler types of media in order to provide faster results to be used as an

approximation for more realistic media. To obtain results with lower computational

effort, a convenient environment is the so called 2.5D situation, i.e., considering 3-D

wave propagation in a medium that does not vary in the horizontal direction perpendic-

ular to the seismic line. In this case, 2-D ray-tracing is sufficient to describe the 3-D

propagation effects, particularly geometric-spreading. In a medium where the parame-

ters depend only on the depth component (1-D situation), the imaging operations only

require the solution of semi-analytical integrals, which can be both precisely and imme-

diately implemented. For some particular cases of vertical velocity distributions,

approximate analytical formulas are devised for migration stacking-lines and weight

functions. Several imaging algorithms present very efficient computational performance

by using those models. Thus, it is possible to establish a set of cases which may be useful

for validating the implementation of more complex situations.
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1. Introduction

This work describes a class of results for stacking-lines and weight func-

tions for some vertical velocity models. This class of results is indeed a set
of terms of integral operators known in Geophysics as Kirchhoff-type inte-

grals. Included in these operators are the so called Kirchhoff migration oper-

ators, which have applications on several subsurface image construction

problems through seismic data processing. Multidisciplinary staff involving

geophysicists, geologists and reservoirs engineers use seismic data acquired

both on earth or sea surface for hydrocarbon reservoirs prospection and

monitoring. In order to obtain these data, mechanical waves are generated

and propagated towards the inner earth, being reflected back by discontinuity
interfaces of geological parameters. The soil vibration movement (water, pres-

sure) resulting from those reflected waves is recorded as a function of time by

a geophone system (hydrophones). By this process, the Geophysics role is to

rebuild a subsoil image from seismic data. For this purpose, a highly devel-

oped set of seismic processing methods are used (see [10]). One of the proc-

esses (or steps for the seismic processing sequence) to be used is the so

called migration. The migration aims to transform (migrate) seismic data into

image regions for the subsurface of interest using a subsoil seismic velocity
initial model (macro-model), which is built by previous processes. Therefore,

the migration is one of the most important seismic imaging operations. For

several imaging processes, integral operators are used. In geophysical litera-

ture, it is usual to attribute Kirchhoff�s name to those integrals. The reason

for this is the fact that the integrals are linked with the so called Kirchhoff

integral, which describes the wave propagation by models. Schneider in [9]

established the integral operator for Kirchhoff migration. Later it was ob-

served that this migration scheme is equivalent to the ‘‘stacking diffraction’’
earlier proposed by Rockwell in [7] using the Hagedoorn Maximal convexity

surfaces, which are currently known as diffraction surfaces or Huygens sur-

faces. Thus, both Rockwell in [7] and Schneider in [9] works state that stack-

ing data along the Huygens surfaces and placing the obtained results for each

corresponding in-depth point make it possible to produce an in-depth image

of the subsurface, if a velocity model and a source receptor are known. Blei-

stein in [2] and Schleicher in [8] present weight functions for the migration

operation, aiming to provide an image (migrated section) on which ampli-
tudes have been compensated by the geometrical-spreading factors. The

waves can be calculated using ray tracing (dynamically) in the velocity model

(see [3]). Due to high computational cost for Kirchhoff-type methods, simpli-
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fied representations are used in practice (see [4]). Within this context and

aware of discussions previously published on restricted medium, such as the

2.5D and vertically inhomogeneous medium (see [1]), new perspectives for

further investigations became evident. In other words, problems for those

media would have better chances to achieve similar performance in less time

and at a lower computational cost due to their special characteristics. For
those media, the terms appearing in the integrands of the Kirchhoff operators

have analytical formulas which are of prompt implementation. The purpose

of this work is to establish the migration stacking curves and weight functions

for Kirchhoff-type migration for some vertical velocity distribution models

(constant gradient slowness, constant gradient of quadratic velocity and con-

stant gradient of cubic velocity).
2. Migration integral

This section presents the migration integral and the expressions pertaining

to weight functions and migration stacking curves for a vertically inhomoge-

neous medium. Initially, the seismic register is supposed to be composed of

analytical traces (analytical means it is formed from the real register, source

signal, having the Hilbert transform as the imaginary part). These traces

are superpositions of events of primary reflections specified by U(n, t) =
U(s(n),g(n), t) and usually well described by zero-order ray theory, i.e.,

