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This article reviews the role of hidden symmetries of dynamics in the study of physical systems, from
the basic concepts of symmetries in phase space to the forefront of current research. Such symmetries
emerge naturally in the description of physical systems as varied as nonrelativistic, relativistic, with or
without gravity, classical or quantum, and are related to the existence of conserved quantities of the
dynamics and integrability. In recent years their study has grown intensively, due to the discovery of
nontrivial examples that apply to different types of theories and different numbers of dimensions.
Applications encompass the study of integrable systems such as spinning tops, the Calogero model,
systems described by the Lax equation, the physics of higher-dimensional black holes, the Dirac
equation, and supergravity with and without fluxes, providing a tool to probe the dynamics of
nonlinear systems.
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I. INTRODUCTION

The role of symmetries in physics is ubiquitous. They can
appear either as a useful tool to describe special systems and
configurations or as a fundamental building block of a theory
itself. The standard model of particle physics and general
relativity are two examples of the latter type, as well as their
supersymmetric extensions. String theory with its consider-
able amount of symmetries and dualities is another. In
particular, the usefulness of the idea of symmetry is that it
can be fruitfully applied to diverse areas, such as relativistic
and nonrelativistic theories, classical and quantum, and to
different types of systems within each of these areas.
Symmetries have been successfully used in physics so

much that a stage has been reached where a more refined
strategy might be needed. Take the example of general
relativity. There the most common meaning of the word
symmetry is associated with that of isometry, that is a
spacetime diffeomorphism that leaves the metric invariant.
A one-parameter continuous isometry is linked to the exist-
ence of Killing vectors. Therefore, much of the activity in the
area related to using symmetries to solve Einstein’s equations
or the equations of motion of other systems has been directed
toward finding metrics admitting Killing vectors. Such activ-
ity has probably already reached its maturity and it is unlikely
that any genuinely new insights will emerge from it. However,
there are other types of symmetries that might be used. Instead
of looking at the symmetries of a spacetime, the isometries,
one can consider a physical system evolving in a given
spacetime (whose metric for simplicity we assume here to
be fixed, in the limit of zero backreaction), and analyze the
symmetries of the dynamics of such system. By symmetries of
the dynamics we mean here, for a classical system, trans-
formations in the whole phase space of the system such that
the dynamics is left invariant. For a quantum system instead
we mean a set of phase space operators that commute with the
Hamiltonian or with the relevant evolution operator and
transform solutions into solutions. In the literature such
symmetries are often referred to as hidden symmetries.
This review focuses on this class of symmetries. In earlier

literature these have been known and discussed although not
systematically; see, for example, Havas (1975), Woodhouse
(1975), and Crampin (1984). However, in recent years interest
in this subject has been renewed due to the discovery of
the nontrivial example of hidden symmetries in higher-
dimensional rotating black hole metrics (Frolov and
Kubizňák, 2007). It has been shown that these metrics admit
special tensors such as Killing vectors, Killing tensors, and
Killing-Yano tensors, which will be discussed in detail in
Sec. II. Such tensors are responsible for the fact that several
physical systems in these spacetimes present hidden sym-
metries of the dynamics and as a consequence their equations
of motion are separable and integrable. Such known systems
are geodesic motion, the Klein-Gordon equation, the Dirac

equation, stationary strings, tensor gravitational perturbations,
and the bosonic sector of the supersymmetric spinning particle
(Frolov, Krtouš, and Kubizňák, 2007; Krtouš, Kubiznák,
Page, and Frolov, 2007; Kunduri, Lucietti, and Reall, 2006;
Krtouš, Kubizňák, Page, and Vasudevan, 2007; Kubizňák and
Frolov, 2008; Page et al., 2007; Oota and Yasui, 2010;
Cariglia, Krtouš, and Kubizňák, 2011b; Kubizňák and
Cariglia, 2012). It is not clear at this stage if the same kind
of behavior applies to spin 1 fields and the remaining
gravitational perturbations. Since the appearance of the black
hole metrics, other examples of systems with hidden sym-
metries of the dynamics have been discovered providing
metrics with new nontrivial Killing tensors of order ≥ 3

(Gibbons et al., 2011; Galajinsky, 2012; Cariglia and
Gibbons, 2014).
When there are enough independent isometries and hidden

symmetries a system is integrable. There are known examples
of integrable classical systems in the literature, such as, for
example, special spinning tops, the Calogero model, the
inverse square central force motion (Kepler problem and
classical hydrogen atom), the problem of geodesic motion on
an ellipsoid (first discussed by Jacobi in 1839), the Neumann
model, the motion in the presence of two Newtonian fixed
centers, the quantum dot, and the spinning particle, which will
be discussed in this review. In the case of higher-dimensional
black holes the integrability is related to the existence of a
nondegenerate principal Killing-Yano tensor. Spacetimes with
hidden symmetries generated by degenerate principal Killing-
Yano tensors have been discussed by Houri, Oota, and Yasui
(2009). They have a richer structure and, on the other hand, in
general do not have enough isometries or hidden symmetries
to guarantee full integrability of the related dynamical
systems.
When considering quantum mechanical systems, the con-

cept of hidden symmetries can still be applied fruitfully. Now
one is looking for operators defined on phase space that
commute with the appropriate evolution operator, for exam-
ple, the Hamiltonian for the Schrödinger equation, the wave
operator in the case of the Klein-Gordon equation, or the Dirac
operator for the Dirac equation. However, in the quantum
mechanical case the classical hidden symmetries can be
anomalous. In the case of the Klein-Gordon equation, for
example, it is possible to construct operators using Killing
tensors, when present, such that in the classical limit they
provide hidden symmetries for the theory of the scalar
particle. However, an anomalous term arises proportional to
a contraction of the Killing tensor and the Ricci tensor of the
spacetime. In some cases the anomaly will be zero, for
example, if the metric is icci flat or if the Killing tensor
can be written in terms of a Killing-Yano tensor, but in the
general case the classical hidden symmetry will be broken by
quantum effects. This phenomenon should be contrasted with
the remarkable fact that when the symmetry operators can be
built using Killing-Yano tensors, for example, in the case just
mentioned or in the case of the Dirac equation, then there are
no quantum anomalies. When considering generalized
Killing-Yano tensors in the presence of flux fields the situation
is different: already at the classical level it is not always
possible to build symmetries that generalize those in the case
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without flux, and at the quantum mechanical level there can be
anomalies (Kubizňák, Warnick, and Krtouš, 2011).
There is an interesting connection between hidden sym-

metries and special geometries. For finite-dimensional
Hamiltonian systems in the absence of forces other than
gravity hidden symmetries are associated typically with special
tensors: Killing and Killing-Yano. In the presence of scalar and
vector potentials or other flux fields like torsion, for example,
but also for more general fields, it is possible to find suitable
generalized Killing and Killing-Yano tensors that are associ-
ated with hidden symmetries and conserved quantities in the
theory of systems evolving in the spacetime in the presence of
flux (van Holten, 2007; Houri et al., 2010a, 2012; Kubizňák,
Warnick, and Krtouš, 2011). Manifolds equipped with specific
G structures host Killing-Yano tensors and the associated
hidden symmetries of the dynamics (Papadopoulos, 2008,
2012). Also, Killing-Yano tensors are linked to hidden sym-
metries of the supersymmetric theory of the spinning particle
(Gibbons, Rietdijk, and van Holten, 1993; Kubizňák and
Cariglia, 2012). It is worth mentioning the Eisenhart-Duval
lift procedure, which allows one to start from an n-dimensional
Riemannian spacetime and associate with it an (nþ 2)-
dimensional Lorentzian one. Correspondingly nonrelativistic
theories described on the former in the presence of scalar and
vector flux can be associated with relativistic theories on the
latter, and their hidden symmetries studied. In the case of the
Dirac equation, for example, it is possible to give a geometric
interpretation of the fact that some hidden symmetries in the
presence of flux are anomalous (Cariglia, 2012).
We point out that there exists another approach to the

subject of hidden symmetries of the dynamics, which orig-
inates in the seminal work of Sophus Lie. Lie developed his
theory of continuous groups in order to find symmetries of
differential equations that transform solutions into solutions.
The transformations act on both dependent and independent
variables. Lie’s great insight was that, even if the full group
transformations can in principle be complicated and nonlinear,
if the symmetry group is continuous then one can look for
linear transformations that reflect an appropriate type of
infinitesimal transformation. As such, the infinitesimal sym-
metry conditions are amenable to being solved using standard
methods. The theory of Lie groups applied to differential
equations can be cast in a form appropriate for Hamiltonian
systems that is equivalent to the results we present. In this
review, however, we have chosen to adopt from the beginning
the language of Hamiltonian systems and phase space which
we think physicists and applied mathematicians might broadly
consider as familiar territory. Examples of books on the
subject of Lie theory applied to differential equations are
Stephani and MacCallum (1989) and Olver (2000).
The review is organized as follows. In Sec. II we discuss

hidden symmetries in the context of finite-dimensional,
classical Hamiltonian systems. We introduce these systems
from the point of view of symplectic geometry in phase space,
discussing canonical transformations and conserved charges.
Conserved charges in phase space that are polynomial in the
momenta are associated with Killing tensors and with canoni-
cal transformations that preserve the Hamiltonian. We discuss
the formalism of Lax pairs, its relation to integrability, and its
covariant formulation. Then we present a number of examples

of systems of different kinds that display hidden symmetries:
relativistic, nonrelativistic, with or without the presence of
gravity, as well as the supersymmetric spinning particle.
Section III is an introduction to the theory of intrinsic

characterization of the separation of variables for the
Hamilton-Jacobi equation. The Hamilton-Jacobi equation is
presented and then the role of Killing vectors, rank-2 Killing
tensors, and their conformal counterparts in the theory of
separation of variables are discussed.
In Sec. IV we present the Eisenhart-Duval geometric lift, an

important geometric construction that is ideal to discuss the
full group of symmetries of the dynamics. The lift naturally
allows embedding a nonrelativistic Hamiltonian system with
scalar and vector potentials into a relativistic geodesic system.
Therefore it can be used to apply known results from the
theory of geodesic motion to more complicated systems with
interactions. The lift was originally presented in the 1920s by
Eisenhart, then was rediscovered in the 1980s by Duval and
collaborators, and since then has been applied to a variety of
different settings, as will be discussed.
In Sec. V we discuss several types of special geometries

associated with hidden symmetries. The main example is that
of rotating Kerr-NUT-(A)dS (anti–de Sitter) black holes in
higher dimension, where NUT refers to a type of charge which
is topological in nature and can be thought of as a gravitational
magnetic charge. For these the special geometry is generated
by a principal Killing-Yano tensor: we describe the tower of
special tensors generated from it, and how it is possible to
associate with these tensors hidden symmetries for a range of
physical systems, such as the geodesic and Hamilton-Jacobi
equations, Klein-Gordon and Dirac equations, or the bosonic
sector of the spinning particle. We then describe other special
geometries: geometries with torsion, admitting generalized
Killing-Yano tensors and their application in supergravity
theories, including a local classification of such metrics when
they admit a generalized principal Killing-Yano tensor. Another
type of special geometries is those associated with some
G structures, for which Killing-Yano tensors can be found.
In Sec. VI we discuss the extension of the concept of hidden

symmetries to quantum systems. Some examples are
described in the case of the Schrödinger equation, such as
the isotropic harmonic oscillator and the hydrogen atom,
which is the quantum mechanical version of the classical
Kepler problem. Then we deal with the Klein-Gordon
equation and the Dirac equation, the main example and
application being that of their integrability in the higher-
dimensional rotating black hole metrics.
Section VII presents recent results of the study of dynami-

cal symmetries for systems that can be described using
geodesic motion on some Lie group. We consider the specific
physical system represented by the Toda chain. A different
type of dynamical symmetries arises when coupling constants
in the system are promoted to dynamical variables, and link
same energy states of theories in the same family but with
different values of the coupling constants. Position dependent
couplings are also admitted. There is a natural relation
between the Lie group geodesic motion and the Eisenhart
lift geodesic motion: the higher-dimensional Lie group geo-
desic motion turns out to be a generalized Eisenhart lift of the
Toda chain.
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We conclude the review in Sec. VIII with a summary and a
final commentary.
There has been much work recently in the area of hidden

symmetries and it would be quite difficult to give a complete
and fully balanced account of all the activity. While we have
made efforts to do so, we are aware that this review is shaped
in its form by our own personal trajectory in the field, and that
we might have overlooked some important related results, for
which we offer our apologies. We have aimed at including a
bibliography comprehensive enough to allow the reader to
make links with most of the existing results.

A. What hidden symmetries are and what they are not

One of the chief objectives of this review is to clarify the
notion of hidden symmetries, in particular, what distinguishes
them from “ordinary symmetries.” As seen in the next section,
dynamical symmetries are naturally described in terms of
phase space: they are transformations in phase space that map
solutions into solutions. As is well known, the phase space
description of a dynamical system requires a minimal amount
of structure: a symplectic manifold, with a symplectic form
and a Hamiltonian function, and this leaves a great deal of
freedom in the form of a coordinate free formulation.
Therefore, the first natural question one might ask is what
distinguishes an ordinary symmetry from a hidden one, and
whether the distinction is of a fundamental nature or reflects a
human point of view or a historical context. In brief, the
answer is that in the absence of further structures really all
symmetries of dynamics are equivalent, and there is no
difference between “apparent” and “hidden” symmetries:
all of them are described infinitesimally by flows in phase
space that leave invariant the symplectic structure and the
Hamiltonian.
However, there is a notable case that arises frequently in

physical applications, where a distinction arises between
ordinary and hidden symmetries: this is when phase space
is the cotangent bundle of some well-defined configuration
space. Typically there will be a metric defined on configu-
ration space. Also, but this is not a crucial element, in these
cases a dynamical system that is widely studied is that for
which the Hamiltonian function is quadratic in the momenta:
such systems are known in the literature as natural
Hamiltonians, and the metric defines what the quadratic part
of the Hamiltonian is. For a cotangent bundle we can define
ordinary symmetries as those that admit conserved quantities
that are linear in the momenta; they generate transformations
that are reducible to configuration space, and for natural
Hamiltonians these are associated with Killing vectors and
isometries of the metric. Thus ordinary symmetries are
manifest symmetries in the sense that they are associated
with transformations that do not depend on the momenta, that
act on some configuration space variables, and that are not
genuine phase space transformations. In other words, for
ordinary symmetries the phase space transformations can be
lifted from a set of simpler transformations defined on a
configuration space, a subspace of the whole phase space.
Hidden symmetries will instead be defined as those whose
conserved quantities are of higher order in the momenta. Such
transformations are genuine phase space transformations and

cannot be obtained from the lift of a configuration space
transformation. It is in this sense that one can say that ordinary
and hidden symmetries are different. While it is possible that
for a given symplectic manifold the definition of a configu-
ration space, when it exists, is not unique, this seems rather
unlikely. One would need inequivalent global Darboux charts.
Even in this case, the statement that in one such global chart
there is a conserved quantity that is linear in the momenta is
equivalent to having a symmetry transformation on a sub-
manifold with commuting variables, and this is a coordinate
independent condition.
It should be remarked that hidden symmetries really are

symmetries of the Hamiltonian, in the sense that they are
canonical transformations where both positions and momenta
change, and that leave the Hamiltonian function unchanged.
Similar statements, with appropriate modifications, can be
made for the quantum mechanical case. We also briefly
mention that hidden symmetries are not the same thing as
some types of partial symmetries appearing in quantum field
theory, for example, in the standard model, sometimes called
accidental symmetries. These are not full symmetries, while
hidden symmetries are, and they are broken by quantum
effects moving along the renormalization group flow, while
hidden symmetries can exist from a purely classical point
of view.

II. FINITE-DIMENSIONAL CLASSICAL HAMILTONIAN
SYSTEMS

A. Hamiltonian systems

1. Symplectic geometry

There are several books that discuss the topic of
Hamiltonian systems and symplectic geometry. In the follow-
ing we refer mainly to Abraham and Marsden (1978), Arnol’d
(1989), and Babelon, Bernard, and Talon (2003).
In classical mechanics the possible configurations of a

physical system are described by a generalized phase space,
given mathematically by a symplectic manifold, and the
dynamics is obtained from a Hamiltonian function.
A symplectic manifold is given by a pair fP;ωg, whereP is

a manifold and ω∶ TP × TP → R is an antisymmetric two-
form, the symplectic form, that satisfies the following
properties:

(i) it is nondegenerate detω ≠ 0, and
(ii) it is closed dω ¼ 0.
Local coordinates on P are given by fyag, with a ¼

1;…; 2n since property (i) implies that P is even dimensional,
and we can write ω ¼ 1

2
ωabdya ∧ dyb. Using property (ii), by

Darboux’s theorem locally we can find coordinates
ya ¼ ðqμ; pνÞ, μ; ν ¼ 1;…; n, such that ω ¼ dpμ ∧ dqμ.
There is a natural volume form on P:

η ¼ ð−1Þn
n!

ω∧n; (1)

where ∧ n represents the n-fold wedge product, and therefore
P must be orientable. We adopt the following convention for
the wedge product: when it acts on a p form α and a q form β it
is defined so that in components
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ðα ∧ βÞa���b��� ¼
ðpþ qÞ!
p!q!

α½a���βb����: (2)

In fact, any intermediate exterior power ω∧p of ω, 1 < p < n,
is a closed 2p form. Let ωab be the inverse components of
ω, ωabωbc ¼ δac .
A Hamiltonian function is a functionH∶ P → R. It induces

a dynamics on P according to the following first-order
evolution equation:

dya

dλ
¼ ωab∂bH; (3)

or in terms of the local q; p coordinates

dqμ

dλ
¼ ∂H

∂pμ
;

dpν

dλ
¼ − ∂H

∂qν . (4)

In fact, for any phase space function f∶ P → R it is possible
to define a symplectic gradient which is a vector with
components

Xa
f ¼ ωab∂bf: (5)

Then the equation of motion (3) can be written as

dya

dλ
¼ Xa

H: (6)

XH is the vector representing the Hamiltonian flow, and it is
tangent to the trajectory in P associated with the dynamical
evolution of the system. Then for any phase space function f
the derivative along the Hamiltonian flow is given by

df
dλ

¼ ∂f
∂ya

dya

dλ
¼ XHðfÞ ¼ ff;Hg: (7)

In particular, H itself is conserved along the evolution (6),
dH=dλ ¼ 0, and can be set to a constant H ¼ E, the energy
associated with a particular trajectory.
On the ring of smooth functions on P it is possible to define

a bilinear operation, the Poisson bracket, that acts according to

ðf; gÞ ↦ ff; gg ¼ ωab∂af∂bg ¼ XgðfÞ ¼ −XfðgÞ; (8)

and endows it with a Lie-algebra structure, the Poisson
algebra, as the Poisson brackets are antisymmetric and satisfy
Jacobi’s identity. In terms of local coordinates

ff; gg ¼ ∂f
∂qμ

∂g
∂pμ

−
∂f
∂pμ

∂g
∂qμ : (9)

There is an antihomomorphism from the Poisson algebra of
functions in P to the Lie algebra of symplectic gradients:

½Xf; Xg� ¼ −Xff;gg: (10)

This can be seen as, for any smooth function h,

½Xf; Xg�ðhÞ ¼ ðXfXg − XgXfÞðhÞ
¼ ffh; gg; fg − ffh; fg; gg ¼ −ffg; fg; hg
− fh; ff; ggg ¼ −Xff;ggðhÞ; (11)

where the Jacobi identity has been used in the intermediate
passage.
A canonical transformation is a diffeomorphism

Φ∶ P → P, y ↦ y0 ¼ ΦðyÞ, such that ω is preserved under
the pullback action of Φ:Φ�ðωÞ ¼ ω. This means that under Φ
a Hamiltonian system is mapped into another Hamiltonian
system, since the equation of motion (3) is left invariant in
form, as well as the Poisson brackets (8). However, the new
Hamiltonian system will be in general different from the
original one with a HamiltonianH0 such thatH ≠ Φ�ðH0Þ. It is
worth noticing that under a canonical transformation all
exterior powers of ω are also preserved.
An infinitesimal canonical transformation generated by a

vector fieldX is a canonical transformation that maps points of
P to points along the integral lines of X. The attribute
“infinitesimal” arises from the fact that generating integral
lines of X from X is a procedure that is well defined at least
locally if X is sufficiently regular. Then ω is preserved under
the infinitesimal transformation if LXω ¼ 0, where L is the
Lie derivative. We can rewrite the Lie derivative on forms by
introducing the hook operation, or inner derivative. This is an
action of a vector v on any antisymmetric form α. In
components

ðv⌟αÞa1���ap−1 ¼ vbαba1���ap−1 : (12)

For a scalar φ, we set v⌟φ ¼ 0. Then it is possible to show that
for any p form α the Lie derivative acts as

LXα ¼ X⌟dαþ dðX⌟αÞ: (13)

Applying this to LXω ¼ 0 and using the fact that ω is closed
implies that at least locally X⌟ω ¼ df for some function f on
P, or in coordinates

Xaωab ¼ ∂bf: (14)

Multiplying times ωbc gives Xc ¼ ωbc∂bf or

X ¼ X−f: (15)

This shows that symplectic gradients are in one-to-one
correspondence with infinitesimal canonical transformations.

