A vibrational spectroscopic study of the arsenate mineral bayldonite (Cu,Zn)$_3$Pb(AsO$_3$OH)$_2$(OH)$_2$ – A comparison with other basic arsenates

Ray L. Frosta,*, Andrés Lópeza, Guilherme de Oliveira Gonçalvesb, Ricardo Scholzb, Yunfei Xia

aSchool of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
bGeology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil

Highlights
- We have studied a hydroxy arsenate of copper and lead of formula Cu$_3$Pb(AsO$_3$OH)$_2$(OH)$_2$.
- Raman and infrared bands are attributed to the vibrational modes of (AsO$_4$)$_3^-$ and (HOAsO$_3$)$_2^-$ units.
- A comparison is made with spectra of the other basic copper arsenate minerals.

Abstract
We have studied the vibrational spectra of the mineral bayldonite, a hydroxy arsenate of copper and lead of formula Cu$_3$Pb(AsO$_3$OH)$_2$(OH)$_2$ from the type locality, the Penberthy Croft Mine, St Hilary, Mount’s Bay District, Cornwall, England and relate the spectra to the mineral structure. Raman bands at 896 and 838 cm$^{-1}$ are attributed to the (AsO$_4$)$_3^-$ symmetric stretching mode and the second to the (AsO$_4$)$_3^-$ antisymmetric stretching mode. It is noted that the position of the symmetric stretching mode is at a higher position than the antisymmetric stretching mode. It is proposed that the Raman bands at 889 and 845 cm$^{-1}$ are symmetric and antisymmetric stretching modes of the (HOAsO$_3$)$_2^-$ units. Raman bands of bayldonite at 490 and 500 cm$^{-1}$ are assigned to the (AsO$_4$)$_3^-$ bending modes. Raman bands at 396, 408 and 429 cm$^{-1}$ are assigned to the (AsO$_4$)$_3^-$ bending modes. A comparison is made with spectra of the other basic copper arsenate minerals, namely cornubite, olivenite, cornwallite.

1. Introduction

The mineral bayldonite is a hydroxy arsenate of copper and lead of formula Cu$_3$Pb(AsO$_3$OH)$_2$(OH)$_2$ [1,2]. Some substitution of Cu by Pb and/or Ni may be found [3–5]. Bayldonite occurrence is related to oxidation zone in Cu–Pb–Zn deposits [6], associated with secondary phosphates and arsenates, like in the Black Pine mine (Philipsburg, Montana, USA) [7], Tsumeb (SW Africa), France (Verriere, Ardillats, Röhe, Rebassee, Ceilhes, Herault), in an uranium mine in England (Grampound Road, Cornwall) [8]. Bayldonite also occurs associated in barite lenses embedded in sandstones in metassomatic Pb–Zn deposits in Kayrakty, in central Kazakhstan [9] and in conglomerates related to quartz-barite veins of the Capitana mine, Chile [10]. In Australia, it was found in the Anticline prospect, 11 km west-southwest of Ashburton Downs homestead, Capricorn Range, Western Australia and at the Mt. Malvern mine, near Clarendon, South Australia. The mineral is found in many parts of the world [3,11–17] and is also supposedly formed by alteration of enargite (Lattanzi et al., and references therein [18]).
In recent studies, Ba[Co₅(VO₄)₂(OH)₂] with a regular Kagomé lattice was synthesised under low-temperature hydrothermal conditions and have a structure that is topologically related to bayldonite [19].

Arsenate minerals, such as bayldonite, are a major concern when related to environmental problems especially when it comes to mining and metallurgical wastes. In order to understand the solubility conditions, Magalhães and Silva (and references therein [5]) calculated the Gibbs energy of formation of bayldonite, at 298 K, as 1810.6 kJ mol⁻¹ and Vaca-Escobar et al. (and references therein [20]), proved that the formation of a highly-insoluble heavy metal arsenates (such as bayldonite) is the predominant immobilization mechanism, over adsorption processes.