U(n, t) = U0(n)F(t�sR(n)) where sR is the transit time along the reflection of

the source–receptor pair in the specified seismic configuration through param-

eter n, localization, U0(n) is the amplitude factor and F(t) is the analytical

signal.

This representation is performed through a large sum of objects defined in a

set called the aperture set (domain constituted by the corresponding source-

and-receiver parameters). These objects are decomposed in a two-factor prod-
uct; the first is a weight function, the second elementary seismic reflections,

where inserted amplitudes are distributed in a seismic section along the diffrac-

tion surface (see [8]).

The 2.5D migration integral is given by (see [5]),

V ðmÞ ’ 1ffiffiffiffiffiffi
2p

p
Z a2

a1

dnW ð2:5DÞ
DS ðn;mÞ d1=2

dð�tÞ1=2
Uðn; tÞ

�����
t¼sDðn;mÞ

; ð1Þ

where m = (x,z) denotes the in-depth fixed point where the migration V(m)

shall be described, d1=2

dð�tÞ1=2 is the anti-causal time half-derivative of the input

traces U(n,t) = U0(n)F(t�sR(n)) recorded in the geophone (receiver) g(n), corre-

sponding to a punctual source s(n) (see [6]), W ð2:5DÞ
DS the migration weigh



1184 J.L. Martins / Appl. Math. Comput. 163 (2005) 1181–1195
function and sD the migration stacking curve. The asymptotical evaluation (1),

through the method of stationary phase (see [1]) along with the medium special

characteristics allows expressing the weight function for vertically inhomogene-

ous medium through the formula (see [5]),

W ð2:5DÞ
DS ðn;mÞ ¼ cðmÞLð2DÞ

s Lð2DÞ
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrs þ rgÞ

q
cos as

m

rs

þ cos ag
m

rg

� �
; ð2Þ

where c(m) is the speed in a known in-depth point m, ri, and ai
m, and Lð2DÞ

i ,

(i = s, g) the ray parameter, the angle between the ray and the depth in m

and the 2D geometric spreading, respectively, (see [5]).
The migration stacking-curve for this case is established through the

expression

sDðn;mÞ ¼ 1

c0

Z z

0

n2ðz0Þdz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðz0Þ � sin2as

0

q þ
Z z

0

n2ðz0Þdz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðz0 � sin2ag

0Þ
q

0
B@

1
CA: ð3Þ
3. Vertically inhomogeneous medium

The analytical expressions for the horizontal distance between sources-and-

receivers, for the ray parameter and transit time are, respectively (see [5]):

x� xi ¼ sin ai
0

Z z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðz0Þ � sin2ai

0

q ; ði ¼ s; gÞ; ð4Þ

ri ¼ c0

Z z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðz0Þ � sin2ai

0

q ; ði ¼ s; gÞ; ð5Þ

si ¼
1

c0

Z z

0

n2ðz0Þdz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðz0Þ � sin2ai

0

q ; ði ¼ s; gÞ: ð6Þ

It can be observed that for any medium with this type of velocity, a combina-

tion of expressions (4) and (5), shall give us

ri ¼
c0ðx� xiÞ

sin ai
0

ði ¼ s; gÞ: ð7Þ

On the other hand, the 2-D geometric spreading factor is given by

Lð2DÞ
i ¼ cos ai

0 cos ai
m

c0

Z z

0

n2ðz0Þdz0

ðn2ðz0Þ � sin2ai
0Þ

3=2

" #1=2

: ð8Þ
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3.1. Stacking curve

Finally, the expression which specifies the transit time may be written as (see

[5]),

sD ¼ 1

c0

Z z

0

n2ðz0Þdz0

ðn2ðz0Þ � sin2as
0Þ

1=2
þ
Z z

0

n2ðz0Þdz0

ðn2ðz0Þ � sin2ag
0Þ

1=2

" #
; ð9Þ

where as
0ða

g
0Þ is the angle between the z-axis and the ray connecting the source

s (receiver g) to the point m over the reflector, i.e., with the vertical compo-

nent z.
3.2. Weight function

The migration weight function for this medium type may be written as (see

[5])