2. Dynamical symmetries

Suppose there is a phase space function C∶ P → R that
Poisson commutes with H, fH;Cg ¼ 0. Then according to
Eq. (7) C is conserved along the Hamiltonian flow and is a
constant of motion. On the other hand, C is associated with an
infinitesimal canonical transformation whose tangent vector is
XC, and the condition fH;Cg ¼ 0 has the meaning that the
Hamiltonian is left invariant under the transformation. Such
kind of canonical transformation is called a dynamical
symmetry, since it transforms the original Hamiltonian system
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into itself, and therefore transforms a trajectory under Eq. (6)
into a different trajectory associated with the same system and
with the same value of the energy E.
If there are two such conserved quantities C1 and C2,

then using Jacobi’s identity also C3 ¼ fC1; C2g will be a
conserved quantity. Using Eq. (10) this means that
½XC1

; XC2
� ¼ −XC3

. Thus the infinitesimal canonical trans-
formations associated with conserved quantities present a Lie
algebra structure, and hence define the local action of a group
D, the dynamical symmetry group.
A recurring case of symplectic manifold is that of the

cotangent space over a base manifold M, P ¼ T�M. M can
be thought of as a configuration space, with local coordinates
qμ. If there is a metric g ¼ ð1=2Þgμνdqμ ⊗ dqν defined onM,
then among all the dynamical symmetries one special class is
given by isometries. These are generated by constants of
motion C such that the metric g is invariant along the C flow,
LXC

ðgÞ ¼ 0. Isometries are associated with Killing vectors on
the base manifold. Dynamical symmetries that are not iso-
metries are typically called hidden symmetries. There exist
nontrivial examples of systems exhibiting dynamical sym-
metries that are not isometries, and these are the main object of
study of this review. In Sec. II.A.3 we present some examples
of dynamical symmetries that can be associated with special
tensors.

3. Special tensors

In this section we consider the case where P is a cotangent
bundle P ¼ T�ðMÞ, where M is a manifold with a metric g.
We see that if M admits special classes of tensors then
conserved quantities can be defined for the free particle or the
spinning particle.

a. Killing vectors

A Killing vector is a base manifold vector KμðqÞ∂=∂qμ,
satisfying

∇ðμKνÞ ¼ 0; (16)

where ∇ is the Levi-Cività connection. In the presence of a
Killing vector the system of a free particle with Hamiltonian
H ¼ ð1=2mÞgμνpμpν admits the conserved quantity
C ¼ Kμpμ. This holds whether the system is relativistic or
not, and whether or not the metric gμν represents a gravitational
field. In the presence of a potential VðqÞ such that
LKV ¼ 0 then C is also conserved for the Hamiltonian
H0 ¼ ð1=2mÞgμνpμpν þ V.
The infinitesimal transformation generated by Xa

C is
given by

δqμ ¼ ϵKμ; δpν ¼ −ϵ ∂K
μ

∂qν pμ; (17)

and the Hamiltonian transforms as

δH ¼ −
ϵ

m
gμνpμ

∂Kρ

∂qν pρ þ
ϵ

2m
∂ρðgμνÞKρpμpν (18)

¼ −
ϵ

2m
∇μðKρÞpμpρ ¼ 0; (19)

where we used ∇g ¼ 0 and ∇ðμKρÞ ¼ 0. The projection of the
transformation (17) on M is an isometry, a transformation
well defined on configuration space. This is the most widely
known case of dynamical symmetry.

b. Killing-Stäckel tensors

A Killing-Stäckel tensor is a rank-r symmetric tensor
defined on M,

KðqÞ ¼ 1

r!
Kðμ1���μrÞðqÞ ∂

∂qμ1 ⊗ � � � ∂
∂qμr ;

such that

∇ðμKρ1���ρrÞ ¼ 0: (20)

This equation is a generalization of Eq. (16). If M admits a
Killing-Stäckel tensor then the system of a free particle with
Hamiltonian H ¼ ð1=2mÞgμνpμpν admits the conserved
quantity C ¼ Kμ1���μrpμ1 � � �pμr. As in the previous example,
this holds whether the system is relativistic or not, and
whether or not the metric gμν represents a gravitational field.
We consider here a more general Hamiltonian
ð1=2mÞgμνpμpν þ VðqÞ. The infinitesimal transformation
associated with C is given by

δqμ ¼ ϵrKμν1���νr−1pν1 � � �pνr−1 ;

δpν ¼ −ϵ
∂Kμ1���μr

∂qν pμ1 � � �pμr ;
(21)

and the Hamiltonian transforms as

δH ¼ ϵ

2m
∇μKρ1…ρppμpρ1…pρp

þ ϵrKμν1…νp−1pν1…pνp−1∂μV: (22)

This will be zero if Kμν1…νp−1∂μðVÞ ¼ 0.
Since both terms in Eq. (21) are proportional to p, the

projection of the transformation on the base manifold M is
zero, different from the case of isometries: this transfor-
mation is a genuine phase space transformation that cannot
be obtained from a configuration space transformation
(Cariglia, Krtouš, and Kubizňák, 2012). It transforms trajec-
tories into trajectories of the same energy E, but different from
an isometry in general it will change their shape, since δg ≠ 0
and the distance between any two points on a trajectory will in
general not be preserved.
Killing-Stäckel tensors form a close algebra with respect to

the Schouten-Nijenhuis bracket. For a rank p such tensor Kp
and, respectively, a rank q one Kq, this is defined as

fCKp
; CKq

g ¼ ½Kp;Kq�μ1���μpþq−1
SN pμ1 � � �pμpþq−1

: (23)

A generalization of Eq. (20) is given by

∇ðμKρ1���ρrÞ
ðcÞ ¼ gðμρ1Φρ2���ρrÞ; (24)
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where by consistency Φ is related to the divergence of KðcÞ
and derivatives of its traces. A tensor KðcÞ satisfying Eq. (24)
is called a conformal Killing tensor. In the specific case where
r ¼ 2, we can always ask for KðcÞ to be traceless since we can
add to it the term agμν for any constant a. Then Φ is given
simply by

Φμ ¼ 2

nþ 2
∇λKðcÞλμ: (25)

Repeating the considerations seen above for a Killing tensor
K, it can be seen that the quantity ~C ¼ Kμ1���μr

ðcÞ pμ1 � � �pμr will
now be conserved for null geodesics, using Eq. (24).

c. Conformal Killing-Yano tensors

A conformal Killing-Yano tensor is an r form defined on
M, h ¼ ð1=r!Þh½μ1���μr�dqμ1 � � � dqμr , such that

∇λhμ1���μr ¼ ∇½λhμ1���μr� þ
r

n − rþ 1
gλ½μ1∇ρhjρjμ2���μr�: (26)

Introducing the degree operator π that acts on an inhomo-
geneous form α ¼ P

pα
ðpÞ as πα ¼ P

p¼0pα
ðpÞ, we can write

Eq. (26) without using components as

∇Xh ¼ 1

π þ 1
X⌟dh −

1

n − π þ 1
X♭ ∧ δh; (27)

for any vector X, where X♭ is the dual form X♭ ¼ Xμdqμ. It is
worth noticing that when r ¼ 1 this provides a different
generalization of the Killing equation (16). When h is co-
closed, δh ¼ 0, h is called a Killing-Yano form (Yano, 1952),
and when it is closed, dh ¼ 0, it is called a closed conformal
Killing-Yano form (Kashiwada, 1968; Tachibana, 1969).
Equation (27) is invariant under Hodge duality, interchanging
Killing-Yano and closed conformal Killing-Yano tensors.
If ω ¼ ωμdqμ is a one form, we also define its dual vector
ω♯ ¼ ωμ∂μ.
Given a Killing-Yano p form h a direct calculation using

the defining property Eq. (26) shows that the tensor

Kμν ¼ hμλ1���λp−1h
νλ1���λp−1 (28)

is a Killing-Stäckel tensor. Similarly, h is a conformal Killing-
Yano tensor, then Eq. (28) will give a conformal Killing
tensor.
If M admits a conformal Killing-Yano tensor then the

system of a free spinning particle admits a conserved quantity
that is also a generator of a supersymmetry transformation that
is different from the canonical one, generated by the vielbein.
In that case it is also possible to construct a symmetry operator
for the Dirac equation on M. The spinning particle system is
discussed separately in Sec. II.B.8, and the Dirac equation in
Sec. VI.D.
Krtouš et al. (2007) showed that closed conformal Killing-

Yano tensors form an algebra under the wedge product. In
particular, closed conformal Killing-Yano tensors of rank 2
that are nondegenerate are called principal conformal Killing-
Yano tensors. They are crucial for the integrability of various

systems in four- and higher-dimensional black hole space-
times; see Sec. V.B.2.

4. The covariant Hamiltonian formalism

As we see in the examples of Sec. II.B, several of the known
dynamical systems with nontrivial dynamical symmetries
display conserved quantities that are polynomial in the
momenta of the type

C ¼
Xm
i¼0

1

i!
Tμ1���μi
ðiÞ ðqÞpμ1 � � �pμi ; (29)

where P ¼ T�ðMÞ and the qμ are coodinates on the base
manifold. In particular, C is a scalar under coordinate changes
q0 ¼ q0ðqÞ, which can be absorbed by a canonical trans-
formation with

p0
μðq; pÞ ¼ pν

∂qν
∂q0μ .

Then the quantities TðiÞ are tensors defined on M, and the
theory is coordinate invariant. However, this is not evident in
the standard form of the Poisson brackets (9). To this extent
we define a natural Hamiltonian to be a phase space function
of the form

H ¼ 1
2
gμνðqÞΠμΠν þ VðqÞ; (30)

where V is a scalar potential, Πμ ¼ pμ − eAμ are the gauge-
covariant momenta (Jackiw and Manton, 1980; Duval and
Horváthy, 1982; Horváthy and Ngome, 2009; Ngome, 2009;
Visinescu, 2011), e is a charge, and Aμ is a vector potential.
For these types of Hamiltonians manifest invariance can be
displayed by writing the brackets in a covariant form
(Gibbons, Rietdijk, and van Holten, 1993; van Holten,
2007; Visinescu, 2010)

ff;ggP ¼Dμf
∂g
∂Πμ

−
∂f
∂Πμ

DμgþeFμνðqÞ
∂f
∂Πμ

∂g
∂Πν

; (31)

where Fμν ¼ ∂μAν − ∂νAμ is the field strength and the
covariant derivatives are defined by

Dμf ≔
∂f
∂qμ

����
Π
þ Γμν

λΠλ
∂f
∂Πν

: (32)

If C is rewritten using the covariant momenta

C ¼
Xm
i¼0

1

i!
~Tμ1���μi
ðiÞ ðqÞΠμ1 � � �Πμi ; (33)

then Dμ acts as

Dμf ¼
Xm
i¼0

1

i!
∇μ

~Tν1���νiΠν1 � � �Πνi ; (34)

where ∇ is the Levi-Cività covariant derivative acting on
tensors. Similar equations for covariant derivatives of phase
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space functions have been used by Cariglia et al. (2013b) in
order to give a geometrical description of Lax pairs associated
with covariantly constant phase space tensors.
The condition fC;Hg ¼ 0 can be rewritten as a set of

generalized Killing equations for the tensors ~TðiÞ (van Holten,
2007; Visinescu, 2010; Cariglia et al., 2014):

~Tν
ð1ÞV;ν ¼ 0;

~Tð0Þ;μ ¼ e ~Tν
ð1ÞFμν þ ~Tð2Þμ

νV ;ν;

~TðiÞðμ1���μi;μiþ1Þ ¼ e ~Tðiþ1Þðμ1���μi
νFμiþ1Þν

þ 1

iþ 1
~Tðiþ2Þμ1���μiþ1

νV ;ν; i ≥ 1:

(35)

In particular, the highest rank tensor ~TðmÞ will be a Killing
tensor. This allows one to systematically search for conserved
quantities that are polynomial in the momenta.

5. Integrable systems and Lax pairs

A classical Hamiltonian system is called a Liouville
integrable if there are n globally defined, independent func-
tions Fμ, μ ¼ 1;…; n, that mutually Poisson commute,
fFμ; Fνg ¼ 0, and the Hamiltonian H is a function of the
Fμ. By independent we mean that almost everywhere on P the
set of one forms fdFμ; μ ¼ 1;…; ng spans an n-dimensional
space. A typical case is where F1 ¼ H and there are n − 1
mutually commuting constants of motion Cμ, μ ¼ 2;…; n.
For these systems the solution of the equations of motion can
be obtained by a finite number of function inversions and
integrations. Although the maximum number of independent
Poisson commuting functions is n, if the system is integrable
and there are some extra independent constants of motion then
the system is called superintegrable. The maximum number
of independent constants of motion is 2n − 1. An integrable
system with 2n − 1 independent constants of motion is called
maximally superintegrable, an example being the Kepler
problem discussed in Sec. II.B.3.
Liouville’s theorem shows explicitly how to obtain

the solution for an integrable system, by constructing a
canonical transformation ðqμ; pνÞ ↦ ðΨμ; FνÞ, where
ðqμ; pνÞ are the local coordinates of Darboux’s theorem, with
ω ¼ dpμ ∧ dqμ ¼ dFμ ∧ dΨμ. Once it is shown that the
transformation exists then the new equations of motion
become trivial:

dFμ

dλ
¼ fFμ; Hg ¼ 0;

dΨμ

dλ
¼ fΨμ; Hg ¼ ∂H

∂Fμ
¼ ΩμðFÞ;

(36)

where ΩμðFÞ are constant functions. The solutions are
FμðλÞ ¼ Fμð0Þ and ΨμðλÞ ¼ Ψμð0Þ þ Ωμλ.
Given a data set f ¼ ffμ; μ ¼ 1;…; ng, let Pf be the set

in P such that Fμðq; pÞ ¼ fμ. If the functions F are suffi-
ciently regular and since they are independent, this is an n-
dimensional submanifold of P. Assuming sufficient regularity
on Pf it is possible to invert the relation Fμðq; pÞ ¼ fμ to give
pμ ¼ pμðq; fÞ, and then extending this to pμ ¼ pμðq; FÞ. On

Pf we consider a reference point p0, and for any other point
p ∈ Pf we define the function

Sðq; FÞ ¼
Z

p

p0

pμðq; fÞdqμ: (37)

The path used for integration can be deformed as long as Pf

does not have trivial cycles since ωjPf
¼ 0. In fact, typically

there will be nontrivial cycles and Pf is topologically an
n torus. This is related to the possibility of defining action-angle
variables; more details can be found in Babelon, Bernard, and
Talon (2003). To see that ωjPf

¼ 0 first notice that the tangent
space to Pf is spanned by the set of vectors fXFμ

g. This is
because XFμ

ðFνÞ ¼ fFν; Fμg ¼ 0. For the same reason
ωðXFμ

; XFν
Þ ¼ XFμ

ðFνÞ ¼ 0, which proves that ωjPf
¼ 0.

Then Eq. (37) is a well-defined, in general multivalued,
function defined on P, whose partial derivatives relative to
q give the function pðq; fÞ. We define a new variable

Ψμ ¼ ∂S
∂Fμ

: (38)

Since

dS ¼ pμdqμ þΨμdFμ; (39)

d2S ¼ 0 implies that ω ¼ dFμ ∧ dΨμ, and the transformation
ðq; pÞ → ðΨ; FÞ is canonical. Thus the dynamics of the system
is known using Eq. (36), which requires the inversion pμ ¼
pμðq; FÞ and the integration (37). This completes the proof of
Liouville’s theorem. It should be noted that, sinceS is in general
multivalued, the variables Ψμ will also be multivalued, the
variation over a nontrivial cycle being a function of F
variables only.
A recent tool used in the study of integrable systems is that

of a Lax pair. A Lax pair consists of two matrices L and M
taking values in P such that the equations of motion imply the
Lax pair equation

dL
dλ

¼ ½L;M�: (40)

There exist two formulations of the Lax pair method. The
stronger formulation requires that Eq. (40) implies the
equations of motion, in which case the Lax pair formulation
can be used as a starting point of the description of the
dynamical system. A weaker formulation does not require
equivalence of Eq. (40) and the equations of motion. In both
cases, the Lax pair matrices satisfying Eq. (40) play an
important role in the study of integrability since they allow
a simple construction of constants of motion. Indeed, the
solution of Eq. (40) is of the form LðλÞ ¼ GðλÞLð0ÞG−1ðλÞ,
where the evolution matrix GðλÞ is determined by

dG
dλ

¼ −MG: (41)

Therefore, if IðLÞ is a function of L invariant under con-
jugation L → GLG−1, then I(LðλÞ) is a constant of motion.
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All such invariants can be generated from traces of various
matrix powers of L:

trðLjÞ: (42)

A particular Lax pair may not yield all the constants of
motion. However, in such a case it is often possible to upgrade
the initial Lax pair so that the upgraded one already yields all
the conserved observables of the dynamical system. Since the
dimensionality of the Lax matrices is not fixed and the
Lax pair equation is linear, two Lax pairs can be easily
combined by their direct sum. Another useful method of
producing a parametric class of Lax pairs is to introduce so-
called spectral parameters; see, e.g., Babelon, Bernard, and
Talon (2003).
Unfortunately, in general there is no constructive procedure

to find a Lax pair for the given problem or even to determine
whether the Lax pair (in its stronger formulation) exists.
Moreover, the solution is in no sense unique and even the
dimensionality of the matrices may vary. However, when the
Lax pair exists, it can be a very powerful tool for dealing with
the conserved quantities.
When P ¼ T�M and a metric g is defined on M then it is

possible to define a covariant derivative that acts on tensors
that take value on T�M and have configuration space indices.
Any such tensor with two indices that is conserved gives rise
to an appropriate Lax pair and is called a Lax tensor. A similar
construction can be given for antisymmetric tensors with
indices on the Clifford bundle of M, for any number of
indices, yielding a Clifford Lax tensor. Killing-Yano forms on
M and closed conformal Killing-Yano forms, if they exist,
give rise to Clifford Lax tensors and, depending on their rank,
to Lax tensors (Cariglia et al., 2013b).