The crystal structure of bayldonite was determined by different authors [8,9,21]. The mineral is monoclinic with point group 2/m. The cell data is Space Group: C2/c, a = 10.147(2) Å, b = 5.892(1) Å, c = 14.081(2) Å and z = 4. Bayldonite structure contains adjacent sheets of Cu²⁺ (Φ₈) octahedral and AsO₄ tetrahedra connected through irregular Pb⁺⁺ (Φ₆) polyhedron and hydrogen bonding, with (2 + 2 + 2)-distorted Cu²⁺ (Φ₆) octahedra, as a result of a dynamic Jahn-Teller effect [9,22]. Burns and Hawthorne and Sunmin de Portilla et al. showed that the empirical formula proposed by Guillemin [8] PbCu₃AsO₄(OH)₂, was incorrect and they proposed the formula Cu₄Pb(OH)AsO₄(OH)₂. [9,22]. Magalhães and Silva (and references therein [5]) refer to bayldonite crystallographic system as triclinic. According to Ghose and Wan [4], the structure of bayldonite consists of interconnected Cu octahedral layers and Pb arsenate polyedral–tetrahedral layers which alternate along the c axis, giving rise to complex pseudo-hexagonal layers parallel to (001).

Bayldonite is one of many basic copper minerals containing arsenate anion [6]. There exists a number of dark emerald green copper arsenate minerals, including olivenite [Cu₅(AsO₄)₂(OH)₂], cornwallite [Cu₂(AsO₄)₂(OH)₄] and clinoclase [Cu₁(AsO₄) OH] [23]. Each of these minerals occurs in the oxidized zones of copper deposits [6] and olivenite is by far the commonest [23]. The stability of the basic copper arsenate minerals is related to their redox potential and phase fields exist for the related minerals olivenite, cornubite, clinoclase and cornwallite. The mineral structure of olivenite is monoclinic, pseudo-orthorhombic with point group 2/m [24,25]. The mineral has a space group of P2₁/n. Cornallite is monoclinic with point group: 2/m and space group P2₁/a [24,26]. Clinoclase is also monoclinic with point group 2/m and space group P2₁/a [26,27]. Thus the structure of these three phase related minerals are related and should provide related spectra, which should only differ in terms of the intensity of the bands according to the relative mole ratios of Cu/As/OH.

The objective of this research is to report the Raman and infra-red spectra of bayldonite and to relate the vibrational spectra to the mineral structure.

2. Experimental

2.1. Samples description and preparation

The bayldonite sample studied in this work forms part of the collection of the Geology Department of the Federal University of Ouro Preto, Minas Gerais, Brazil, with sample code SAC-089. The studied sample is from the type locality, the Penberthy Croft Mine, St Hilary, Mount’s Bay District, Cornwall, England.

The sample was gently crushed and the associated minerals were removed under a stereomicroscope Leica MZ4. The bayldonite studied in this work occurs in association with siderite. Scanning electron microscopy (SEM) in the EDS mode was applied to support the mineral characterization.

Cornwallite and olivenite from the Penberthy Croft Mine, St Hilary, Cornwall, UK, were supplied by Mr. John Betterton. Samples of olivenite and clinoclase from the Tin Stope, Majuba Hill mine, Utah, USA, were purchased from the Mineralogical Research Company. All were checked for purity by powder X-ray diffraction and by SEM and microprobe methods. Negligible amounts of phosphorus or transition metals other than copper were found in the samples used for this spectroscopic study.

2.2. Scanning electron microscopy (SEM)

Experiments and analyses involving electron microscopy were performed in the Center of Microscopy of the Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (http://www.microscopia.ufmg.br).

Bayldonite crystals were coated with a 5 nm layer of evaporated carbon. Secondary Electron and Backscattering Electron images were obtained using a JEOL JSM-6360LV equipment. Qualitative and semi-quantitative chemical analyses in the EDS mode were performed with a ThermoNORAN spectrometer model Quest and were applied to support the mineral characterization.

2.2.1. Raman spectroscopy

The crystals of bayldonite and other basic copper arsenates were placed and oriented on the stage of an Olympus BHSM microscope, equipped with 10× and 50× objectives and part of a Renishaw 1000 Raman microscope system, which also includes a monochromator, a filter system and a Charged Coupled Device (CCD). Raman spectra were excited by a HeNe laser (633 nm) at a nominal resolution of 2 cm⁻¹ in the range between 100 and 4000 cm⁻¹. Details of the experimental procedure have been published [28–30]. The spatial resolution of the instrument is 1 μm. Thus, if crystals are less than this value, a mixture of crystals will be measured. However, the crystals of bayldonite used in this experiment were >1.1 μm.