W ð2:5DÞ
DS ðn;mÞ ¼ cðmÞLð2DÞ

s Lð2DÞ
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrs þ rgÞ

q
cos as

m

rs

þ cos ag
m

rg

� �
; ð10Þ

where c(m) represents the velocity at the depth point m, and the quantities ri,

cos ai
m, Lð2DÞ

i (i = s, g) are described by the expressions (5), (7) and (8),

respectively.
4. Analytical cases

In this section we intend to establish analytical expressions for stacking

curves weight functions for three specific cases where velocity depends on depth

(constant gradient slowness, constant gradient of quadratic velocity and con-

stant gradient of cubic velocity, see illustration in Fig. 1). These expressions

allow the migration integral to be analytically solved. Fig. 2–7 illustrate the
stacking curves and weight functions for these models.
5. Constant gradient slowness

Substituting the velocity model

1

cðzÞ ¼
1

c0

þ gz; ð11Þ



Fig. 1. Examples of three distributions: constant gradient of cubic velocity (dotted line), constant

gradient slowness (continuous line) and constant gradient of quadratic velocity (dotted-dashed

line).

Fig. 2. Migration stacking curve with slowness and constant gradient.
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in (5), (6) and (8), we have for i = s, g, respectively

x� xi ¼
sin ai

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2½1 þ gzc0
 þ g2c2ðx� xiÞ2

q
gc0

; ð12Þ



Fig. 3. Migration stacking curve for a constant gradient of quadratic velocity.

Fig. 4. Migration stacking curve for a constant gradient of cubic velocity.
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ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2½1 þ gzc0
 þ g2c2ðx� xiÞ2

q
g

; ð13Þ

and

L
2D

i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2ð1 þ gzc0Þ þ g2ðx� xiÞ2ðc2 � c2

0Þ
4

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1 þ gzc0Þ

p
gc0 cos ai

m

ffiffiffiffi
ri

p : ð14Þ



Fig. 5. Migration weight function for a constant gradient slowness.

Fig. 6. Migration weight function for a constant gradient of quadratic velocity.
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The expressions (12)–(14) are known as horizontal distances between sources-

and-receivers, the parameter taken along the sg ray and the geometric spread-

ing integrant term, respectively.

5.1. Stacking curve

The stacking curve is established by substituting the velocity distribution

(11) into integral Eq. (9). After some algebraic manipulation, it can be written

as



Fig. 7. Migration weight function for a constant gradient of cubic velocity.
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sDðn;mÞ ¼ ð2zþ gc0z
2Þ

2c0 ln½1 þ gzc0


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2½1 þ gzc0
 þ g2c2ðx� xsÞ2

q�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2½1 þ gzc0
 þ g2c2ðx� xgÞ2

q �
: ð15Þ

When writing (15) using expressions (12) and (13), we have

sDðn;mÞ ¼ gzðcþ c0Þðrs þ rgÞ
2cc0 ln½1 þ gzc0


: ð16Þ

The function (16) is the migration stacking curve with velocity distribution gi-

ven by (11), as observed in Fig. 2 for same depth points.