B. Applications and examples

1. Spinning tops

In this section we consider two examples of motions of
spinning tops with hidden symmetries of the dynamics: the
Goryachev-Chaplygin and the Kovalevskaya tops.
We begin describing the kinetic energy of a spinning top

using Euler angles and SOð3Þ left-invariant metrics. Let G be
the center of mass of the top, and P be the pivot point which
we take to be the center of coordinates. We consider a body-
fixed frame S̄, with coordinates ~rF, and an inertial frame S,
with coordinates ~rI , both with the center in P. Then each point
of the top moves along a trajectory t ↦ ~rIðtÞ ¼ OðtÞ~rF, where
OðtÞ ∈ SOð3Þ. A change of the inertial frame ~rI → L~rI ,
L ∈ SOð3Þ, induces a left multiplication OðtÞ ↦ LOðtÞ,
and similarly a change of the fixed frame ~rF → R−1~rF, R ∈
SOð3Þ induces a right multiplication OðtÞ ↦ OðtÞR. The
kinetic energy is invariant under rotations of the inertial axes
and therefore it should be possible to write it in terms of the
left-invariant forms of SOð3Þ:

σ1 ¼ sin θ cosψdϕ − sinψdθ;

σ2 ¼ sin θ sinψdϕþ cosψdθ;

σ3 ¼ dψ þ cos θdϕ;

(43)

where ϕ ∈ ½0; 2π½ θ ∈ ½0; π½ and ψ ∈ ½0; 2π½ are the
Euler angles associated with O. In fact, the kinetic energy
is given by

1
2
gij _xi _xj; (44)

where xi ¼ ðϕ; θ;ψÞ and gij is the left-invariant metric on
SOð3Þ:

g ¼ I1σ21 þ I2σ22 þ I3σ23; (45)

with Ij being the principal moments of inertia relative to the
pivot point P. It is also possible to show that the gravitational
potential energy is given by

V ¼ mgðxðc.m.Þ
F sin θ cosψ þ yðc.m.Þ

F sin θ sinψ

þ zðc.m.Þ
F cos θÞ; (46)

where m is the mass, g is the gravitational acceleration,
ðxðc.m.Þ

F ; yðc.m.Þ
F ; zðc.m.Þ

F Þ are the coordinates of the center of mass
G, relative to P, in the body-fixed frame.
In the specific case of the Goryachev-Chaplygin top the

system can be obtained by constraining the dynamics of a
heavy top whose principal moments of inertia are given by
I1 ¼ I2 ¼ 1 ¼ 4I3, and for which the center of gravity lies in
the plane determined by the two equal moments of inertia, so

that we can take xðc.m.Þ
F ¼ 0 ¼ zðc.m.Þ

F , yðc.m.Þ
F ¼ const. The

unconstrained Lagrangian is given by

L ¼ 1
2
ð_θ2 þ sin2θ _ϕ2Þ þ 1

8
ð _ψ þ cos θ _ϕÞ2 − α2 sin θ sinψ ;

(47)

where α is a constant. The momenta are given by

pϕ ¼ sin2θ _ϕþ 1
4
cos θð _ψ þ cos θ _ϕÞ;

pθ ¼ _θ;

pψ ¼ 1
4
ð _ψ þ cos θ _ϕÞ;

(48)

from which the Hamiltonian is

H ¼ 1

2
p2
θ þ 2p2

ψ þ 1

2

�
pϕ

sin θ
− cot θpψ

�
2

þ α2 sin θ sinψ

¼ 1

2
ðM2

1 þM2
2 þ 4M2

3Þ þ α2 sin θ sinψ ; (49)

where in the last line we introduced the moment maps for left
actions of SOð3Þ:

M1 ¼ − sinψpθ þ
cosψ
sin θ

pϕ − cosψ cot θpψ ;

M2 ¼ cosψpθ þ
sinψ
sin θ

pϕ − sinψ cot θpψ ;

M3 ¼ pψ :

(50)

The coordinate ϕ is cyclic and hence pϕ is a constant of
motion. The Hamiltonian of the Goryachev-Chaplygin top is
obtained by setting pϕ ¼ 0,
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HGC ¼ 1
2
ðcot2θ þ 4Þp2

ψ þ 1
2
p2
θ þ α2 sin θ sinψ : (51)

The following remarkable property holds: the function

K ¼ M3ðM2
1 þM2

2Þ − α2M2x3 (52)

obeys

fH;Kg ¼ α2pϕM1: (53)

Hence, for pϕ ¼ 0, i.e., for the Goryachev-Chaplygin top,
Eq. (52) is a constant of motion and reads

KGC ¼ pψp2
θ þ cot2θp3

ψ

þ α2 cos θðsinψ cot θpψ − cosψpθÞ: (54)

The second type of top considered in this section is
Kovalevskaya’s top. In this case I1 ¼ I2 ¼ 1 ¼ 2I3, and

yðc.m.Þ
F ¼ 0 ¼ zðc.m.Þ

F , xðCMÞ
F ¼ const. The Lagrangian is

LK ¼ 1
2
ð_θ2 þ sin2θ _ϕ2Þ þ 1

4
ð _ψ þ cos θ _ϕÞ2 − α2 sin θ cosψ :

(55)

Again ϕ is ignorable and the Hamiltonian

HK ¼ 1

2

�
p2
θ þ

�
pϕ

sin θ
− cot θpψ

�
2

þ 2p2
ψ

�
þ α2 sin θ cosψ

¼ 1

2
ðM2

1 þM2
2 þ 2M2

3Þ þ α2 sin θ cosψ (56)

is constant. Kovalevskaya found another constant which is
quartic in the momenta (Whittaker, 1917; Borisov,
Kholmskaya, and Mamaev, 2001) and reads

KK

�
p2
θ þ

�
pϕ

sin θ
− cot θpψ

�
2
�
2

þ 4α4sin2θ

− 2α2 sin θ

�
eiψ

�
pϕ

sin θ
− cot θpψ þ ipθ

�
2

þ c:c:

�
: (57)

2. Calogero model

The Calogero model describes a set of n particles on a line,
interacting pairwise with an inverse square potential. It was
first discussed by Calogero (1969a, 1969b, 1971); see also
Calogero (2001, 2008). It is superintegrable, both classically
(Wojciechowski, 1983) and quantum mechanically
(Kuznetsov, 1996; Gonera, 1998). It was applied in a wide
range of settings, including black hole physics (Gibbons and
Townsend, 1999), gauge theory (Gorsky and Nekrasov, 1994),
and fractional statistics (Polychronakos, 1989).
The Hamiltonian is given by

H ¼ 1

2

Xn
i¼1

p2
i þ g2

X
i<j

1

ðxi − xjÞ2
; (58)

where xi and pj are canonical coordinates and g is the
common coupling constant, and the particles’ mass has been
set to unity.

The model is conformal: one can define the quantities

K ¼ 1

2

X
i

q2i ; (59)

D ¼ −
1

2

X
i

piqi; (60)

and check that they generate the conformal algebra slð2;RÞ

fK;Hg ¼ −2D; (61)

fD;Hg ¼ −H; (62)

fD;Kg ¼ K: (63)

Moser (1975) and Barucchi and Regge (1977) showed that
the system is integrable by displaying the Lax pair:

Ljk ¼ pjδjk þ ð1 − δjkÞ
ig

qj − qk
; (64)

Mjk ¼ g

�
δjk

X
l≠j

1

ðqj − qlÞ2
− ð1 − δjkÞ

1

ðqj − qkÞ2
�
: (65)

Therefore it is possible to build n integrals of motion
Ij ¼ ð1=j!ÞTrLj, among which I1 is the total momentum
and I2 is the Hamiltonian. Regge and Barucchi showed that
the Ij are in involution. These integrals of motion are
inhomogeneous polynomial in the momenta of order j.
Galajinsky (2012) used the fact that for the Eisenhart lift of
the Calogero model these conserved quantities lift to con-
served quantities that are homogeneous and of higher order in
the momenta; see Eqs. (156) and (158). These consequently
are in correspondence with Killing tensors, according to the
results of Sec. IV.A.2.
There also exist n − 1 extra conserved quantities that make

the system superintegrable. These are built as follows: one
first defines

Nj ¼
1

j
fK; Ijg; (66)

and notes that

fD; Ijg ¼ −1
2
jIj: (67)

From this and the Jacobi identity it follows that

fNj;Hg ¼ Ij: (68)

Then the quantities

~Ij ¼ Nj − tIj (69)

are conserved. In particular, the n − 1 quantities ~IiIj − ~IjIi do
not depend explicitly on time and are functionally indepen-
dent (Wojciechowski, 1983). The ~Ij also lift and give Killing
tensors of the Eisenhart lift metric.
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3. Kepler problem

The Kepler problem describes a classical particle of massm
in three-dimensional space, in a central potential that is
proportional to the inverse square of the distance from the
origin of the coordinates. It is one of the main examples of
solvable Hamiltonian systems: it is superintegrable, having the
maximum number 5 of functionally independent constants of
motion, its group of dynamical symmetries is well known and
has been discussed from several points of view, as well as the
quantum version of the problem. For all these reasons it is a
typical textbook example, and there are books exclusively
dedicated to its study, a good example being the one by
Cordani (2003). The conserved Laplace-Runge-Lenz vector
of the Kepler problem, that is not linear in the momenta, has
been (re)discovered and discussed by various authors in the
past and using different points of view, including Hermann,
Bernoulli, Laplace, Gibbs, and Jacobi. Hulthén noticed that
for bound orbits the Poisson brackets of the angular momen-
tum and the Laplace-Runge-Lenz vector form a Lie algebra
isomorphic to that of Oð4Þ (Hulthén, 1933), and Fock (1935)
showed, analyzing the quantum problem in the context of the
nonrelativistic hydrogen atom, that there exists a dynamical
symmetry group Oð4Þ that acts on bound states mixing
orbitals with the same energy but different angular momen-
tum, and that this can be explained by the fact that the
Schrödinger equation in momentum space is the stereographic
projection of the spherical harmonics on the sphere.
Subsequently Bargmann (1936) showed that the constants
of motion of the Kepler problem generate Fock’s group of
transformations. Rogers (1973) explicitly constructed the
finite dynamical symmetry transformations for negative
energy trajectories, using an eight-dimensional enlarged phase
space and rewriting the dynamics and the transformations
using quaternions. Prince and Eliezer (1981) showed that the
dynamical symmetries associated with the Laplace-Runge-
Lenz vector can be obtained from Lie’s theory of differential
equations.
The Hamiltonian of the Kepler problem is given by

Hð~r; ~pÞ ¼ p2

2m
−
k
r
: (70)

Trajectories of negative energy are given by ellipses, zero
energy ones by parabolas, and positive energy ones by
hyperbolas. The angular momentum

~L ¼ ~r × ~p (71)

and the Laplace-Runge-Lenz vector

~A ¼ ~p × ~L −mk
~r
r

(72)

are conserved vectors. Note that ~A is not linear in the
momentum. In fact, Duval, Gibbons, and Horváthy (1991)
showed that the Kepler problem can be lifted to null geodesic
motion in five dimensions, and that Eq. (72) lifts to a five-
dimensional conserved quantity that is homogeneous and
second order in the momenta, generated by a conformal

Killing tensor as described in Sec. II.A.3. This is an example
of the Eisenhart-Duval lift, described in detail in Sec. IV.
Earlier Crampin (1984) noted that the Laplace-Runge-Lenz
vector can be written using a Killing-tensor in three dimen-
sions. The equations he wrote are a special case of those that
appear for the Eisenhart non-null lift of Sec. IV.B.

~L and ~A satisfy the following algebra:

fLi; Ljg ¼
X3
k¼1

ϵijkLk;

fLi; Ajg ¼
X3
k¼1

ϵijkAk;

fAi; Ajg ¼ −2mH
X3
k¼1

ϵijkLk:

(73)

If we restrict one to solutions with zero energy H ¼ 0, the

bracket of A with itself is zero and the algebra of ~L and ~A is
that of Oð3Þ⋉R3. For solutions with H ¼ E ≠ 0 one can

rescale ~A according to

~B ¼
~Affiffiffiffiffiffiffiffiffiffiffiffi

2mjEjp .

Then the Poisson algebra becomes

fLi; Bjg ¼
X3
k¼1

ϵijkBk; (74)

fBi; Bjg ¼ −sgnðEÞ
X3
k¼1

ϵijkLk; (75)

where we defined sgnðxÞ ¼ x=jxj for x ≠ 0, sgnð0Þ ¼ 0. The
algebra is that of Oð4Þ for E < 0, and Oð1; 3Þ for E > 0.

According to the results discussed in Sec. II.A.1, ~L and ~A
generate infinitesimal canonical transformations of the kind

δxi ¼ ϵfxi; fg; δpi ¼ ϵfpi; fg; (76)

where f is any of the components of ~L or ~A and ϵ is an

infinitesimal parameter. Since ~L and ~A are conserved, the
transformations will change a trajectory into a trajectory of the
same energy. For those not accustomed to dynamical sym-
metry transformations one can find in Cariglia and Silva
Araújo (2013) a pedagogical discussion of the finite form of
the transformations of the trajectories for the Kepler problem.
Ellipses are transformed into ellipses, parabolas into parab-
olas, and the same for hyperbolas, but their shape and their
eccentricity change, apart from the eccentricity of parabolas
which is fixed. Subtle variations of Kepler’s three laws for
different but related dynamical problems are pedagogically
discussed by MacKay and Salour (2014).

4. Motion in two Newtonian fixed centers

We use here the same notation used in Sec. II.B.3. The
problem of motion in two Newtonian fixed centers was first
studied by Euler in 1760, and then received contributions
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along time by several scientists, including Lagrange,
Liouville, Laplace, Jacobi, Le Verrier, Hamilton, Poincaré,
and Birkhoff. It has since being referred to as Euler’s three
body problem. A detailed review of the Euler problem and
related integrable systems is given by Mathúna (2008). It has
applications both in Newtonian gravity and in the study of a
one-electron diatomic molecule in the adiabatic approxima-
tion (Dalgarno and McCarroll, 1956). As an example, Pauli
studied molecular hydrogen in his doctoral dissertation using
the classical solutions of the Euler problem.
The Hamiltonian is given by

Hð~r; ~pÞ ¼ p2

2m
−
k1
r1

− −
k2
r2

; (77)

where r21;2 ¼ x21 þ x22 þ ðx3 ∓ aÞ2, and 2a > 0 is the distance
between the two fixed centers, which we suppose lying on the
x3 axis with the origin of coordinates in their midpoint.
Since the potential is axisymmetric, p3 is a conserved

quantity. One can qualitatively expect that the problem will
admit close orbits by considering the simpler case of the
Kepler problem. There we know that the inverse distance
potential admits elliptic orbits such that the source of the
potential lies in one of the foci. It is also known that during
motion the position of the foci does not change, associated
with the conservation of the Laplace-Runge-Lenz vector. So
placing two separate sources of potential in the two foci one
should still have the same type of orbit, according to a theorem
due to Legendre and known by the name of Bonnet. Doing
this still leaves the freedom of changing the ellipse’s eccen-
tricity. As a matter of fact a third, nontrivial conserved
quantity that is quadratic in momenta exists for the problem
and is given by (Coulson and Joseph, 1967)

K ¼ L2 þ a2p2
3 − 2am

�
k1z
r1

−
k2z
r2

�
: (78)

K generates nontrivial dynamical symmetries. The functions
fH; p3; Kg are independent and mutually Poisson commute,
and therefore the system is integrable. The solutions can be
written in terms of elliptic integrals using confocal conic
coordinates (Jacobi, 1969).
The problem was recently and independently rediscovered

by Will (2009). Will studied the motion of a nonrelativistic
particle in a generic axisymmetric Newtonian potential, asking
what type of distribution of mass or charge can give rise to a
third conserved quantity in addition to the energy and the
component of the angular momentum along the symmetry
axis. The answer is that the potential must be that of the Euler
problem. Interestingly, Will found that the multipole moments
of such potential satisfy the same relations of the electric
moments associated with the no-hair theorem in the Kerr
geometry. Interestingly, the general relativistic analog of the
two-fixed centers, the Bach-Weyl solution (Bach and Weyl,
2012), does not possess such second order in momenta
conserved quantity, thus making even more significant the
existing result for the Kerr metric.

5. Neumann model

The Neumann model (Neumann, 1859) describes a particle
moving on a sphere Sn−1 subject to harmonic forces with
different frequencies ωi, i ¼ 1;…; n, in each direction. We
assume the frequencies to be ordered as ω2

1 < ω2
2 < � � � < ω2

n.
The model is integrable and there are n − 1 independent
conserved quantities in involution that are quadratic in the
momenta.
The equations of motion are most easily written starting

with the Lagrangian version of the theory. One can employ a
Lagrange multiplier Λ to write the Lagrangian function as

L ¼ 1

2

Xn
i¼1

ð_x2i − ω2
i x

2
i Þ þ

Λ
2

�Xn
i¼1

x2i − 1

�
: (79)

This gives the equations of motion

Xn
i¼1

x2i − 1 ¼ 0; ẍi ¼ −ω2
i xi þ Λxi: (80)

The second time derivative of the constraint implies thatP
iðxiẍi þ _x2i Þ ¼ 0. Multiplying the second equation of

motion times xi and summing over i we can then solve
for Λ ¼ −

P
ið_x2i − ω2

i x
2
i Þ, and the equations of motion are

reexpressed as

ẍi ¼ −ω2
i xi − xi

X
j

ð_x2j − ω2
jx

2
jÞ: (81)

Vice versa, assuming the equations of motion (81) and initial
conditions

P
n
i¼1 x

2
i ¼ 1,

P
ixi _xi ¼ 0, then the conditions are

valid for the whole motion.
To appreciate the presence of hidden symmetries of the

dynamics it is easier to work in the Hamiltonian framework.
We start with the enlarged phase space fxi; pi; i ¼ 1;…; ng
with canonical Poisson brackets fxi; pjg ¼ δij, and introduce
the antisymmetric flat angular momentum quantities

Jlm ¼ xlpm − xmpl: (82)

From these we build the Hamiltonian

H ¼ 1

2

X
l<m

J2lm þ 1

2

X
i

ω2
i x

2
i : (83)

The associated equations of motion are

_xi ¼ −Jijxj; (84)

_pi ¼ −Jijpj − ω2
i xi: (85)

The function C ¼ ð1=2ÞPix
2
i is trivially conserved and

according to the results of Sec. II.A.2 it generates the
dynamical symmetry xi → xi, pi → pi þ λxi. We use C to
perform a Marsden-Weinstein dimensional reduction of the
phase space: that is, we work on the level setC ¼ 1=2 and take
the quotient of the level set with respect to the action of XC.
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This guarantees that we get a new symplectic manifold, the
Marsden-Weinstein symplectic quotient.
For each motion it is always possible to choose a repre-

sentative p̄i in the quotient such that
P

ixip̄i ¼ 0: setting
p̄i ¼ pi þ λðtÞxi, this gives λðtÞ ¼ −

P
ixiðtÞpiðtÞ. Then the

equations of motion (84) imply _λ ¼ P
iω

2
i x

2
i . Now we can

obtain second order equations for x eliminating p̄: first we
calculate _̄pi ¼ −Jijp̄j − ω2

i xi þ ðPkω
2
kx

2
kÞxi, and then note

that _xi ¼ −Jijxj ¼ −J̄ijxj ¼ p̄i, so that taking one more
derivative one recovers exactly Eq. (81).
Uhlenbeck (1975) showed that the Neumann system admits

the following n − 1 independent constants of motion in
involution:

Fi ¼ x2i þ
X
k≠i

J2ik
ω2
i − ω2

k

; (86)

with
P

iFi ¼ 1.