Spectral manipulation such as baseline adjustment, smoothing and normalisation were performed using the Spectracalc software package GRAMS (Galactic Industries Corporation, NH, USA). Band component analysis was undertaken using the Jandel 'Peakfit' software package which enabled the type of fitting function to be selected and allows specific parameters to be fixed or varied accordingly. Band fitting was done using a Lorentz–Gauss cross-product function with the minimum number of component bands used for the fitting process. The Gauss–Lorentz ratio was maintained at values greater than 0.7 and fitting was undertaken until reproducible results were obtained with squared correlations of r² greater than 0.995.

3. Results and discussion

3.1. Chemical characterization

The SEM image of bayldonite sample studied in this work is shown in Fig. 1. Bayldonite crystals show a tetragonal form and the crystal aggregate forms a rosette habitus. Qualitative chemical composition shows a homogeneous phase, composed by Cu, Pb, C and As, with minor amounts of Al (Fig. 2). (The carbon is from the carbon coating).

3.1.1. Spectroscopy of the arsenate anion

The arsenate ion, (AsO₄)³⁻, is a tetrahedral unit with T₄ symmetry and exhibits four fundamental vibrations: (i) the symmetric stretching vibration ν₁ (A₁) (818 cm⁻¹), (ii) the doubly degenerate bending vibration ν₂ (E) (350 cm⁻¹), (iii) the triply degenerate antisymmetric stretching vibration ν₃ (F₂) (786 cm⁻¹), and (iv)
the triply degenerate bending vibration \(\nu_4 (F_2) \) (398 cm\(^{-1}\)). The \(F_2 \) modes are Raman and infrared active, whereas \(A_1 \) and \(E \) modes are Raman active only. According to Frost et al., [28–30], the \(\nu_1 (\text{AsO}_4^{3-}) \) vibration may coincide with the \(\nu_3 (\text{AsO}_4^{3-}) \) vibration. It should be noted that the wavenumber of the \(\nu_1 (\text{AsO}_4^{3-}) \) may be greater than that of the \(\nu_3 (\text{AsO}_4^{3-}) \), which is an inversion of the normal behavior shown by most tetrahedral ions, although such an inversion is not unique [31,32]. According to Myneni et al. [33], the \(T_d \) symmetry of (\text{AsO}_4)^{3-} unit is rarely preserved in minerals and synthetic compounds, because of its strong affinity to protonate, hydrate, and complex with metal ions. Such chemical interactions reduce (\text{AsO}_4)^{3-} tetrahedral symmetry to either \(C_{3v} / C_3 \) (corner sharing), \(C_{2v} / C_2 \) (edge-sharing, bidentate binuclear), or \(C_1 / C_s \) (corner sharing, edge-sharing, bidentate binuclear, multidentate). This symmetry lowering is connected with activation of all vibrations in infrared and Raman spectra and splitting of doubly and triply degenerate vibrations. Nine normal modes may be Raman and infrared active in the case of the lowest \(C_s \) symmetry [34].

3.1.2. Vibrational spectroscopy of bayldonite

The Raman spectrum over the 100–4000 cm\(^{-1}\) spectral range is shown in Fig. 3a. This figure demonstrates the position and relative intensity of the Raman bands. It is noted that there are large parts of the spectrum where little or no intensity is observed. Therefore, the spectrum is subdivided into sections based upon the type of vibration being studied. The infrared spectrum of bayldonite over the 500–4000 cm\(^{-1}\) spectral range is given in Fig. 3b. This spectrum may also be subdivided into sections based upon the type of vibration being studied.

The Raman spectrum of bayldonite in the 650–950 cm\(^{-1}\) spectral range is reported in Fig. 4a. The spectrum is characterised by two intense Raman bands at 896 and 838 cm\(^{-1}\). The first band is assigned to the \((\text{AsO}_4)^{3-} \nu_1 \) symmetric stretching mode and the second to the \((\text{AsO}_4)^{3-} \nu_3 \) antisymmetric stretching mode. Two broadish bands at 889 and 845 cm\(^{-1}\) are observed. The possible assignment of these bands is to the AsO symmetric and antisymmetric stretching modes of the \((\text{HOAsO}_3)^{2-}\) units. In the spectra reported here, the \(B_g \) modes occur at lower wavenumbers than the \(A_g \) modes. Normally the antisymmetric stretching modes occur at higher wavenumbers than the symmetric stretching modes, however sometimes when atoms of large atomic mass are involved; the position of the bands can be the other way around. In the Raman spectrum of bayldonite given in the RRUFF data base, two Raman bands are observed at 803 and 836 cm\(^{-1}\) (please see the figure given in the Supplementary information). A comparison of the results of the Raman spectrum of bayldonite with that of olivenite, cornwallite and clinoclase is given in Table 1.