5.2. Weight function

The migration weight function is established by substituting expressions (13)

and (14) into Eq. (10). The result is given by

W DSðn; x; zÞ ¼
cP sP g

gc2
0

rs

rg

þ rg

rs

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rs

þ 1

rg

s
; ð17Þ

where

P i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ln2ð1 þ gzc0Þ
 þ g2ðx� xiÞ2ðc2 � c2

0Þ
4

q
ði ¼ s; gÞ:

The expression (17) is the migration weight function with velocity distribution
(11). This weight function is depicted in Fig. 5.
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6. Constant gradient of quadratic velocity

Substituting the velocity distribution

c2ðzÞ ¼ c2
0 þ gz; ð18Þ

into (5), (6) and (8), we produce,

x� xi ¼
2 sin ai

0½c3 � c3
0


3gc0 cos ai
m

; ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4½c3 � c3

0

2 þ 9g2c2ðx� xiÞ2

q
3g

; ð19Þ

and

L
2D

i ¼ ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g cos ai

0

p
c0

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 � c3

0

p ; ð20Þ

where

cos ai
m ¼ 2½c3 � c3

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4½c3 � c3

0
 þ 9g2c2ðx� xiÞ2
q ; ð21Þ

and

sin2ai
0 ¼

9g2c2
0ðx� xiÞ2

½4c3 � c3
0


2 þ 9g2c2ðx� xiÞ2
forði ¼ s; gÞ: ð22Þ

The expressions (19), (20) are known as horizontal distances between sources-

and-receivers, the parameter taken along the sg ray and the geometric spread-

ing integrant term, respectively.

6.1. Stacking curve

The stacking curve is established substituting the velocity model (18) into

integral (9). The result may be written as

sDðn;mÞ ¼ 3½rs þ rg

ðc2 þ cc0 þ c2

0Þ
: ð23Þ

The function (23) is the migration stacking curve with the velocity model (18).

This migration stacking curve is depicted in Fig. 3.

6.2. Weight function

The migration weight function is established by substituting expressions (19)
and (20) into Eq. (10). The result is given by
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W DSðn; x; zÞ ¼
cQsQg

3gc2
0

rs

rg

þ rg

rs

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rs

þ 1

rg

s
; ð24Þ

where

Qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½4ðc3 � c3

0Þ
2 þ 9g2ðx� xiÞ2ðc2 � c2

0Þ

4

q
i ¼ ðs; gÞ:

The expression (24) is the weight function for the velocity distribution (18).

This function is depicted in Fig. 6 for the same depth points.
7. Constant gradient of cubic velocity

We now substitute the velocity model

c3ðzÞ ¼ c3
0 þ gz ð25Þ

into (5), (6) and (8), which gives us

x� xi ¼
3 sin ai

0½c4 � c4
0


4gc0 cos ai
m

; ð26Þ

where

cos ai
m ¼ 3½c4 � c4

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9½c4 � c4

0

2 þ 16c2g2ðx� xiÞ2

q ; sin2ai
0 ¼

c2
0ðx� xiÞ2

r2
i

; ð27Þ

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9½c4 � c4

0

2 þ 16g2c2ðx� xiÞ2

q
4g

e; L
2D

i ¼
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffi
cos ai

0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc4 � c4

0Þ
p

2c0 cos ai
m

ffiffiffi
g

p

ð28Þ
with i = s, g.

7.1. Stacking curve

The stacking curve is established substituting the velocity model (25) into

integral (9). The result is given by

sDðn;mÞ ¼ 2½rs þ rg

½c2 þ c2

0

: ð29Þ

The function (29) is the migration stacking curve for the velocity model (25).

The migration stacking curve is depicted in Fig. 4.
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7.2. Weight function

The migration weight function is established substituting expressions (28)

into Eq. (10). The result is

W DSðn; x; zÞ ¼
cT sT g

4gc2
0

rs

rg

þ rg

rs

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rs

þ 1

rg

s
; ð30Þ

where

T i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½9ðc4 � c4

0Þ
2 þ 16g2ðx� xiÞ2ðc2 � c2

0Þ

4

q
ði ¼ s; gÞ:

The expression (30) is the migration weight function for the velocity distribu-

tion (25). Fig. 7 illustrates some depth points.