6. Geodesics on an ellipsoid

The problem of geodesics on an ellipsoid is one of the
oldest integrable systems. Jacobi (1839a, 1839b) solved it for
the two-dimensional ellipsoid reducing it to quadratures, and
Moser (1980) obtained the solution using the modern theory
of Lax pairs and isospectral deformations. The n-dimensional
case was studied by Knörrer (1980) from the algebro-
geometric point of view, and by Perelomov (2000) using
the projection method.
It is useful to write the Hamiltonian for this problem using

the notation of the previous section, as the system is contained
in the Neumann problem:

H ¼
X
i

Fi

ω2
i
¼ ðX;XÞω − ðX;XÞωðP; PÞω þ ðX;PÞ2ω

¼ ðX;XÞω½1 − ðξ; ξÞω�; (87)

where we introduced the ω scalar product

ðV;WÞω ¼
X
i

1

ω2
i
viwi

and

ξ ¼ P −
ðX;PÞω
ðX;XÞω

X: (88)

One should note that ξ and H are invariant under the same
transformation of the previous section, xi → xi,
pi → pi þ λxi, and therefore once again we consider a
Marsden-Weinstein dimensional reduction and assume
that

P
ix

2
i ¼ 1.

We now show that choosing the constraint H ¼ 0 leads to
the vector ξ following geodesics on the ellipsoid ðξ; ξÞω ¼ 1.
First we remind the reader that the geodesic equation for a
geodesic on a submanifold fðξÞ ¼ 0 is given by

d
dλ

ξ0ffiffiffiffiffiffiffiffiffiffi
ξ0 · ξ0

p ¼ Λ∇fðξÞ; (89)

where ξ0 ¼ dξ=dλ and λ is a parameter on the trajectory. The
geometrical meaning is that the acceleration of ξ with respect
to the arc length parameter is normal to the surface and can be
seen by finding the extrema of the functionalZ

½
ffiffiffiffiffiffiffiffiffiffi
ξ0 · ξ0

p
þ ΛfðξÞ�dλ; (90)

where Λ is a Lagrange multiplier.
Next we calculate the time derivative of ξ as follows:

_xi ¼
∂H
∂pi

¼ −2ðX;XÞω
pi

ω2
i
þ 2ðX;PÞω

xi
ω2
i

¼ −2ðX;XÞω
ξi
ω2
i
;

_pi ¼ −
∂H
∂xi ¼ −2½1 − ðP; PÞω�

xi
ω2
i
− 2QðX; YÞω

pi

ω2
i
;

(91)

and then from the definition of ξ [Eq. (88)]:

_ξi ¼ −2
H

ðX; XÞω
xi
ω2
i
− _sxi; (92)

where s ¼ ðX; YÞω=ðX;XÞω. s is in fact the arc length
parameter since the equation of motion for ξ reduces, when
H ¼ 0, to

dξi
ds

¼ −xi (93)

from which

dξi
ds

·
dξi
ds

¼ 1.

Then taking one more time derivative

d
dt

dξi
ds

¼ 2ðX;XÞω
ξi
ω2
i
∝ ∇ðξ; ξÞω; (94)

which shows that the evolution of ξ is geodesic.

7. Quantum dots

The following model of a quantum dot was discussed by
Alhassid, Hinds, and Meschede (1987), Blümel et al. (1989),
Ganesan and Lakshmanan (1989), Simonović and
Nazmitdinov (2003), and Zhang et al. (2014). It describes
two charged particles with Coulomb interaction in a constant
magnetic field B and a confining oscillator potential. The
Hamiltonian is given by

H ¼
X2
i¼1

�
1

2
~Π2
i þ VðriÞ

�
−

a
j~r1 − ~r2j

; (95)

where a is a constant, ~Π is the covariant momentum
introduced in Sec. II.A.4, the magnetic field points in the
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z direction, and the confining oscillator potential is axially
symmetric:

Vð~raÞ ¼ 1
2
½ω2

0ðx2a þ y2aÞ þ ω2
zz2a�: (96)

The problem is reduced to an effective one-particle
problem by realizing that the center of mass coordinates
separate. Focusing on relative cylindrical coordinates
ðρ; z;φ; πρ; πz; πφÞ one is left with

Hrel ¼ 1
2
gμνπμπν þ Vðρ; z;φÞ; (97)

where gμν ¼ diagð1; 1; ρ2Þ and the potential is given by

Vðρ; z;φÞ ¼ 1

2
½ω2

0ρ
2 þ ω2

zz2� −
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p : (98)

In the formalism of Sec. II.A.4 the z component of the angular
momentum, a conserved quantity, is written as

Lz ¼ Lμ
ð1Þπμ þ Lð0Þ; (99)

where Lμ
ð1Þ ¼ ð0; 0; 1Þ is a Killing vector, Lð0Þ ¼ ωLρ

2 its
associated scalar, and ωL ¼ eB=2 is the Larmor frequency.
The Hamiltonian also presents extra constants of motion

when the parameter

τ ¼ ωzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

L

p
assumes specific values. When τ ¼ 2, as discussed by
Alhassid, Hinds, and Meschede (1987), Blümel et al.
(1989), Ganesan and Lakshmanan (1989), Simonović and
Nazmitdinov (2003), and Zhang et al. (2014), the system is
separable in parabolic coordinates and a new constant of
motion that solves the generalized Killing equations (35)
arises, associated with a second rank Killing tensor:

K ¼ 1

2
Kμν

ð2Þπμπν þ Kμ
ð1Þπμ þ Kð0Þ

¼ zπ2ρ − ρπρπz þ
z
ρ2

π2φ þ 2ωLzπφ − ω2
0ρ

2z −
azffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p :

(100)

When τ ¼ 1=2 instead it is possible to find a conserved
quantity that is quartic in the momenta and originates from a
rank-4 Killing tensor. As seen in Sec. III this means that the
system is integrable although not separable. The quartic
constant of motion is given by the longer expression
(Cariglia et al., 2014)

C ¼ ρ2π4z − 2ρzπρπ3z þ z2π2ρπ2z þ
1

ρ2
π4φ þ π2ρπ

2
φ

þ
�
2þ z2

ρ2

�
π2zπ

2
φ þ 2ωLπφðρ2π2ρ þ ð2ρ2 þ z2Þπ2zÞ

þ
�
ð2ω2

z − ω2
0Þz2ρ2 þ 2ω2

Lρ
4 −

2aρ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p �
π2z

þ
�
2

3
ð2ω2

0 − 5ω2
z þ 2ω2

LÞz3ρþ
2azρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p �
πzπρ

þ
�
ω2
Lρ

4 −
1

3
ðω2

0 − 4ω2
z þ ω2

LÞz4
�
π2ρ

þ
�
2ω2

zz2 þ ðω2
0 − 5ω2

LÞρ2 −
1

3
ðω2

0 − 4ω2
z þ ω2

LÞ
z4

ρ2

−
2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p �
π2φ − 2ωLπφ

�
1

3
ðω2

0 − 4ω2
z þ ω2

LÞz4

−2ω2
zz2ρ2 þ ð3ω2

L − ω2
0Þρ4 þ

2aρ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p �
þω4

zz4ρ2 þ 2ω2
zω

2
Lz

2ρ4 − ω2
Lð3ω2

L − 4ω2
zÞρ6

þ 2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p ½ω2
zz2ρ2 − ω2

Lρ
4� − a2

2

z2 − ρ2

z2 þ ρ2
: (101)

8. Spinning particle

The spinning particle theory describes a particle in a curved
spacetime with n dimensions using a set of real coordinates xμ,
μ ¼ 1;…; n, and a set of Grassmannian variables θa,
a ¼ 1;…; n, related to the spin. Its nonrelativistic version
was first studied by Casalbuoni (1976a). Casalbuoni also
discussed the quantization of generic systems with fermionic
variables, showing that it yields a quantum theory with Fermi
operators, and vice versa that the ℏ → 0 limit of quantum
theory is in general given by a pseudoclassical theory with
Grassmannian variables (Casalbuoni, 1976b). The relativistic
version of the theory was introduced by Brink et al. (1976),
Berezin and Marinov (1977), and Brink, Di Vecchia, and
Howe (1977), and it can be thought of as a semiclassical
description of a Dirac fermion. The Hamiltonian is given by

H¼ 1

2
ΠμΠνgμν; Πμ ¼pμ−

i
2
θaθbωμab ¼ gμν _xν; (102)

where pμ is the momentum canonically conjugate to xμ, Πμ is
the covariant momentum, and ωμab is the spin connection.
Upon quantization the θ variables are lifted to gamma
matrices. Poisson brackets are defined as

fF;Gg ¼ ∂F
∂xμ

∂G
∂pμ

−
∂F
∂pμ

∂G
∂xμ þ ið−1ÞaF ∂F

∂θa
∂G
∂θa ; (103)

where aF is the Grassmann parity of F.
There is a fermionic generator of supersymmetry trans-

formations on the world sheet:

Q ¼ θaeaαΠα; (104)

which obeys
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fH;Qg ¼ 0; fQ;Qg ¼ −2iH: (105)

Equations of motion are accompanied by two physical
(gauge) conditions

2H ¼ −1; Q ¼ 0; (106)

Upon quantization the second condition maps into the Dirac
equation on states.
Hidden symmetries of the dynamics for the spinning

particles were discussed for the first time by Gibbons,
Rietdijk, and van Holten (1993). One of the motivations
was understanding the classical counterpart of the result by
Carter and Mclenaghan (1979) that showed that in the Kerr-
Newman background there exists a linear differential operator
which commutes with the Dirac operator. Gibbons and
collaborators showed that if a curved background admits a
Killing-Yano tensor of rank 2, then this can be used to build a
conserved quantity in the theory of the spinning particle, and
such conserved quantity is a fermionic generator of extra
supersymmetry transformations, the prominent example being
that of the Kerr-Newman metric. In fact, Killing-Yano tensors
are so special that the result keeps holding for the quantum
case, where a linear differential operator that commutes with
the Dirac operator can be built every time such a tensor exists,
in all dimensions and signatures (Benn and Charlton, 1997b;
Benn and Kress, 2004) and with no anomalies; this result will
be discussed in more detail in Sec. VI.D.2. To emphasize how
this result is remarkable one should note that in the case of the
Klein-Gordon equation candidate symmetry operators whose
classical limit corresponds to conserved quantities are in
general anomalous and commute with the wave operator only
if certain conditions hold; see the discussion in Sec. VI.C.
Given a rank-2 Killing-Yano tensor h the conserved charge

found by Gibbons and collaborators is

Qh ¼ Πλhλμθμ −
i
3
∇μ1hμ2μ3θ

μ1θμ2θμ3 : (107)

This has been generalized to the case of a rank-pKilling-Yano
tensor by Tanimoto (1995) in

Qh ¼ Πμ1hμ1���μpθ
μ2 � � � θμp

−
i

pþ 1
∇μ1hμ2���μpþ1

θμ1 � � � θμpþ1 : (108)

Recently Kubizňák and Cariglia (2012) studied the spin-
ning particle theory in the Kerr-NUT-(A)dS spacetimes. These
describe rotating black holes with cosmological constant in
arbitrary dimension and are discussed in detail in Sec. V.B.2.
In these metrics there exists a complete set of mutually
commuting operators, one of which is the Dirac operator,
and the Dirac equation is separable, as discussed in Sec. VI.D.
In the Kerr-NUT-(A)dS spacetimes with n ¼ 2N þ ϵ

dimensions there are N þ ε Killing vectors ξðkÞ. Here ϵ ¼
0; 1 parametrizes whether the dimension n is even or odd.
According to Eq. (108) with these one can construct bosonic
superinvariants, i.e., invariant quantities that are even in
the Grassmannian variables. These invariants are linear in
velocities and given by

QξðkÞ ¼ ξαðkÞΠα −
i
4
θaθbðdξðkÞÞab: (109)

These can be used to express some components of the
velocities Π in terms of the conserved quantities and of the
θ variables. Kubizňák and Cariglia (2012) showed that it is
possible to find N further bosonic supersymmetric conserved
quantitiesKðjÞ, this time quadratic in the velocities. These new
quantities will not be conserved nor supersymmetric in
a general metric, but they are for Kerr-NUT-(A)dS. The
ðN þ εÞ þ N ¼ n quantities are all independent and using
them it is possible to express all the components of Π, thus
showing that the bosonic sector of the theory is integrable.
The quantities KðjÞ are written as

KðjÞ ¼ Kμν
ðjÞΠμΠν þ Lμ

ðjÞΠμ þMðjÞ;

Lμ
ðjÞ ¼ θaθbLðjÞabμ; MðjÞ ¼ θaθbθcθdMðjÞabcd:

(110)

The tensors K, L, and M are given by

Kμν ¼ hμκ1���κp−1hνκ1���κp−1 ;

Lμν
ρ ¼ −

2i
pþ 1

h½μjκ1���κp−1jðdhÞν�ρκ1���κp−1

−
2i

pþ 1
ðdhÞμνκ1���κp−1hρκ1���κp−1 ;

Mμνρσ ¼ −
i
4
∇½μLνρσ�;

(111)

where hμ1���μp is the rank-p Killing-Yano tensor present in
the spacetime, for p ¼ 2; 4;…; 2N in even dimensions and
p ¼ 1; 3;…; 2N − 1 in odd dimensions; see Sec. V.B.2, and,
in particular, Eqs. (207) and (208).
Examples of pseudoclassical theories displaying hidden

symmetries can be found, for example, in Leiva and
Plyushchay (2003), Nirov and Plyushchay (1997, 1998),
Plyushchay (1999, 2000b, 2001), and Plyushchay and
Wipf (2014).

III. HAMILTON-JACOBI EQUATION AND HIDDEN
SYMMETRIES

In this section we describe the theory of separation of
variables for the Hamilton-Jacobi equation and its links with
hidden symmetries of the dynamics and with the Eisenhart-
Duval lift, which will be discussed in Sec. IV.

A. Hamilton-Jacobi equation

The Hamilton-Jacobi equation can be regarded as one of the
deepest formulations of classical Hamiltonian dynamics. Let
P be a symplectic manifold with 2n dimensions and consider
a Hamiltonian system with Hamiltonian function H∶ P → R,
in local coordinates H ¼ Hðqμ; pνÞ. The Hamilton-Jacobi
equation is the following first-order partial differential equa-
tion in nþ 1 variables, in general nonlinear,

∂S
∂t þH

�
qμ;

∂S
∂qν ; t

�
¼ 0; (112)
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for a function S ¼ Sðt; qμÞ. A complete integral is defined as a
function S ¼ Sðt; qμ; PνÞ þ C, where the Pν and C are
constants. Once we have a complete integral, we can interpret
it as the generating function of a canonical transformation
between the original Hamiltonian system and a new system
with variables Qμ; Pν and H0. The link between old and new
variables is given by

pνðt; q; PÞ ¼
∂S
∂qν ;

Qμðt; q; PÞ ¼ ∂S
∂Pμ

;

H0 ¼ H þ ∂S
∂t :

(113)

Then, Eq. (112) implies H0 ¼ 0, which means that the
function S generates a canonical transformation that trivializes
the system. Then Q and P are constants of motion and,
assuming the second equation in Eq. (113) is invertible,
one can obtain q ¼ qðQ;P; tÞ, and then from the previous
equation p ¼ pðQ;P; tÞ.
Equation (112) is formally similar to the Schrödinger

equation, and in fact there are links to it and to quantum
mechanics. For a time independent Hamiltonian we can
always separate variables by setting Sðq; P; tÞ ¼
Wðq; PÞ − Et, where we chose P1 ¼ E. The Hamilton-
Jacobi equation becomes

H

�
qμ;

∂W
∂qν

�
¼ E: (114)

Then for every function fðPÞ we consider the wave fronts that
are given by the hypersurfaces in position space

Sðq; P; tÞ ¼ Wðq; PÞ − Et ¼ fðPÞ: (115)

The normal to this surfaces is given by ∂qW ¼ p for
any choice of f. The connection with quantum mechanics
arises as follows. For simplicity we consider a single particle
interacting with a potential, with Hamiltonian of the kind
H ¼ p2=2mþ VðqÞ; however, the reasoning can be general-
ized to multiple interacting particles. We consider the asso-
ciated Schrödinger equation

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
∇2ψ þ VðqÞψ ; (116)

and parameterize the wave function as

ψðq; tÞ ¼ Aðq; tÞ exp
�
i
ℏ
φðq; tÞ

�
: (117)

Then Schrödinger’s equation splits into the following two
equations:

∂ρ
∂t þ ~∇q · ~J ¼ 0;

1

2m
ð∇qφÞ2 þ VðqÞ þ ∂φ

∂t ¼
ℏ2

2m

∇2
qA

A
;

(118)

where

ρ ¼ A2; ~J ¼ Re

�
ℏ
im

ψ�∇qψ

�
¼ ρ

∇qφ

m
: (119)

In the small ℏ limit the second equation decouples and
becomes the Hamilton-Jacobi equation for φ. Once φ is
known, the first equation can be solved for A giving a
semiclassical approximation for ψ. It is interesting noting
that ~J ¼ ρ~v, where in the semiclassical approximation
~v ¼ ~p=m, the classical velocity. Also it is important to note
that imaginary solutions of the Hamilton-Jacobi are relevant in
this context, being associated with quantum mechanical
tunneling.

B. Separability of the Hamilton-Jacobi equation

Hidden symmetries of the dynamics play a natural role in
the separation of variables of the Hamilton-Jacobi equation.
Loosely speaking, this is associated with the presence of a
complete set of conserved quantities of order one or two in the
momenta, with appropriate compatibility conditions.
There is a fair amount of literature on the separability

of the Hamilton-Jacobi equation, in particular, for natural
Hamiltonians of the kind H ¼ ð1=2Þgμνpμpν þ VðqÞ there
exists a well-understood theory. When V ¼ 0 we call H a
geodesic Hamiltonian. We do not present here the complete
theory of separation of variables for natural Hamiltonians, but
rather we discuss in certain detail the case when g is a positive-
definite, time independent Riemannian metric, and provide a
description and enough references to the literature for what
concerns more general cases.

1. Riemannian metric and orthogonal coordinates

We begin with separation of variables in orthogonal
coordinates, that is coordinates such that gμν ¼ 0 for μ ≠ ν.
Following Benenti (2004) we say that the coordinate system is
separable if the geodesic Hamilton-Jacobi equation

1

2
gμν

∂S
∂qμ

∂S
∂qν ¼ E (120)

admits a complete solution of the form

Sðq; PÞ ¼
Xn
μ¼1

Sμðqμ; PÞ; (121)

with the invertibility condition

det

� ∂2S
∂P∂q

�
≠ 0.