For each basic copper arsenate mineral, two bands are observed in the 298 K spectra. Olivenite shows two bands at 853 and 820 cm\(^{-1}\), Cornwallite at 859 and 806 cm\(^{-1}\), cornubite at 815 and 780 cm\(^{-1}\) and clinoclase at 823 and 771 cm\(^{-1}\). By scale expansion of the Y-axis for olivenite, additional very weak bands are observed at 880 and 790 cm\(^{-1}\). The most intense band is assigned to the \(\nu_1 (A_s) \) symmetric stretching vibration. This assignment differs from that described by Sumin de Portilla [35]. In this work, the \(\nu_3 (F_2) \) mode was described as splitting into four components at
and bending vibration vibrational antisymmetric stretching mode. The series of bands at 316 and mode of arsenate. Infrared bands were observed by Griffith [37]. Bands at 880 and 790 cm\(^{-1}\) are attributed to the deformation modes of the hydroxyl units.

The Raman spectrum of bayldonite in the 250–550 cm\(^{-1}\) spectral range is displayed in Fig. 4a. The spectrum of this spectral region of bayldonite may be divided into three separate regions: (a) 450–650 cm\(^{-1}\), (b) 400–450 cm\(^{-1}\), and (c) 400–250 cm\(^{-1}\). It is proposed that these three regions define the \(v_4\) modes (b) \(v_2\) modes and (c) AsO bending and lattice modes. The \(v_2\) bending vibration should be common to the spectra of all the basic copper arsenates and should be intense. Raman bands of bayldonite are observed at 490 and 500 cm\(^{-1}\) with a low intensity shoulder at 514 cm\(^{-1}\) and are assigned to the (AsO\(_4\)\(^3-\)) \(v_2\) bending modes. Raman bands for bayldonite are noted at 496, 408 and 429 cm\(^{-1}\) and are assigned to the (AsO\(_4\)\(^3-\)) \(v_2\) bending modes. The series of bands at 316 and 330 cm\(^{-1}\) with both higher and lower wavenumber shoulders are assigned to metal oxygen stretching vibrations (CuO and PbO).

A comparison may be made with the other basic copper arsenate minerals. In the Raman spectrum of olivenite, a series of bands are observed at 632, 590, 554 and 513 cm\(^{-1}\). These bands are attributed to the \(v_4\) mode of arsenate. Infrared bands were observed by Sumin de Portilla [35] at 492, 452 and 400 cm\(^{-1}\) with a fourth component predicted to be below 400 cm\(^{-1}\). No comparison can be made between the infrared data and these Raman results although a closer comparison with the Raman results for this spectral region of cornwallite exists. The Raman spectrum of cornwallite displays bands at 603, 536, 509, 446 and 416 cm\(^{-1}\). For clinoclase Raman bands are observed at 607, 539, 509, 446 and 460 cm\(^{-1}\), which are more in harmony with the Raman data for olivenite. Reduction in site symmetry would be the cause of additional bands in this region. A band at 545 cm\(^{-1}\) was observed in the infrared spectrum of olivenite and it was suggested that this was a CuO stretching vibration [35]. However a band in this position seems too high for this type of vibration. We propose that the bands in these positions are attributable to the \(v_4\) vibrational modes and the number of bands is due to the loss of degeneracy.