7.3. Comparison

Aiming to compare the obtained results, the stacking curves and weight

functions for the three velocity cases, which were object of analytical study

in the previous sections, are illustrated in Figs. 8–11. The results are compared

taking into account depth point at z = 1 km and velocity of 4 km/s for all cases.

It may be observed that, despite the relative difference in the analytical expres-

sions of the stacking curves, all results have nearly the same appearance
(hyperbolas).
Fig. 8. Comparison of the migration stacking curves for depth point z = 1 km for a constant

gradient slowness (continuous line), for a constant gradient of quadratic velocity (dotted-dashed

line) and for a constant gradient of cubic velocity (dotted line).



Fig. 9. Detailed view of box indicated in Fig. 8.
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Figs. 2–4 contemplate the migration stacking curves for constant gradient

slowness, constant gradient of quadratic velocity, and constant gradient of

cubic velocity at depth points z = 0.5, 0.7 and 1 km.

Figs. 5–7 illustrate weight functions for the three cases of velocity with ver-

tical dependence taking into account the same depth points previously used.

Fig. 8 shows that constant gradient of cubic velocity have shorter arrival
times, followed by constant gradient of quadratic velocity it also shows that

the constant gradient slowness presents longer times than the previous models.
Fig. 10. Comparison of the migration weight functions for a depth point at z = 1 km for a constant

gradient slowness (continuous line), for a constant gradient of quadratic velocity (dotted-dashed

line) and for a constant gradient of cubic velocity (dotted line).



Fig. 11. Detailed view of box indicated in Fig 10.
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Fig. 9 shows a detailed picture of this fact (the box indicated in Fig. 8 in a clo-

ser view). Fig. 10 illustrates the weight function for the three cases where veloc-
ity depends on depth point, with z = 1 km. Finally, Fig. 11 shows the zoomed

box depicted in Fig. 10. It has been also observed that constant gradient slow-

ness has lower weight, followed by constant gradient quadratic velocity. By its

turn, constant gradient cubic velocity has, at the same point, a higher weight.
8. Final considerations

In this work we have presented a class of results corresponding to migration

stacking curves and migration weight functions for some distribution of verti-

cal velocities. The velocity distributions were chosen in such way that the slow-

ness, quadratic and cubic velocities had constant vertical gradient. The choice

of these velocity distributions is due to the fact that they allow the use of ana-

lytic formulas for the quantities involved in ray tracing [1]. So, they also allow

analytic tracing of the imaging operation. For the numeric illustration, we have

used very similar velocity models for the three velocity distribution, i.e., veloc-
ities coincident at z = 0 (velocity of 3 km/s) and at z = 1 km (velocity of 4 km/s).

It is worth to observe that these models were chosen in such manner that these

characteristics may come to be similar. Hence, we hope the numeric implemen-

tations for the analytic formulas pertaining to weight functions and stacking

curves are also similar. This way, eventual errors in the development of formu-

las and its numeric implementation through the comparison of results for these

three special cases may be promptly observed. Obviously, in other models, the

numeric values of these analytical formulas may present significant differences,
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for example, if velocities were taken having the same vertical gradient at the

beginning of the interval, but thy diverge more and more as depth increases.

It is important to study these special cases, because they can be used to approx-

imate more complex velocity distributions. Because the respective analytical

formulas are known, faster calculation of the quantities corresponding to ray

tracing theory approximations of this kind are often used in practice, mostly
when the need of faster results at lower computational cost is a essential. In

these circumstances, the use of these velocity distributions often provides very

satisfactory results for the depth section being studied. It is worth to observe

the analytical formulas obtained can also be used to minimize the computa-

tional cost for dealing with more complex situations, as they may be sufficient

to represent any velocity distribution by a set of layers or cells for each one of

these distributions. Thus, by adjusting the boundary conditions to allow the

connection of these layers or cells, it is possible to create a ray tracing to deter-
mine the desired quantities, cell by cell, just by using known analytical

formulas.
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