In our discussion of the separability of the Hamilton-Jacobi
equation we assume E ≠ 0 until Sec. III.B.4 where we discuss
the null case. We make the same assumption for natural
Hamilton-Jacobi equations as well.
Stäckel (1893) showed that in the case of orthogonal

coordinates the geodesic Hamilton-Jacobi is separable if
and only if

SμνðgρρÞ ¼ 0; μ ≠ ν; (122)
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with no sum over ρ. The Sμν are Stäckel operators that act on a
smooth function f ¼ fðqÞ as

SμνðfÞ ¼
∂2f

∂qμ∂qν −
∂ ln gνν
∂qμ

∂f
∂qν −

∂ ln gμμ
∂qν

∂f
∂qμ ; μ ≠ ν:

(123)

This is equivalent to say that the metric elements can be
written as gμμ ¼ h2μ (no sum over μ) where

h2μ ¼
Θ
Θ1

μ
: (124)

In Eq.(124) Θ1
μ is the ðμ; 1Þ cofactor of a matrix θðνÞμ that is

called a Stäckel matrix. This by definition is a square n × n
matrix whose μth row depends only on qμ, θðνÞμ ¼ θðνÞμ ðqμÞ.
Lastly, Θ ¼ det½θðνÞμ � is called a Stäckel determinant (Stäckel,
1891). Equivalently, the conditions above are the same as
saying that

X
μ

gμμθðνÞμ ¼ δν1: (125)

When considering a natural Hamiltonian with scalar poten-
tial then Eq. (122) has to be supplemented by

SμνðVÞ ¼ 0; μ ≠ ν; (126)

as a necessary and sufficent condition for separability. This is
equivalent to the existence of a Stäckel vector w whose μth
component depends only on qμ, wμ ¼ wμðqμÞ, such thatX

μ

gμμwμ ¼ V: (127)

Later on several others examined the orthogonal case; we
mention Levi-Cività (1904) and Eisenhart (1934, 1997) as a
nonexhaustive list. In particular, Levi-Cività showed a set of
necessary and sufficient conditions for the separability of the
Hamilton-Jacobi equation for generic coordinates:

LμνðHÞ ≔ ∂H
∂qμ

∂H
∂qν

∂2H
∂pμpν

þ ∂H
∂pμ

∂H
∂pν

∂2H
∂qμqν

−
∂H
∂qμ

∂H
∂pν

∂2H
∂pμqν

−
∂H
∂pμ

∂H
∂∂qν

∂2H
∂qμ∂pν

¼ 0; (128)

with no sum over μ or ν. These are known as separability
equations of Levi-Cività. For natural Hamiltonians the sepa-
rability conditions above are in general polynomial expres-
sions of degree four in the momenta, in particular, the fourth
degree homogeneous part is given by Lμν½ð1=2Þgρσpρpσ�.
Therefore separability of the geodesic Hamilton-Jacobi equa-
tion is a necessary condition for separability of the natural
Hamilton-Jacobi equation with a potential. This explains the
importance given in the literature to the geodesic case. For
us, the geodesic case is also important in view of the Eisenhart
lift procedure, discussed in Sec. IV, which describes a
natural Hamiltonian system in terms of geodesics in a

higher-dimensional space. A magnetic field can be added
naturally in the description.
Separability of the Hamilton-Jacobi equation is in corre-

spondence with a specific type of hidden symmetries, those
generated by conserved quantities of the order of 2 or 1 in the
momenta. In the geodesic case this was showed by Eisenhart
(1934, 1997) for the orthogonal case, and by Kalnins and
Miller (1980a, 1981) for the generic case. If a symmetric
tensor K is diagonalized in orthogonal coordinates then its
components will satisfy Kμμ ¼ ρμgμμ, no sum over μ, for
appropriate functions ρ. If now K is a Killing tensor then one
can show that the Killing equation reduces to

∂μρ
ν ¼ ðρμ − ρνÞ∂μ ln gνν; (129)

with no sum over repeated indices. These have been called
Killing-Eisenhart equations by Benenti, Chanu, and Rastelli
(2002b). The integrability conditions for this linear system of
first-order partial differential equations are, remarkably,

ðρμ − ρνÞSμνðgρρÞ ¼ 0: (130)

Therefore, if all the ρ functions are different then the geodesic
Hamilton-Jacobi is integrable and, vice versa, if the geodesic
Hamilton-Jacobi is integrable then it is always possible to
build a solution of Eq. (129) with different values for the ρ
variables, at least locally. Therefore we have the following
result: The geodesic Hamilton-Jacobi is separable in a system
of orthogonal coordinates if and only if there exists a Killing
tensor which is diagonal in these coordinates and with
pointwise simple eigenvalues.
Since the Killing-Eisenhart equations are linear, a Killing

tensor as above is equivalent to an n-dimensional linear space
K of Killing tensors which are all diagonalized in the same
orthogonal coordinates, a Killing-Stäckel space. Also, all the
Killing tensors in a Killing-Stäckel space are all in involution,
and such a space is closed under the Schouten-Nijenhuis
bracket (23) between symmetric tensors. The notion of
separability of the geodesic Hamilton-Jacobi equation and
of Killing-Stäckel space is preserved under a separated change
of coordinates qμ ¼ qμð ~qμÞ (no sum), and therefore it is
appropriate to talk about equivalence classes of separable
orthogonal coordinates.
It is possible to give an intrinsic, coordinate independent

characterization of the separability noting that geometrically
an equivalence class of orthogonal coordinates is associated
with a set of mutually orthogonal vectors that are orthogonal
to hypersurfaces, or normal mutually orthogonal vectors.
Then follows the result of Kalnins and Miller (1980a) and
Benenti (1992): The geodesic Hamilton-Jacobi equation is
separable in orthogonal coordinates if and only if there exists a
Killing 2-tensor with simple eigenvalues and normal eigen-
vectors. Such a tensor is also called a characteristic Killing
tensor. The n orthogonal foliations it generates are called a
Stäckel web. If instead we prefer to work with a Killing-
Stäckel space of n Killing tensors Ki then an intrinsic
characterization of the fact that they have common eigenval-
ues is that any two Ki, Kj must commute as linear operators.
Kalnins and Miller (1980a) showed that n independent Killing
tensors in involution and with the same eigenvectors are
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necessarily normal, and Benenti, Chanu, and Rastelli (2002b)
showed that if the eigenvectors are orthogonal then one can
even relax the requisite of the symmetric tensors being Killing.
Therefore a second, alternative intrinsic characterization of
orthogonal separability of the geodesic Hamilton-Jacobi
equation follows: The geodesic Hamilton-Jacobi
equation is separable in orthogonal coordinates if and only
if the Riemannian manifold admits a Killing-Stäckel space,
i.e., an n-dimensional linear space K of Killing tensors
commuting as linear operators and in involution.
This concludes our overview of orthogonal separability of

the geodesic Hamilton-Jacobi equation. Next we study a
natural Hamiltonian of the type H ¼ ð1=2Þgμνpμpν þ VðqÞ,
still in orthogonal coordinates for the moment. We consider a
second order candidate conserved quantity of the kind
C ¼ ð1=2ÞKμνðqÞpμpν þ C0ðqÞ. Then a direct calculation
shows that this is conserved if and only if the following
two separate conditions hold:

�
1
2
KμνðqÞpμpν;

1
2
gρσpρpσ

	
¼ 0; dC0 ¼ K · dV:

(131)

The first equation means thatK must be a Killing tensor. Since
we know that a necessary condition for the separability of the
natural Hamilton-Jacobi equation is that the associated geo-
desic Hamilton-Jacobi equation also separates, we can assume
K is a characteristic Killing tensor. Then the second equation
in Eq. (131) written in separable orthogonal coordinates
becomes

∂C0

∂qμ ¼ ρμ
∂V
∂qμ ; ∀μ ðno sumÞ (132)

whose integrability conditions are ∂ν∂μC0 − ∂μ∂νC0 ¼
ðρμ − ρνÞSμνðVÞ, no sum. Therefore we can state the follow-
ing: The natural Hamilton-Jacobi equation is separable in
orthogonal coordinates if and only if there exists a Killing
2-tensor K with simple eigenvalues and normal eigenvectors
such that dðK · dVÞ ¼ 0 (Benenti, 2004).

2. Riemannian metric and generic coordinates

The results presented so far can be generalized to the case of
nonorthogonal coordinates and a Riemannian metric. The
techniques used are similar and the only main difference is
that in the general case ignorable coordinates may arise,
associated with Killing vectors. Kalnins and Miller (1981)
proved general results on the relationship between the
geodesic Hamilton-Jacobi separation in generic coordinates
and the presence of Killing vectors and Killing tensors for
Riemannian metrics. Benenti (1997) rephrased the intrinsic
characterization of the separability for natural Hamiltonians
with scalar potential in terms of separable Killing webs and
characteristic Killing tensors.
In general for nonorthogonal variables one distinguishes

between first and second class coordinates. A coordinate qμ is
of first class if

∂H
∂qμ

�∂H
∂pμ

�
−1

(133)

is a linear function of the momenta p (no sum over μ). In
particular, ignorable coordinates, such as ∂H=∂qμ ¼ 0, are
first class. For a geodesic Hamiltonian ignorable coordinates
are associated with Killing vectors. Coordinates that are not of
first class are of second class. We use the following notation:
qa, a ¼ 1;…; m are second class coordinates, and qα,
α ¼ mþ 1;…; n, with r ¼ n −m, are first class coordinates.
Two different, overlapping systems of coordinates such that
the Hamilton-Jacobi equation is separable in both are called
equivalent if they yield the same complete solution in the
intersection of their domains.
It can be shown that the Levi-Cività separability condi-

tion (128) for a generic Hamiltonian implies that the numbers
ðm; rÞ are the same in two equivalent systems of separable
coordinates, and that there always exists a coordinate trans-
formation that preserves separability such that all the first class
coordinates become ignorable (Benenti, 1980, 1991). It can
also be shown that for a geodesic Hamiltonian the second
class coordinates are orthogonal, gab ¼ 0 for a ≠ b, and that
in two equivalent separable systems the second class coor-
dinates are related by separated transformations qa ¼ qað ~qaÞ,
no sum. There exist normal separable coordinates such that the
qα are ignorable and gaα ¼ 0, so that the inverse metric tensor
assumes a standard block diagonal form with the gab part in
orthogonal form.
Using these concepts one can prove the following result on

the intrinsic characterization of the separability of a geodesic
Hamiltonian (Benenti and Francaviglia, 1979).
Theorem.—The geodesic Hamilton-Jacobi equation is sepa-

rable on a Riemannian manifold if and only if the following
conditions hold:

(1) There exist r independent commuting Killing vectors
Vα, ½Vα; Vβ� ¼ 0.

(2) There exist m ¼ n − r independent rank-2 Killing
tensors Ka, satisfying

½Ka;Kb�SN ¼ 0; ½Ka; Vα�SN ¼ 0; (134)

where ½·; ·�SN is the Schouten-Nijenhuis bracket,
Eq. (23).

(3) The Killing tensors have m common eigenvectors Wa
such that

½Wa;Vα� ¼ 0; ½Wa;Wb� ¼ 0; gðWa;VαÞ ¼ 0:

(135)

The result above is a specific case of the more general
structure of a nondegenerate Killing web, which generalizes
that of a Stäckel web to nonorthogonal coordinates. A Killing
web is given by two sets of objects. First, a set Sm ¼
fS1;…;Smg ofm pairwise orthogonal foliations of connected
submanifolds of codimension 1. Orthogonal means that their
normal vectors are orthogonal, and therefore since the metric
is Riemannian they are pairwise transversal, i.e., the span of
their tangent spaces is the whole ambient tangent space.
Second, a Killing web has an r-dimensional Abelian algebra
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Δr of Killing vectors tangent to the leaves of Sm. The Killing
vectors span a distribution Δ of constant rank r. A distri-
bution d of dimension s is called orthogonally integrable if
the orthogonal distribution d⊥ is completely integrable, i.e.,
there exists a foliation of (n − s)-dimensional manifolds
orthogonal to d. In particular, for a nondegenerate Killing
web Δr is orthogonally integrable. r is called the degree of
symmetry of the web. A Killing web determines a set of
coordinates ðqa; qαÞ adapted to it. First, one chooses m
independent functions qa that are constant to the leaves of the
foliations Sa. Then, given a basis Vα for Δr one can consider
a local section X of the orbits of Δ, that is an m-dimensional
submanifold that is transversal to the orbits. Using X as a
starting set, one can consider the integral curves of Δr
and take the affine parameters on these as ignorable coor-
dinates qα. The web is a separable Killing web if the
geodesic Hamilton-Jacobi is separable in adapted coordi-
nates. As in the case of orthogonal coordinates, a separable
web can be characterized by a characteristic Killing tensor
(Benenti, 1997):
Theorem.—A nondegenerate Killing web ðS;ΔÞ is sepa-

rable if and only if there exists a Δ invariant characteristic
Killing tensor K with pairwise and pointwise distinct real
eigenvalues, corresponding to eigenvectors Wa orthogonal to
the leaves of S.
For a natural Hamiltonian with scalar potential one has the

extra condition that the potential V is Δr invariant and
that dðK · VÞ ¼ 0.

3. Generic signature metric and generic coordinates

This case has been treated, for example, by Benenti (1997).
One still distinguishes between first and second class coor-
dinates, but now refines the classification into null second
class coordinates qā such that gā ā ¼ 0 (no sum), and the
remaining non-null second class coordinates qâ, with
â ¼ 1;…; m1, ā ¼ m1 þ 1;…; m1 þm0 ¼ m. While it is
always the case that m0 cannot be higher than the absolute
value of the signature of the metric, it can also be shown that it
must be m0 ≤ r. This follows from the fact that normal
separable coordinates still exist, with qα ignorable and
gâα ¼ 0, so that the standard form of the inverse metric in
these coordinates is

gμν ¼

0
B@ gâ â 0 0

0 0 gb̄β

0 gαā gαβ

1
CA; (136)

and m0 > r would imply detðgμνÞ ¼ 0.
Now a Killing web is defined similar to the nondegenerate

Killing web of Sec. III.B.2. There are m foliations Sm ¼
fS1;…;Smg ofm pairwise orthogonal foliations of connected
submanifolds of codimension 1 that are pairwise transversal
and orthogonal. Note that, differently from the case of a
Riemannian metric where orthogonality implied transversal-
ity, in the case of generic signature one needs to separately ask
for both orthogonality and transversality. Next there is an r-
dimensional Abelian algebra Δr of Killing vectors tangent to
the leaves of Sm. The Killing vectors span a distribution Δ of

constant rank r. For a generic signature metric we now
consider the distribution I ¼ Δ ∩ Δ⊥, which is in general
nonzero and generated by null vectors. By definition we ask
that I has constant rank m0. This time Δr is orthogonally
integrable if the orthogonal distribution Δ⊥ is completely
integrable, which includes the I distribution.
The intrinsic characterization of separability of the natural

Hamilton-Jacobi equation given by Benenti (1997) is the
following:
Theorem.—The natural Hamilton-Jacobi equation is sepa-

rable in a coordinate system adapted to a Killing web if and
only if

(1) there exists a Δ invariant characteristic Killing tensor
K with pairwise and pointwise distinct real eigenval-
ues, corresponding to eigenvectors Wa orthogonal to
the leaves of S and, form0 > 1, dðK · gαβÞ ¼ 0 for any
basis Vα of Δr;

(2) the potential V is Δr invariant and dðK · VÞ ¼ 0.

4. Null Hamilton-Jacobi equation in orthogonal coordinates

The null case E ¼ 0 of the Hamilton-Jacobi equation is best
discussed separately. The theory of the null Hamilton-Jacobi
equation in orthogonal coordinates was discussed by Benenti,
Chanu, and Rastelli (2005) and Chanu and Rastelli (2007).
One can prove that the null geodesic Hamilton-Jacobi

equation is separable in orthogonal coordinates qμ if and
only if these coordinates are conformally separable, i.e., the
metric is conformal to another orthogonal metric such that the
new coordinates are standard separable orthogonal coordi-
nates as seen in the previous sections. A similar result applies
for natural Hamiltonians of the type H ¼ ð1=2Þgμνpμpν þ V
with V − E ≠ 0: the natural Hamilton-Jacobi equation is
separable in orthogonal coordinates qμ if and only if the
conformal metric ḡ ¼ g=ðV − EÞ (also called Jacobi metric)
defines a separable geodesic Hamilton-Jacobi equation.
An intrinsic characterization of these results can be done in

terms of conformal tensors. For null geodesics one needs a
characteristic conformal Killing tensor, which is a conformal
Killing tensor with simple eigenvalues and normal eigenvec-
tors. Similarly, one can invoke n pointwise independent
conformal Killing tensors KðμÞ that have common eigenvec-
tors and are in conformal involution, meaning there exist
vector fields fVðμνÞg such that

½KðμÞ; KðνÞ�ρστSN ¼ Vðρ
ðμνÞg

στÞ: (137)

In the presence of a potential V such that V − E ≠ 0 we need,
in addition to the above, the characteristic conformal Killing
tensor that also satisfies

½g−1; K�λμνSN ¼ 2

E − V
ðK · dVÞðλgμνÞ: (138)

To conclude, we mention that the important case of a
Hamiltonian with both a scalar and vector potential was
discussed by Benenti, Chanu, and Rastelli (2001) for a
positive-definite metric, using the Eisenhart-Duval lift metric
that is presented in Sec. IV. One obtains the same type of
generalized Killing equations with the flux of Sec. II.A.4, for

Marco Cariglia: Hidden symmetries of dynamics in classical … 1301

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



the special case of a conserved quantity that is of second order
in the momenta.

5. The role of higher order conserved quantities

At this point one may wonder what is the role played by
conserved quantities that are of higher order than 2 in the
momenta. After all, as we have seen all conserved quantities,
independent of their order, generate infinitesimal canonical
transformations in phase space that preserve the energy. On
the other hand, in this section we learned that it is only
quantities that are at most second order in the momenta that
are involved in the variable separation of the Hamilton-Jacobi
equation. The answer in brief is that variable separation
depends on a certain choice of position variables that is made
after having chosen a set of position-momenta coordinates in
phase space. In fact, canonical transformations are so general
that, if we allow arbitrary transformations, a local theory of
variable separation becomes trivial, as remarked by Benenti
(2002): for any Hamiltonian Hðq; pÞ we can locally find n
integrals of motion and a canonical transformation ðq; pÞ ↦
ða; bÞ such that the a variables are ignorable, meaning that
H ¼ hðbÞ, and with respect to such variables the Levi-Cività
conditions (128) are satisfied. However, finding such a
canonical transformation is equivalent to solving the
Hamilton-Jacobi equation itself, and so the result is not
constructive.
Another way to rephrase the concept is that existence of

dynamical symmetries is an intrinsic property of a dynamical
system in phase space, while existence of dynamical
symmetries of a certain order in the momenta is not intrinsic,
but depends on a certain choice of canonical variables. We
illustrate this with a known example, that of the Hénon-Heiles
system.
The Hénon-Heiles system is a 2 degrees of freedom system

that was introduced by Hénon and Heiles (1964), with a
potential that is cubic in the position variables q1, q2. The
original system described the motion of a star in the
axisymmetric potential of the galaxy, where q1 represented
the radius and q2 the altitude. Héinon and Heiles found that for
low energies the system appeared integrable, as numerically
integrated trajectories stayed on well-defined two-dimensional
surfaces in phase space. However, they found that for large
energies many of the integral regions were destroyed, giving
rise to ergodic behavior. A certain amount of effort has been
devoted to finding those deformations of the potential that
give rise to exactly integrable systems. What is now known as
the generalized Hénon-Heiles system is defined by the
Hamiltonian (Verhoeven, Musette, and Conte, 2002)

H ¼ 1

2
ðp2

1 þ p2
2 þ c1q21 þ c2q22Þ þ aq1q22 −

b
3
q21 þ

1

32a2
μ

q22
.