Table 1

<table>
<thead>
<tr>
<th>Raman/cm(^{-1})</th>
<th>Published data [14,17]/cm(^{-1}) Infrared</th>
<th>Published data [14,17]/cm(^{-1}) Raman</th>
<th>Cornwallite</th>
<th>Clinoclase</th>
<th>Bayldonite</th>
<th>Suggested assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3464</td>
<td>3580 [14]</td>
<td></td>
<td>3411</td>
<td>3559</td>
<td>Not observed</td>
<td>OH stretches</td>
</tr>
<tr>
<td>3437</td>
<td>3440</td>
<td></td>
<td>3350</td>
<td>3339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>957</td>
<td>950 [14]</td>
<td></td>
<td>962</td>
<td>983</td>
<td>962</td>
<td>OH deforms</td>
</tr>
<tr>
<td>853</td>
<td>860</td>
<td>880 [17]</td>
<td>877</td>
<td>850</td>
<td>896</td>
<td>(v_2) & (v_3)</td>
</tr>
<tr>
<td>819</td>
<td>790</td>
<td>790</td>
<td>806</td>
<td>832</td>
<td>838</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td></td>
<td></td>
<td>763</td>
<td>783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>346</td>
<td></td>
<td></td>
<td>363</td>
<td>348</td>
<td>500</td>
<td>(v_2) & (v_4)</td>
</tr>
<tr>
<td>335</td>
<td>324</td>
<td>310</td>
<td>330</td>
<td>308</td>
<td>429</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>396</td>
</tr>
<tr>
<td>1082</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overtones or impurity</td>
</tr>
<tr>
<td>1037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
With vibrational spectroscopic studies of these minerals, two questions arise: (a) the position of the hydroxyl deformation vibration and (b) the position of the ν_2 band. Because of the atomic mass of As, it is predicted that the bending modes will be below 400 cm$^{-1}$. Thus, the region from around 270 to around 360 cm$^{-1}$ is the region where this vibration is to be observed. In the Raman spectrum of olivenite three bands at 350, 346 and 335 cm$^{-1}$ are observed and we assign these bands to the ν_2 bending modes. For cornwallite, three bands are observed at 363, 347 and 330 cm$^{-1}$ in the 298 K spectrum. These results are consistent with those of olivenite. For clinoclase, Raman bands are observed at 348, 318 and 308 cm$^{-1}$.

The Raman spectrum of bayldonite in the 100–250 cm$^{-1}$ spectral region is shown in Fig. 5b. The spectrum is quite broad and various component bands may be resolved. The Raman spectrum of bayldonite in the OH stretching region was not able to be collected. The infrared spectrum of bayldonite in the 2200–3600 cm$^{-1}$ spectral range is displayed in Fig. 6a. The spectrum is quite broad and shows complexity. It is proposed that these bands are due to the stretching vibration of the OH units. The observation of two hydroxyl-stretching vibrations means that there are two distinct and different hydroxyl units in the basic copper arsenate minerals. The difference between the peak positions of olivenite and cornwallite is related to the strength of the hydrogen bond formed between the hydroxyl unit and an adjacent arsenate unit. This bonding is much stronger in cornwallite as indicated by the lower wavenumber position of the hydroxyl-stretching vibrations. One interpretation is that the higher wavenumber vibration is ascribed to the As–OH vibration and the lower wavenumber hydroxyl stretching frequency to the As–OH–O vibration.

4. Conclusions

We have studied the vibrational spectra of the mineral bayldonite, a hydroxy arsenate of copper and lead of formula Cu$_3$Pb(AsO$_3$OH)$_2$(OH)$_2$ from the Rapid Creek sedimentary phosphatic iron formation, northern Yukon. Raman bands at 896 and 838 cm$^{-1}$ are assigned to the $(\text{AsO}_4)^{3-}$ ν_1 symmetric stretching mode and the second to the $(\text{AsO}_4)^{3-}$ ν_3 antisymmetric stretching mode. Raman bands at 889 and 845 cm$^{-1}$ are symmetric and antisymmetric stretching modes of the $(\text{HOAsO}_3)^{2-}$ units. Raman bands of bayldonite at 490 and 500 cm$^{-1}$ are assigned to the $(\text{AsO}_4)^{3-}$ ν_4 bending modes. Raman bands for bayldonite are noted at 396, 408 and 429 cm$^{-1}$ and are assigned to the $(\text{AsO}_4)^{3-}$ ν_2 bending modes. A comparison is made with spectra of the other basic copper arsenate minerals, namely cornubite, olivenite, and cornwallite.

The application of Raman microscopy to the study of closely related mineral phases has enabled their molecular characterisation...
using their Raman spectra, thus enabling the rapid identification of phases in complex mixtures of secondary copper arsenates from the oxidized zones of base metal ore bodies.

Acknowledgements

The financial and infra-structure support of the Discipline of Nanotechnology and Molecular Science, Science and Engineering Faculty of the Queensland University of Technology, is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. The authors would like to acknowledge the Center of Microscopy at the Universidade Federal de Minas Gerais (http://www.microscopia.ufmg.br) for providing the equipment and technical support for experiments involving electron microscopy. R. Scholz thanks to CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 306287/2012-9).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.molstruc.2013.10.030.

References