(139)

The original Hénon-Heiles Hamiltonian corresponds
to c1 ¼ 1 ¼ c2, a ¼ 1, b ¼ 1, and μ ¼ 0. The
Hamiltonian (139) is Liouville integrable in three cases
(Bountis, Segur, and Vivaldi, 1982; Chang, Tabor, and
Weiss, 1982; Grammaticos, Dorizzi, and Padjen, 1982):

ðSKÞ b ¼ −a; c1 ¼ c2;

ðKdV5Þ b ¼ −6a; c1; c2 arbitrary;

ðKKÞ b ¼ −16a; c1 ¼ 16c2:

(140)

Fordy showed that these three cases arise from the reduction
x − ct ¼ ξ of three fifth order soliton equations, in order the
Sawada-Kotera (SK), Lax’s fifth-order Korteweg–de Vries
flow (KdV5) and Kaup-Kupershmidt (KK) (Fordy, 1991).
As well as the Hamiltonian itself, these three systems

possess a second, independent conserved quantity C. The
conserved quantity for the KdV5 system is quadratic in the
momenta, as well as the one for the SK system when μ ¼ 0.
This means that integrability can also be associated with
separation of variables for the Hamilton-Jacobi equation
according to the theory presented so far. However, for the
SK system with μ ≠ 0 and for the KK system the conserved
quantity is quartic, for example, for the KK system it is
given by

C ¼
�
3p2

2 þ 3c2q22 þ
3μ

16a2q22

�
2

þ 12ap2q22ð3q1p2 − q2p1Þ

− 2a2q42ð6q21 þ q22Þ þ 12aq1

�
−c2q42 þ

μ

16a2

�

−
3

4

c2μ
a2

: (141)

A nontrivial canonical transformation that is of higher order in
the momenta transforms the system in a new Hamiltonian
system where the two conserved quantities are of second order
in the new momenta (Verhoeven, Musette, and Conte, 2002).
With respect to the new variables now the system is also
separable. A similar procedure works in the case of the SK
system for μ ≠ 0. Integrable models with higher order con-
served quantities are still actively studied; for an example of
recent work, see Galajinsky and Lechtenfeld (2013).

IV. GEOMETRY OF DYNAMICS

A. Eisenhart-Duval lift

The Eisenhart-Duval lift is a geometric construction that, on
the one hand, realizes a geometrization of interactions, similar
in spirit to that of Kaluza-Klein geometries but employing a
noncompact null coordinate for the dimensional reduction,
and, on the other hand, allows embedding nonrelativistic
systems into relativistic ones. For this reason it has been
applied to the nonrelativistic AdS/CFT correspondence; for a
nonexhaustive list of examples and related works see Duval
and Horvathy (2009), Duval and Lazzarini (2012), Goldberger
(2009), and Herzog, Rangamani, and Ross (2008) and
references therein.
The geometrical idea was historically introduced in a

seminal paper by Eisenhart (1928). His work remained largely
unnoticed, and it was a number of years after that the same
idea was independently rediscovered by Duval et al. (1985)
and Duval, Gibbons, and Horváthy (1991), under the frame-
work of a Bargmann structure, where it was used to discuss
Newton-Cartan structures. From there it prompted further
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work, including Duval (1993), Duval, Horvathy, and Palla
(1994), Duval and Horvathy (2009), and Zhang, Gibbons, and
Horváthy (2012). In particular, it is important to mention that
the Eisenhart lift allows one to easily discuss the full group of
dynamical symmetries, which, for example, in the case of the
free particle in flat spacetime is the Schrödinger group (Hagen,
1972; Niederer, 1972; Jackiw, 1972), and also allows incor-
porating a scalar and vector potential in the discussion
of the separability of the Hamilton-Jacobi and Schrödinger
equations.
Throughout the years several different types of applications

have been found for the lift in addition to the nonrelativistic
AdS/CFT correspondence, among which one can mention the
following, nonexhaustive examples: simplifying the study of
symmetries of a Hamiltonian system by looking at geodesic
Hamiltonians (Benenti, 1997; Benn, 2006), new Lorentzian
pp-wave metric solutions of the Einstein-Maxwell equations
(Gibbons and Pope, 2011; Zhang, Gibbons, and Horváthy,
2012), a geometrical approach to protein folding (Mazzoni
and Casetti, 2008), rare gas crystals (Casetti and Macchi,
1997), and chaotic gravitationalN-body systems (Cerruti-Sola
and Pettini, 1995). Moreover, using the lift it is possible to
build new examples of spacetimes with nontrivial hidden
symmetries of higher order: among the lifted systems one
mentions the Goryachev-Chaplygin and Kovalevskaya tops
(Gibbons et al., 2011). Benenti, Chanu, and Rastelli (2001)
used the Eisenhart-Duval lift metric to reduce the study of
separability of the Hamilton-Jacobi equation for a natural
Hamiltonian with scalar and vector potential to that of a purely
geodesic Hamiltonian following the methods described in
Sec. III.

1. The geometry

We begin with notation. The base manifold M is n dimen-
sional and it is endowed with a metric g. We indicate with M̂
its (nþ 2)-dimensional Eisenhart-Duval lift, where metric ĝ is
defined. We denote (nþ 2)-dimensional quantities with a hat
symbol. Indices μ; ν;…, from the lowercase Greek alphabet
represent spacetime indices on M, while M;N;…, from the
uppercase Latin alphabet spacetime indices on M̂. Local
coordinated uses forM are fxμg, and for the lift we introduce
new variables v; t so that fx̂Mg ¼ fv; t; fxμgg are local
coordinates on M̂. In order to work with the Dirac equation
and gamma matrices we also denote locally flat indices:
a ¼ 1;…; n for M and A ¼ þ;−; 1;…; n for M̂.
On M we consider a natural Hamiltonian

H ¼ 1

2m
gμνðpμ − eAμÞðpν − eAνÞ þ VðxÞ; (142)

where pμ is the canonical momentum. This describes a particle
of mass m, electric charge e, with a potential VðxÞ and vector
potential AμðxÞ. We could introduce gauge-covariant
momenta Πμ ¼ pμ − eAμ as discussed in Sec. II.A.4; how-
ever, this is not needed to the extent of the calculations done
here, and we will work with the canonical pμ variables.
Eisenhart (1928) showed that solutions of the natural

Hamiltonian (142) are in correspondence with geodesics of
a (nþ 2)-dimensional pseudo-Riemannian metric

ĝ ¼ ĝMNdx̂Mdx̂N

¼ gμνdxμdxν þ
2e
m

Aμdxμdtþ 2dtdv −
2

m
Vdt2: (143)

This is a metric first discussed by Brinkmann (1925) who
studied the problem of finding Einstein spaces conformally
related.
The associated geodesic Hamiltonian is

Ĥ ¼ 1

2m
ĝMNp̂Mp̂N

¼ 1

2m
gμν

�
pμ −

e
m
Aμpv

��
pν −

e
m
Aνpv

�

þ 1

m
pvpt þ

1

m2
Vp2

v; (144)

where p̂M ¼ ðpv; pt; pμ1 ;…; pμnÞ.
In order to see the relation between the two systems we first

point out that ξ ¼ ∂=∂v is a covariantly constant Killing
vector. The momentum pv is therefore a constant of motion.
We then consider null geodesics of Ĥ for which pv ¼ m, and
rewrite the condition Ĥ ¼ 0 as

1

2m
gμνðpμ − eAμÞðpν − eAνÞ þ pt þ V ¼ 0; (145)

or equivalently

pt ¼ −H: (146)

So we can identify the −t variable in the higher-dimensional
system with the time variable in the lower-dimensional one,
for whichH is a generator of time translations. The minus sign
is mainly due to historical convention.
From the geometrical point of view M̂ is a bundle overM,

with projection P∶ ðt; v; xμÞ ↦ xμ. Then for f a p form
defined onM we indicate with f̂ its pullback on M̂ under the
map P�.
dt is the 1-form associated with the Killing vector ∂v:

ð∂vÞ♭ ¼ dt. We make the following choice for the vielbeins:

êþ ¼ dt;

ê− ¼ dv −
V
m
dtþ e

m
Aμdxμ;

êa ¼ ea;

(147)

where fea; a ¼ 1;…; ng is a set of vielbeins for M, and the
(nþ 2)-dimensional Minkowski metric η̂AB has the following
nonzero entries: η̂þ− ¼ η̂−þ ¼ 1 and η̂ab ¼ ηab. Associated
with the vielbeins are dual basis vectors:

ðêþÞ♯ ¼ X̂þ ¼ ∂v;

ðê−Þ♯ ¼ X̂− ¼ V
m
∂v þ ∂t;

ðêaÞ♯ ¼ X̂a ¼ −
e
m
Aa∂v þ ðeaÞ♯g;

(148)

where the ♯ operation was discussed in Sec. II.A.3, below
Eq. (27). These are related to the inverse vielbein ÊM

A by

Marco Cariglia: Hidden symmetries of dynamics in classical … 1303

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



ÊA ¼ η̂ABX̂
B: (149)

Taking the exterior derivative of Eq. (147) we can find the
nonzero coefficients of the spin connection:

ω̂þa ¼ −
1

m
∂aVêþ þ e

2m
Fabeb;

ω̂ab ¼ ωab −
e
2m

Fabêþ: (150)

As seen above null geodesics on M̂ relative to ĝ generate
massive geodesics on M relative to g. As we are going to
show in Sec. IV.A.2 it is in fact possible to do more: given
a generic conserved quantity for the motion on M that is
a nonhomogeneous polynomial in momenta, in other words a
hidden symmetry for geodesic motion, this can be lifted to an
appropriate hidden symmetry on M̂ that is homogeneous in
momenta and that therefore is associated with a Killing tensor.
The Poisson algebra on M of conserved charges for the
original motion then is the same as the Schouten-Nijenhuis
algebra of the Killing tensors associated with lifted conserved
charges (Gibbons et al., 2011). This means that the dynamical
evolution on M as described in full phase space can be
embedded in the higher-dimensional phase space. This does
not happen in the case of the Dirac equation as shown in
Sec. IV.A.3, as in general it is not possible to lift all hidden
symmetries from M to M̂. Also, when performing the
dimensional reduction of the Dirac equation on M̂ a nontrivial
projection is required in phase space in order to recover the
Dirac equation with V and A flux on M; see Eq. (329). This
projection is not compatible with all hidden symmetry trans-
formations, but only with those that generate on M genuine
hidden symmetries of the Dirac equation with flux. For a
discussion of the Dirac equation with flux see Sec. VI.D.4.

2. Conserved quantities for geodesic motion

We can rewrite the Hamiltonian (142) on M as a poly-
nomial of degree 2 in momenta:

H ¼ Hð2Þ þHð1Þ þHð0Þ; (151)

where HðiÞ has degree i in momenta, and the lifted
Hamiltonian as

Ĥ ¼ Ĥð2Þ þ pv

m
Ĥð1Þ þ p2

v

m2
Ĥð0Þ þ pvpt

m
: (152)

If the symplectic form on M is dω ¼ dqμ ∧ dpμ the new
symplectic form is ω0 ¼ ωþ dt ∧ dpt þ dv ∧ dpv, with
associated Poisson bracket f; g0.
We now show the link between conserved quantities for the

two systems that are polynomial in the momenta. Consider
such a conserved quantity for the system ðH; T�MÞ:

K ¼
Xk
i¼0

KðiÞ: (153)

We calculate the time derivative of K and organize the terms
according to their degree in momenta, obtaining

0 ¼ dK
dt

¼ fK;Hg þ ∂K
∂t ¼

Xk
i¼0

�
fKði−1Þ; Hð2Þg

þfKðiÞ; Hð1Þg þ fKðiþ1Þ; Hð0Þg þ ∂KðiÞ

∂t
�
: (154)

Terms of different order in the momenta will vanish inde-
pendently since K is conserved for all trajectories. K can be
lifted to the extended phase space by

K̂ ¼
Xk
i¼0

�
pv

m

�
k−i

KðiÞ: (155)

Taking the derivative of K̂ along the higher-dimensional null
geodesics yields

dK̂
dλ

¼ fK̂; Ĥg0 ¼
Xk
i¼0

pk−iþ1
s

�
fKði−1Þ; Hð2Þg

þfKðiÞ; Hð1Þg þ fKðiþ1Þ; Hð0Þg þ ∂KðiÞ

∂t
�
: (156)

Therefore it is clear that K̂ is constant if and only if K is. Since
by construction K̂ is a homogeneous polynomial in the
momenta, then it corresponds to a Killing tensor of the
metric ĝ.
A similar calculation shows that for constants of the motion

for the original system K1; K2; K3 which lift to K̂1; K̂2; K̂3 we
have

fK1; K2g ¼ K3;⇔fK̂1; K̂2g0 ¼ K̂3: (157)

The degree of integrability of the system is unchanged by
the lift, since the dimension of the configuration space has
increased by 2, but at the same time two new constants of
motion have been introduced: ps and pt. In particular, if the
original system is Liouville integrable, with n functionally
independent constants of motion in involution, or super-
integrable, then so will be the higher-dimensional system,
and vice versa.

3. Conformal Killing-Yano tensors

In this section we relate the conformal Killing-Yano
equation on M̂ to appropriate equations on M. We start
with the defining equation

∇̂X̂f̂ ¼ 1

π þ 1
X̂⌟d̂ f̂−

1

ðnþ 2Þ − π þ 1
X̂♭ ∧ δ̂ f̂; (158)

where ∀X̂ is a vector. It is not restrictive to consider a
homogeneous form f̂, since the equation is linear in f̂.
The general case was discussed by Cariglia (2012), show-

ing how Eq. (158) splits into a set of equations for forms
defined on M. Here we consider four simplified Ansätze for
the higher-dimensional conformal Killing-Yano form, as they
exemplify important features of the lift procedure. Given a
p form f ¼ fðxÞ defined on the base manifold M we can
build the following higher-dimensional forms:
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f̂1 ¼ f; (159)

f̂2 ¼ êþ ∧ f; (160)

f̂3 ¼ ê− ∧ f; (161)

f̂4 ¼ êþ ∧ ê− ∧ f; (162)

where f on the right-hand side is used to represent the
canonical embedding in M̂ of a form originally defined on
M. A form of type f̂1 is mapped into one of type f̂4 by Hodge
duality, with f → �Mf. Also, forms of the type f̂2 and f̂3 are
mapped by Hodge duality to themselves.
From Eqs. (159) and (162) it is possible to generate Killing-

Yano and closed conformal Killing-Yano tensors on M̂ when
f is Killing-Yano and, respectively, closed conformal Killing-
Yano on M. In particular, this gives new examples of
Lorentzian metrics with conformal Killing-Yano tensors by
lifting known conformal Killing-Yano tensors in Riemannian
signature, for example, when M is the Kerr-NUT-(A)dS
metric or the Taub-NUT metric (Gibbons and Ruback,
1987; Cordani, Fehér, and Horváthy, 1988; van Holten,
1995; Vaman and Visinescu, 1998; Baleanu and Codoban,
1999; Visinescu, 2000).
However, a generic conformal Killing-Yano tensor on M

cannot be lifted to a conformal Killing-Yano tensor on M̂: as
will be seen in Sec. VI.D.5, when considering the Dirac
equation the process of lift and its inverse, reduction, involves
a nontrivial projection in phase space, Eq. (329). This is not
compatible with all lower- and higher-dimensional hidden
symmetries; see Cariglia (2012) for a detailed discussion.
We start considering the first Ansatz, with a p form f̂1 on M̂

given by Eq. (159). The conformal Killing-Yano equa-
tion (158) splits into three types of equations, one for each
of X̂ ¼ X̂þ, X̂ ¼ X̂−, and X̂ ¼ X̂a. To analyze these we rewrite
the covariant derivatives of f on M̂ in terms of covariant
derivatives on M, ∂v, and ∂t derivatives, and flux terms.
The explicit formulas can be found in Cariglia (2012). The
X̂ ¼ X̂þ component gives

∂vf ¼ 0; δf ¼ 0; (163)

the X̂ ¼ X̂− component

dV♯⌟f ¼ 0; F ∧
2
f ¼ 0; (164)

∂tf þ pþ 1

p
e
2m

F ∧
1
f ¼ 0; (165)

where

F ∧
1
f ¼ 1

ðp − 1Þ!F
λ
μ1fλμ2���μpdx

μ1 ∧ dxμp (166)

and

F ∧
2
f ¼ 1

ðp − 2Þ!F
λ1λ2fλ1λ2μ1���μp−2dx

μ1 ∧ dxμp−2 : (167)

In general one can introduce a ∧m contraction for differential
forms; this is defined in Eq. (277). Last, the X̂ ¼ X̂a

component gives

e
2m

ðXa⌟FÞ∧
1
f ¼ 1

pþ 1
Xa⌟∂tf; (168)

∇af ¼ 1

pþ 1
Xa⌟df: (169)

This last equation is the Killing-Yano equation on the base.
The former instead implies Eq. (165).
Equation (165) is compatible with the fact that f is of the

Killing-Yano form only if F ∧1 f is of the Killing-Yano form
as well, which in general will not be the case. Then it must be
that separately

∂tf ¼ 0; F ∧
1
f ¼ 0: (170)

Then there is no v, t dependency and we can lift a Killing-Yano
form on the base manifold M to a Killing-Yano form on M̂,
since the conditions found imply δ̂f̂1 ¼ 0. This form can be
used to build a symmetry operator for theDirac equation onM̂,
and when p is odd such operator strictly commutes with the
Dirac operator D̂, as will be seen in Sec. VI.D.2. Also forp odd
it is guaranteed we can build a symmetry operator for the Dirac
equation with V and A flux that is not anomalous, thanks to the
conditions found above. This is in correspondence with the
results on the Dirac equation with flux of Sec. VI.D.4. These
two facts are related, since in the case of p odd it is possible to
dimensionally reduce such hidden symmetry operator on M̂ to
get a hidden symmetry operator with flux on M (Cariglia,
2012). This is not possible if p is even, which is in agreement
with the fact that the conditions required on an even conformal
Killing-Yano tensor with flux in Sec. VI.D.4 are different. Such
other conditions are related to the fourth Ansatz (162). The
conditions found in this section are more restrictive than those
in the generic Dirac equation with flux of Sec. VI.D.4: in
principle one could have tensors that satisfy the less restrictive
conditions and that generate symmetries of the Dirac equation
with flux on M, but that at the same time do not satisfy the
conditions of this section and therefore cannot be lifted to M̂.
Ansätze 2 and 3 can be examined with the same techniques

and give the trivial result that f, f̂2, and f̂3 are covariantly
constant forms.
Last, in the case of Ansatz 4 one recovers the Hodge dual of

the conditions found for Ansatz 1, with the understanding that
the form f of Ansatz 1 is related to the f form of Ansatz 4 by
Hodge duality on the base manifold M, namely, one gets

∂v;tf ¼ 0; df ¼ 0; dV ∧ f ¼ 0; (171)

ðXa⌟FÞ ∧ g ¼ 0; F ∧ f ¼ 0; F ∧
1
f ¼ 0; (172)

∇af ¼ −
1

n − pþ 1
ea ∧ δf: (173)

Equation (173) is the closed conformal Killing-Yano equation
on the base manifold; this is linked to the fact that
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n − pþ 1 ¼ ðnþ 2Þ − ðpþ 2Þ þ 1. The other conditions,
according to the results of Sec. VI.D.4, imply that for p even
it is possible to build a symmetry operator of the Dirac
equation with V and A flux on M. Similarly to the case of
Ansatz 1, these conditions are related to the dimensional
reduction toM of a symmetry operator on M̂. In this case too
the conditions are stronger than those found in Sec. VI.D.4.

B. Another type of Eisenhart lift

Eisenhart (1928) in his seminal paper introduced a different
type of geometric lift for the case of a natural Hamiltonian
with no magnetic field and which is independent of time. In
his own words this is “treated not as a special case of the more
general theory, but on an independent basis.” For a natural
Hamiltonian H ¼ ð1=2Þgμνpμpν þ VðqÞ one considers the
(nþ 1)-dimensional metric

ĝ ¼ gμνdqμdqν þ
dy2

2V
; (174)

where a new coordinate y has been introduced, and we write
q̂ ¼ ðqμ; yÞ. The metric will be globally well defined if V > 0
everywhere, or if it is bounded from below using the fact that
V is defined modulo a constant. In case this does not happen,
the metric will be defined only in some region, differently
from the previous, Lorentzian type of Eisenhart lift, which is
always well defined.
We consider the associated higher-dimensional free

Lagrangian

L̂ ¼ 1

2
ĝMN

_̂qM _̂qN ¼ 1

2
gμν _qμ _qν þ

_y2

4V
: (175)

From this we calculate the momentum py ¼ _y=2V and the
geodesic Hamiltonian

Ĥ ¼ 1
2
ĝMNp̂Mp̂N ¼ 1

2
gμνpμpν þ p2

yV: (176)

Since the coordinate y is ignorable in Eq. (174) then py is
constant. Then, if we set py ¼ 1 in Eq. (176) and follow the
evolution of the ðq; pqÞ variables we recover the original
system. Notice how the metric (174) is not necessarily
Lorentzian as in the previous Eisenhart lift of Sec. IV, nor
its geodesics necessarily null. For example, for a potential V
that is always positive the metric will be Riemannian.
Changing py is equivalent to an overall rescaling of the
potential in the original system.
Now suppose there is a quantity K for the original system

that is polynomial in the momenta and of degree p:

K ¼
Xp
i¼0

KðiÞ; (177)

where

KðiÞ ¼
1

i!
Kλ1���λi

ðiÞ pλ1 � � �pλi : (178)

We lift it to the following homogeneous quantity:

K̂ ¼
Xp
i¼0

KðiÞp
p−i
y : (179)

This will be conserved in higher dimension if and only if

0 ¼ fK̂; Ĥg ¼ ∂K̂
∂qμ

∂Ĥ
∂pμ

−
∂K̂
∂pμ

∂Ĥ
∂qμ : (180)

Rearranging the terms in powers of py, and writing HðfÞ ¼
ð1=2Þgμνpμpν we get

fK̂;Ĥg¼−
∂Kð1Þ
∂pμ

∂V
∂qμp

pþ1
y

þ
Xp−2
i¼0

�∂KðiÞ
∂qμ

∂HðfÞ
∂pμ

−
∂KðiÞ
∂pμ

∂HðfÞ
∂qμ −

∂Kðiþ2Þ
∂pμ

∂V
∂qμ

�
pp−i
y

þ
Xp
i¼p−1

�∂KðiÞ
∂qμ

∂HðfÞ
∂pμ

−
∂KðiÞ
∂pμ

∂HðfÞ
∂qμ

�
pp−i
y : (181)

Since the metric g is covariantly constant the ∂HðfÞ=∂q terms
can be exchanged with Levi-Cività connection terms, and the
equation can be rewritten in terms of covariant quantities as

fK̂; Ĥg ¼ −Kμ
ð1Þ∇μVp

pþ1
y

þ
Xp−2
i¼0

�
1

i!
∇ðλ1KðiÞλ2���λiþ1Þ

−
1

ðiþ 1Þ!Kðiþ2Þλ1���λiþ1

ρ∇ρV

�
pλ1 � � �pλiþ1pp−i

y

þ
Xp
i¼p−1

1

i!
∇ðλ1KðiÞλ2���λiþ1Þp

λ1 � � �pλiþ1pp−i
y : (182)

This will be zero for a generic geodesic if and only if each
term with a different power in py is zero separately. The
conditions obtained are also found to be the conditions that
make Eq. (177) conserved in the original system. These
equations are exactly the generalized Killing equations with
flux (35) in the limit of zero field strength F ¼ 0. Crampin
(1984) discovered a special case of these equations when the
only nonvanishing terms in Eq. (177) are KðpÞ and Kð0Þ, one
application of his results being the Runge-Lenz quadratic
conserved quantity for the Kepler problem.
This second kind of Eisenhart lift is particularly interesting

for the following reason. Suppose the potential V in the
Hamiltonian can be split into m separate potentials,
VðqÞ ¼ P

m
i¼1 giViðqÞ, where the gi are coupling constants.

Then one can separately lift each coupling constant and
consider an enlarged (nþm)-dimensional space with a
generalized Eisenhart lift metric

ĝ ¼ gμνdqμdqν þ
Xm
i¼1

dy2i
2giVi

: (183)

This will yield the higher-dimensional Hamiltonian
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Ĥ ¼ 1

2
gμνpμpν þ

Xm
i¼1

p2
yigiVi: (184)

Geodesics in the higher-dimensional space for different values
of the conserved momenta pyi correspond to solutions of the
original equations of motion for different values of the
coupling constant. In particular, if there are nontrivial iso-
metries of Eq. (183) that are not just isometries of g, then these
give rise to nontrivial transformations between the q and y
variables that leave the energy of the original system constant.
Since _yi ¼ 2giVipyi , a change in the y variables in general will
also amount to a change in the pyi , and therefore to a
transformation that changes the coupling constants of the
original system. This was applied to the generalized Eisenhart
lift of the Toda chain in Cariglia and Gibbons (2014). The
Toda chain lift is described in more detail in Sec. VII.

V. HIDDEN SYMMETRIES, GRAVITY, AND SPECIAL
GEOMETRIES

A. Taub-NUT and generalized Laplace-Runge-Lenz vector

The self-dual Taub-NUT four-dimensional metric has
found several applications, among which is that it can be
identified with a gravitational instanton, since it satisfies the
Euclidean Einstein equations with self-dual Riemann tensor
when the mass parameter is positive (Hawking, 1977).
Another is its application to the study of the interaction
between two well-separated Bogomolny-Prasad-Sommerfield
(BPS) monopoles in Euclidean flat space when the mass
parameter is negative. The BPS monopoles are solitonic
solutions of SUð2Þ Yang-Mills theory that for large separa-
tions behave like particles. Manton (1982) observed that the
low energy dynamics of these monopoles could be described
by an appropriate evolution on the parameter space of static
multimonopole solutions, the evolution being geodesic with
respect to the restriction of the kinetic energy to the moduli
space. For the scattering of two monopoles the full moduli
space metric is the Atiyah-Hitchin metric (Atiyah and Hitchin,
1985), that in the limit of well-separated monopoles reduces to
the Taub-NUT metric with negative mass parameter. Gibbons
and Manton (1986) showed that this metric admits a con-
served vector of the Runge-Lenz type, and Fehér and
Horváthy (1987a, 1987b) studied its dynamical symmetries,
showing that together with angular momentum it generates an
Oð4Þ or Oð1; 3Þ algebra analogous to that of the Kepler
problem, in particular, allowing one to calculate the bound-
state spectrum and the scattering cross section. More generic
Kepler-type dynamical symmetries applied to the study of
monopole interactions have been considered by Cordani,
Fehér, and Horváthy (1988, 1990) and Fehér and Horváthy
(1988). The study of the Dirac equation in Taub-NUT space
has been considered, for example, by Comtet and Horváthy
(1995) and van Holten (1995), as well as supersymmetry of
monopoles and vortices (Horváthy, 2006). Dynamical sym-
metries for the analogous problem of well-separated monop-
oles in hyperbolic space have been studied by Gibbons and
Warnick (2007).
The Taub-NUT with negative mass is a four-dimensional

hyper-Kähler manifold with metric

g ¼ V½dr2 þ r2ðσ21 þ σ22Þ� þ 4V−1σ23; (185)

where V ¼ 1 − 2=r and the σi are SUð2Þ left-invariant forms
given by

σ1 ¼ sin θ sinψdϕþ cosψdθ;

σ2 ¼ sin θ cosψdϕ − sinψdθ;

σ3 ¼ dψ þ cos θdϕ;

(186)

with 0 ≤ ϕ < 2π, 0 ≤ θ < π, and 0 ≤ ϕ < 2ψ .
The geodesic Lagrangian is

L ¼ 1
2
½V _~r

2 þ 4V−1ð _ψ þ cos θ _ϕÞ2�: (187)

There is a number of expected conserved quantities: one is
related to the fact that the coordinate ψ is ignorable,

Q ¼ 4V−1ð _ψ þ cos θ _ϕÞ; (188)

then there is the energy

E ¼ 1

2
V

�
_~r2 þQ2

4

�
; (189)

and the angular momentum

~J ¼ V~r × _~rþ qr̂: (190)

There are, however, extra conserved quantities that are of
higher order in the velocities

~A ¼ V _~r × ~J þ
�
2E −

Q2

2

�
r̂: (191)

These are associated with a triplet of rank-2 Killing tensors
Kμν

ðiÞ. Moreover, the Killing tensors can be obtained from a
rank-2 Killing-Yano tensor Yμν and three complex structures
FðiÞμν, i ¼ 1; 2; 3, according to

Kμν
ðiÞ ¼ YλðμFðiÞλνÞ: (192)

~J and ~A generate an suð2Þ ⊗ suð2Þ Lie algebra. Explicitly

Y ¼ rðr − 1Þðr − 2Þ sin θdθ ∧ dϕþ 2dr ∧ ðdψ þ cos θdϕÞ;
(193)

and

FðiÞ ¼ 2ðdψ þ cos θdϕÞ ∧ dxi þ
V
2
ϵijkdxj ∧ dxk: (194)

B. Higher-dimensional rotating black holes

In this section we present some recent results in gravita-
tional physics that have attracted much attention to the subject
of hidden symmetries of the dynamics. Solutions of Einstein’s
equations in higher dimensions that generalize the Kerr
rotating black hole, in addition to a cosmological constant
and NUT parameters, have been found to possess a tower of
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Killing-Yano and Killing tensors, associated with multiple
hidden symmetries of the dynamics that make several equa-
tions of physical interest, among which are Hamilton-Jacobi,
Klein-Gordon, Dirac, integrable, and actually separable when
written in the so-called canonical coordinates. We begin with a
brief historical survey of the special properties of the Kerr
solution and then of higher-dimensional black hole geom-
etries. After that we present the construction of hidden
symmetries for Kerr-NUT-(A)dS black holes and the more
general off-shell canonical metrics.

1. The Kerr metric

Kerr (1963) presented a solution of Einstein’s equations for
a spinning mass, the celebrated Kerr black hole. This metric is
astrophysically relevant since it can describe observed rotating
black holes. Although the metric is nontrivial, it is endowed
with properties that Chandrasekhar (1984a, 1984b) called
“miraculous.”
It describes a rotating black hole that is stationary and

axisymmetric, with two associated Killing vectors ∂t and ∂ϕ.
Carter (1971) showed that, provided a black hole had an axis
of symmetry, it had to be described by the Kerr solution which
depends only on two parameters, the mass and the angular
momentum, and Robinson (1975) showed that it was the only
pseudostationary black hole solution with a nondegenerate
horizon. The Weyl tensor of the metric is algebraically special
and of type D in Petrov’s classification (Petrov, 1969, 2000).
The metric can be written in Kerr-Schild form

gμν ¼ ημν þ 2Hlμlν; (195)

where η is a flat metric and the vector l is null with respect to
both g and η (Kerr and Schild, 1965; Debney, Kerr, and
Schild, 1969).
Going back to hidden symmetries, Carter (1968a, 1968b)

showed that the Hamilton-Jacobi and Klein-Gordon equations
are separable in the Kerr metric, thus reducing the problem of
calculating geodesics to one of quadratures. Walker and
Penrose (1970) gave an explanation for that, showing that
the Kerr metric admits a rank-2 Killing tensor, which can be
used to build an extra conserved quantity in addition to the
energy, angular momentum, and the particle’s rest mass; this
quantity is commonly referred to as Carter’s constant.
Subsequently, Penrose (1973) and Floyd (1974) showed that
the Killing tensor can be obtained from a Killing-Yano tensor.
It was also demonstrated that the Killing-Yano tensor is
responsible for several of the special properties of the Kerr
metric: Hughston and Sommers (1973) showed that both
isometries in the metric can be generated from the Killing-
Yano tensor (see Sec. V.B.2 for a discussion of the
n-dimensional case). This implies that all the conserved
quantities responsible for integrability of geodesic motion
are derivable from the Killing-Yano tensor. Colinson (1974)
showed that the integrability conditions for a nondegenerate
Killing-Yano tensor imply that the spacetime is of type D in
Petrov’s classification. Other types of important equations of
physics simplify considerably in the Kerr metric: Teukolsky
(1972) showed that the electromagnetic and gravitational
perturbation equations decouple and their master equations

separate, Teukolsky (1973) and Unruh (1973) showed
separation for the massless neutrino equations, and
Chandrasekhar (1976) and Page (1976) discussed the massive
Dirac equation. As shown later in this section, the Kerr metric
satisfies the geometrical conditions described in Sec. III for the
separability of the Hamilton-Jacobi equations, and being a
vacuum metric it also automatically allows for separation of
variables of the Klein-Gordon equation, as discussed in
Sec. VI.C. The n-dimensional generalizations described in
Sec. V.B.2 also allow for separability of the Klein-Gordon
equation, even when the Ricci tensor is nonzero, since the
Robertson condition discussed in Sec. VI.C holds, as shown
later. The separability of the Dirac equation in these metrics is
discussed in detail in Sec. VI.D.3, where it is shown it can be
associated with appropriate symmetry operators built using the
Killing-Yano (principal) tensor, the semiclassical counterpart
of this result being the symmetry operators for the spinning
particle theory described in Sec. II.B.8. Similar symmetry
operators for other nonscalar equations have been discussed in
the literature; see Kamran and McLenaghan (1984), Kamran
(1985), del Castillo (1988), Kalnins, Miller, Jr., and Williams
(1989), andKalnins,Williams, andMiller (1996). Jezierski and
Łukasik (2006) discussed conserved quantities in the Kerr
geometry generated by the Killing-Yano tensor.

2. Black holes in higher dimensions

In this section we describe Kerr-NUT-(A)dS black holes,
which are higher-dimensional black holes with rotation param-
eters, cosmological constant, and NUT charges. Such solutions
of the Einstein equations became ever more relevant in recent
times with the advent of string theory and of braneworld
cosmological models. An example of application is that of the
AdS/CFT correspondence, where one considers their BPS
limit. In the odd-dimensional case this limit yields Sasaki-
Einstein spaces (Cvetic et al., 2009; Hashimoto, Sakaguchi,
and Yasui, 2004; Cvetič et al., 2005), while in the even-
dimensional one Calabi-Yau spaces (Oota and Yasui, 2006; Lü
and Pope, 2007). Attempts have been made to find similar
solutions to the Einstein-Maxwell equations analytically (Aliev
and Frolov, 2004; Aliev, 2006a, 2006b; Kunz et al., 2006;
Aliev, 2007; Chen and Lü, 2008) or numerically (Kunz,
Navarro-Lérida, and Petersen, 2005; Kunz, Navarro-Lérida,
andViebahn, 2006; Brihaye andDelsate, 2007; Kunz, Navarro-
Lérida, and Radu, 2007; Kleihaus, Kunz, and Navarro-Lérida,
2008); see also Charmousis and Gregory (2004), Chen, Lü, and
Pope (2006), Podolský and Ortaggio (2006), Pravda, Pravdova,
and Ortaggio (20070, Ortaggio, Podolský, and Žofka (2008),
and Lü, Mei, and Pope (2009).
Historically, however, it was already in 1963 that Tangherlini

described a higher-dimensional black hole solution that gen-
eralized the Schwarzschild metric (Tangherlini, 1963). Myers
and Perry (1986) added an electric charge to the Tangherlini
solution and also obtained another solution, currently referred
to as the Myers-Perry metric, which is higher dimensional and
has ðn − 1Þ=2 rotation parameters, corresponding to the inde-
pendent planes of rotation, thus generalizing Kerr’s solution.
Frolov and Stojković (2003) later showed that the five-
dimensional Myers-Perry metric admits a Killing tensor,
anticipating the more general result on Kerr-NUT-(A)dS
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metrics that we discussed in this section. Galajinsky,
Nersessian, and Saghatelian (2013) discussed superintegrable
spherical mechanics models associated with near horizon
extremal Myers-Perry black holes in arbitrary dimensions.
The first example of a black hole solution in higher dimension

with cosmological constant was provided by Hawking, Hunter,
and Taylor-Robinson (1999), who obtained a five-dimensional
metric with rotation parameters and cosmological constant that
generalizes the Kerr-(A)dS metric of Carter (1968b). The
generalization of this metric to arbitrary number of dimensions
was obtained by Gibbons, Lü, Page, and Pope (Gibbons et al.,
2004; Gibbons et al., 2005) in 2004, and finally NUT charges
were added by Chen, Lü, and Pope in 2006 (Chong, Gibbons
et al., 2005; Chen, Lü, and Pope, 2006, 2007). Good reviews on
the subject of black holes in higher dimensions and hidden
symmetries of dynamics are Emparan and Reall (2008) and
Yasui and Houri (2011); another review is currently in prepa-
ration (Frolov, Krtouš, and Kubizňák).
We describe here the full Kerr-NUT-(A)dS solution. While

it is known that in higher-dimensional gravity there exist
various kinds of rotating black objects, the Kerr-NUT-(A)dS
metric describes the most general rotating black object with
spherical horizon topology and cosmological constant that
solve Einstein’s vacuum equations and that are known
analytically to date. In fact, we present the metric of what
are known as canonical spacetimes: these belong to a family of
spacetimes that are in general off shell, in that they do not
solve the vacuum Einstein equations, and when they do they
reduce to the Kerr-NUT-(A)dS spacetimes. Canonical space-
times are the natural generalization of Kerr-NUT-(A)dS
spacetimes with respect to their geometrical properties and
to the hidden symmetries of the dynamics of nonbackreacting
fields propagating on them. We work in the Riemannian
signature as this makes the metric more symmetric.
It is useful to parametrize the spacetime dimension n as

n ¼ 2N þ ϵ, where ϵ ¼ 0; 1. Then the metric is given by

ds2 ¼
XN
μ¼1

�
dx2μ
Qμ

þQμ

�XN−1

j¼0

AðjÞ
μ dψ j

�
2
�

þ εS

�XN
j¼0

AðjÞdψ j

�
2

: (196)

Here coordinates xμðμ ¼ 1;…; NÞ stand for the radial coor-
dinate and longitudinal angles, and Killing coordinates
ψkðk ¼ 0;…; N − 1þ εÞ denote time and azimuthal angles
associated with Killing vectors ξðkÞ ¼ ∂ψk

.1 The metric func-
tions are defined by

Qμ ¼
Xμ

Uμ
; Uμ ¼

Y
ν≠μ

ðx2ν − x2μÞ; S ¼ −c
AðNÞ ; (197)

AðkÞ
μ ¼

X
ν1;…;νk

ν1<���<νk;νi≠μ

x2ν1 � � �x2νk ; AðkÞ ¼
X

ν1;…;νk
ν1<���<νk

x2ν1 � � �x2νk : (198)

The quantities Xμ are generic functions of a single variable xμ,
and c is an arbitrary constant. The vacuum black hole
geometry with a cosmological constant is recovered by setting

Xμ ¼
XN
k¼ε

ckx2kμ − 2bμx1−εμ þ εc
x2μ

: (199)

This choice of Xμ describes the most general known Kerr-
NUT-(A)dS spacetimes in all dimensions (Chen, Lü, and
Pope, 2006). The constant cN is proportional to the cosmo-
logical constant and the remaining constants are related to
angular momenta, mass, and NUT parameters. The coordi-
nates used here generalize the canonical coordinates intro-
duced by Carter in 4D (Carter, 1968c; Debever, 1971;
Plebanski, 1975).
These metrics admit a special type of closed conformal

Killing-Yano tensor: the tensor

h ¼ db; b ¼ 1

2

XN−1

j¼0

Aðjþ1Þdψ j (200)

is closed, of rank 2, and nondegenerate, meaning that it has
rank 2N. This defines a principal conformal Killing-Yano
tensor. Frolov and Kubizňák (2007) showed that the principal
conformal Killing-Yano tensor exists for Myers-Perry metrics
and Kerr-NUT-(A)dS ones in Kubiznák and Frolov (2007).
Kubizňák and Krtouš (2007) studied the four-dimensional
Plebański-Demiański family of metrics, which includes the
Kerr metric, and found a conformal generalization of the
Killing-Yano tensor that reduces to the Killing-Yano tensor in
the absence of acceleration. Jezierski (1997) showed that for a
rank-2 conformal Killing-Yano tensor h the vector

ξa ¼ 1

n − 1
∇bhba; (201)

where a ¼ 1;…; n satisfies

∇ðaξbÞ ¼
1

n − 2
RcðahbÞc; (202)

this being a consequence of the integrability condition of the
conformal Killing-Yano equation for h. Therefore for Einstein
spaces like Kerr-NUT-(A)dS ξ is a Killing vector. In fact, it
can be proved that ξ is a Killing vector also for the canonical
metrics that are not on shell (Krtouš, Frolov, and Kubizňák,
2008). ξ is called a primary Killing vector for these metrics.
Riemannian metrics that admit a principal conformal

Killing-Yano tensor with independent, nonconstant eigenval-
ues have been classified (Houri, Oota, and Yasui, 2007;
Krtouš, Frolov, and Kubizňák, 2008) and are exactly given
by the canonical spacetimes above.

1In this section and in others where the Kerr-NUT-(A)dS metric is
used, we indicate generic indices with a; b; c;… and adopt the split
of spacetime coordinate indices into those of type μ and i. This is
different from the convention used in the rest of the review, where
Greek letters μ; ν;… refer to a generic spacetime index. However, the
split adopted for Kerr-NUT-(A)dS metrics occurs frequently in the
literature and we feel that the benefit of using a notation that can be
directly compared to that of existing works outweighs the local loss
of consistency in notation. We also suspend the Einstein sum
convention when applied to indices of the type μ or i.
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Schematically, the classification works as follows (Frolov
and Kubizňák, 2008a; Krtouš, Frolov, and Kubizňák, 2008).
Since h is a closed conformal Killing-Yano tensor, using
Eq. (26) it can be seen that the tensor Hμ

ν ¼ hμρhνρ is a
conformal Killing tensor; see the definition in Eq. (24). Its
eigenvalues are real and non-negative, and we indicate them
by fx2i g. Then there exists an orthonormal basis such that h
can be written as diagðΛ1;…;ΛpÞ for ϵ ¼ 0, and
diagð0;Λ1;…;ΛpÞ for ϵ ¼ 1, where

Λi ¼
�

0 −xiIi
xiIi 0

�
; (203)

and the Ii are unit matrices. Such a basis is called a Darboux
basis; see Prasolov (1994). When the eigenvalues are all
different we denote them by xμ, μ ¼ 1;…; N, and the
associated orthonormal eigenvector pairs by Eμ, Eμ̂. When
ϵ ¼ 1 there is a further eigenvector E0 associated with the zero
eigenvalue. Let Eμ, Eμ̂, and E0 be the associated 1-forms.
Then in this basis the metric and principal conformal Killing-
Yano tensor take the form

g ¼
XN
μ¼1

ðEμ ⊗ Eμ þ Eμ̂ ⊗ Eμ̂Þ þ ϵE0 ⊗ E0;

h ¼
XN
μ¼1

xμEμ ∧ Eμ̂:

(204)

This is a local description of the metric and the principal
conformal Killing-Yano tensor. In order to move from a local
description to a description that holds in a finite spacetime
domain, Krtouš, Frolov, and Kubizňák (2008) additionally
included in the definition of the tensor h that its eigenvalues xμ

are functionally independent and nonconstant, so that they can
be used as coordinates. Then they are able to show that they
can be complemented by another set of coordinates ψk, such
that the ∂ψk

are Killing vectors. In particular, ∂ψ0
¼ ξ.

Krtouš, Kubiznák, Page, and Frolov (2007) (Frolov and
Kubizňák, 2007; Kubiznák and Frolov, 2007) showed that any
spacetime with a principal Killing-Yano tensor h admits a
tower of Killing-Yano and Killing tensors. The simplest way
to see this is to use the fact mentioned in Sec. II.A.3 that the
wedge product of closed conformal Killing-Yano tensor is still
a closed conformal Killing-Yano tensor. Therefore it is
possible to build the following tower of closed conformal
Killing-Yano tensors:

hðjÞ ≡ h∧j ¼ h ∧ � � � ∧ h|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
total of j factors

; (205)

where hðjÞ is a ð2jÞ form, and hð0Þ ¼ 1, hð1Þ ¼ h. Crucially,
since h is nondegenerate it is possible to build a set of N
nonvanishing forms. When ϵ ¼ 0 then hðNÞ is proportional to
the totally antisymmetric tensor, while for ϵ ¼ 1 it is dual to a
Killing vector in odd dimensions. In both cases hðNÞ is trivial
and can be excluded from the tower, and we take
j ¼ 1;…; N − 1.
According to the results mentioned in Sec. II.A.3 these

tensors give rise to the Killing tensors KðjÞ:

KðjÞ
ab ≡ 1

ðn − 2j − 1Þ!ðj!Þ2ð�h
ðjÞÞac1���cn−2j−1ð�hðjÞÞbc1���cn−2j−1 ;

(206)

where ð�hðjÞÞ is the Hodge dual of h, a Killing-Yano tensor.
The coefficient in this definition is chosen so that

KðjÞ ¼
XN
μ¼1

AðjÞ
μ ðEμ ⊗ Eμ þ ~Eμ ⊗ ~EμÞ

þ εAðjÞE0 ⊗ E0: (207)

We also define Kð0Þ ¼ g, so that we can take the range of j as
j ¼ 0;…; N − 1. The Killing tensors are functionally inde-
pendent and in involution, and together with the N þ ϵ Killing
vectors ∂ψ i

form a complete set of integrals of motion for the
geodesic motion, thus explaining the complete integrability of
geodesic motion and the separability of the Hamilton-Jacobi
equation in these metrics (Frolov, Krtouš, and Kubiznák,
2007; Krtouš, Kubiznák, Page, and Frolov, 2007; Krtouš,
Kubizňák, Page, and Vasudevan, 2007; Page et al., 2007).
Moreover, since they are constructed by taking the square of
Killing-Yano tensors, they satisfy the Robertson condition that
will be defined in Sec. VI.C.1, and as discussed there this
implies that the Klein-Gordon equation is separable as well
(Frolov, Krtouš, and Kubiznák, 2007). The Killing vectors can
all be obtained from the principal Killing vector and the
Killing tensors according to (Krtouš, Frolov, and Kubizňák,
2008; Krtouš, Kubiznák, Page, and Frolov, 2007)

ð∂ψ j
Þa ¼ KðjÞa

bξ
b; j ¼ 1;…; N − 1: (208)

Connell, Frolov, Kubizňák, and Krtouš showed that in
spacetimes with an arbitrary number of dimensions that admit
a nondegenerate principal conformal Killing-Yano tensor one
can also solve the parallel transport equations by reducing
them to a set of first-order ordinary differential equations
(Connell, Frolov, and Kubizňák, 2008; Kubizňák et al., 2009).
Kubizňák (2009) studied a scaling limit of the Kerr-NUT-(A)
dS metrics that yields Einstein-Sasaki spaces originally
constructed by Chen, Lü, and Pope (2006) that admit
Killing spinors and a tower of Killing-Yano tensors of
increasing rank.
Generalizations of the canonical metrics can be obtained,

for example, relaxing the condition that h is nondegenerate
and that all of its eigenvalues are nonconstant (Houri, Oota,
and Yasui, 2008, 2009): then one gets bundles which have
Kähler fibers over Kerr-NUT-(A)dS spaces. Another possible
choice is that of considering covariant derivatives different
from the Levi-Cività one; this appears naturally in super-
gravity theories and is discussed in Sec. V.C. There is a
number of good reviews on the subject with much information
and of different size: see Frolov (2008, 2012), Frolov and
Kubizňák (2008b), Kubizňák (2008), and Yasui and Houri
(2011); see also the short review by Cariglia, Krtouš, and
Kubizňák (2012).
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C. Spacetimes with torsion and supergravity

In Sec. V.B.2 we discussed work classifying all Riemannian
metrics admitting a principal conformal Killing-Yano tensor.
While this is a satisfactory result, it does mean that to study
Killing-Yano–type symmetries beyond this class of metrics
we have to loosen our definition to some extent. In this section
we consider extending the notion of a conformal Killing-Yano
tensor by relaxing the condition that the connection in Eq. (27)
be the Levi-Cività connection. We see that this generalization
is a natural one in the context of certain supergravity theories.
Certain of the properties of conformal Killing-Yano tensors
transfer to this generalized setting, but there are some
interesting differences.

1. The connection with torsion and generalized conformal
Killing-Yano forms

Examining the definition of a conformal Killing-Yano
tensor (27), there are two ingredients from the geometry of
the underlying manifold. Clearly we require a connection
(in this case the Levi-Cività connection) in order to make the
left-hand side meaningful. Less obvious, we also require a
metric in order to make sense of the right-hand side: in
particular, we need the metric to calculate X♭ and δh. These
two objects are compatible, in the sense that the Levi-Civit
connection preserves the metric. We now consider general-
izing the Levi-Civit connection ∇ appearing in Eq. (27). Any
two connections differ by a tensorial quantity, so we define
our new connection by ∇T

XY ¼ ∇XY þ TðX; YÞ, where
T ∈ T1

2ðMÞ. We make the further assumption that T is totally
antisymmetric. That is,

g(TðX;YÞ;Z)¼−g(TðY;XÞ;Z)¼−g(TðX;ZÞ;Y) (209)

for all vector fields X; Y; Z. A consequence of this assumption
is that ∇T is metric, i.e., ∇Tg ¼ 0, and furthermore the
autoparallel curves of ∇T are geodesics of g. Note that we
can identify T with a 3-form in an obvious way.
We are obviously able to generalize the left-hand side of

Eq. (27) by simply changing ∇ → ∇T . In order to generalize
the right-hand side, we need to consider the representation
theoretic origin of the conformal Killing-Yano equation. In
general for a Riemannian manifold, one can decompose
T�M ⊗ ΛpT�M as an OðnÞ representation as follows:

T�M ⊗ ΛpT�M ≅ Λpþ1T�M ⊕ Λp−1T�M ⊕ Λp;1T�M;

(210)

where Λp;1T�M consists of those elements α ⊗ ψ of T�M ⊗
ΛpT�M which satisfy α ∧ ψ ¼ 0, α♯⌟ψ ¼ 0. Applying this to
∇h, one identifies the projection into Λpþ1T�M as the
exterior differential dh and the projection into Λp−1T�M
as the codifferential δh, up to multiples. The conformal
Killing-Yano equation expresses the requirement that the
component of ∇h transforming in the Λp;1T�M representa-
tion vanishes. Motivated by this, we define

dTh ¼ ei ∧ ∇T
Xi
h; δTh ¼ −Xi⌟∇XT

i
h (211)

to be the projections of ∇Th into Λpþ1T�M, Λp−1T�M,
respectively. Here Xi is an orthonormal basis for TM with a
dual basis ei. These definitions reduce to the standard
definitions for d; δ when T ¼ 0.
Motivated by the above, we thus define a generalized

conformal Killing-Yano tensor to be a p form satisfying the
generalized conformal Killing-Yano equation:

∇T
Xh ¼ 1

π þ 1
X⌟dTh −

1

n − π þ 1
X♭ ∧ δTh; (212)

for any vector X. If additionally dTh ¼ 0, h is a generalized
Killing-Yano tensor, while if δTh ¼ 0, h is a generalized
closed conformal Killing-Yano tensor.
Generalized conformal Killing-Yano forms were first intro-

duced in this fashion by Kubizňák, Kunduri, and Yasui (2009)
to better understand the symmetries of the Chong-Cvetić-Lü-
Pope black holes (Chong, Cvetič et al., 2005). Previous work
which considered related objects includes Yano and Bochner
(1953) and Wu (2009a).

2. Properties of generalized conformal Killing-Yano tensors

Similar to the torsionless case, the existence of a general-
ized conformal Killing-Yano tensor has several nice conse-
quences for the underlying spacetime. In particular (Houri
et al., 2010b; Houri et al., 2012),

(i) The generalized conformal Killing-Yano equation is
invariant under Hodge duality: if h is a generalized
conformal Killing-Yano tensor, so is ⋆h.

(ii) The generalized conformal Killing-Yano equation is
conformallly invariant: if a k form h is a generalized
conformal Killing-Yano tensor of the metric g,
with torsion T, then Ωkþ1h is a generalized con-
formal Killing-Yano tensor of the metric Ω2g with
torsion Ω2T.

(iii) Generalized conformal Killing-Yano tensors form a
(graded) algebra under the wedge product.

(iv) If h1, h2 are generalized conformal Killing-Yano
k forms, then the symmetric tensor Kμν ¼
h1ðμjρ1;…ρk−1h2νÞ

ρ1;…ρk−1 is a conformal Killing tensor.
(v) If h1, h2 are generalized Killing-Yano k-forms, then

the symmetric tensor

Kμν ¼ h1ðμjρ1;…;ρk−1h2νÞ
ρ1;…;ρk−1

is a Killing tensor.
(vi) Generalized conformal Killing-Yano forms can be

constructed from spinors ψ which solve the twistor
equation with torsion

∇T
Xψ −

1

N
X♭DTψ ¼ 0; (213)

where DT is the Dirac operator with torsion that is
defined shortly.

In contrast to the situation for Killing-Yano tensors, the
Killing tensor generated by squaring a generalized Killing-
Yano need not give rise to a symmetry of the Klein-Gordon
equation.
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One key defining feature of conformal Killing-Yano tensors
is their importance in constructing operators which commute
with the Dirac equation. The situation when torsion is present
is a little more subtle (Houri et al., 2010c; Kubizňák, Warnick,
and Krtouš, 2011). Since the torsion field naturally couples to
particles’ spin, it is perhaps not very surprising that the Dirac
operator should pick up a torsion correction. It was argued by
Houri et al. (2010c) that in the presence of torsion the natural
Dirac operator to consider is

DT ¼ γμ∇μ − 1
24
Tλμνγ

λμν: (214)

In the context of certain supergravities, this is also a natural
Dirac operator to consider as it gives the equation of motion
for the linearized gaugino field in the string frame; see, for
example, Strominger (1986) and Benmachiche, Louis, and
Martinez-Pedrera (2008). This operator also occurs in the
context of complex geometries with torsion (Agricola, 2006;
Apostolov, Calderbank, and Gauduchon, 2006).
It was shown by Houri et al. (2010c) that given a rank-p

generalized conformal Killing-Yano tensor h and provided
that the corresponding anomaly terms,2

AðclÞðhÞ ¼
dðdThÞ
pþ 1

−
T ∧ δTh
n − pþ 1

−
1

2
dT ∧

1
h; (215)

AðqÞðhÞ ¼
δðδThÞ

n − pþ 1
−

1

6ðpþ 1ÞT ∧
3
dTh

þ 1

12
dT ∧

3
h; (216)

vanish, one can construct an operator Lh which (on shell)
commutes with DT , ½DT; Lk� ¼ 0. The ∧m contraction is
defined in Eq. (277). Such an operator provides an on-shell
symmetry operator for a massless Dirac equation. When h is
in addition dT closed or δT coclosed the operator Lh may be
modified to produce off-shell (anti)commuting operators Mk
or Kk.
From this construction it is possible by a formal semi-

classical limiting process to show that generalized conformal
Killing-Yano tensors give rise to symmetries of the super-
symmetric spinning particle mechanics. This can also be
shown directly, as in Kubizňák, Kunduri, and Yasui (2009).
Finally, we note that a partial classification of metrics

admitting nondegenerate generalized conformal Killing-Yano
2-forms, that are analogs of the principal conformal Killing-
Yano form, has been undertaken by Houri et al. (2012).
Matters are complicated here compared to the case without
torsion as there is considerably more freedom inherent in the
ability to specify a torsion.

3. Examples of spacetimes admitting generalized conformal
Killing-Yano tensors

The Chong-Cvetić-Lü-Pope black holes (Chong, Cvetič
et al., 2005) are solutions of D ¼ 5 minimal gauged super-
gravity, whose bosonic sector is governed by the action

S ¼
Z
M

⋆ðRþ ΛÞ − 1

2
F ∧ ⋆F þ 1

3
ffiffiffi
3

p F ∧ F ∧ A: (217)

It was demonstrated by Wu 2009b, 2009a) that the Hamilton-
Jacobi and charged Klein-Gordon equations are separable for
these black holes, as is a modified Dirac equation. The
background admits a Killing tensor; however, this cannot
be expressed as the square of a conformal Killing-Yano tensor.
To fully understand the hidden symmetry of this background,
it is necessary to consider a generalized conformal Killing-
Yano form. The 3-form ⋆F furnishes a natural candidate for a
torsion form. In fact, we set

ffiffiffi
3

p
T ¼ ⋆F. With this identi-

fication, a generalized conformal Killing-Yano tensor exists,
whose square is the Killing tensor.
Another interesting class of spacetimes admitting general-

ized conformal Killing-Yano tensors are the Kerr-Sen black
holes. These extremize the low energy string theory effective
action, which in the string frame is given by

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
e−Φ

�
−Rþ 1

12
HλμνHλμν

− gab∂aΦ∂bΦþ 1

8
FμνFμν

�
; (218)

where F and H are totally antisymmetric.
The Kerr-Sen solutions may be found by a solution

generating technique, starting with the well-known Kerr
solution (Sen, 1992; Wu and Cai, 2003). The string-frame
fields are given by

ds2¼eΦ
�
−
Δ
ρ2b

ðdt−asin2θdφÞ2

þsin2θ
ρ2b

�
adt−ðr2þ2brþa2Þdφ

�
2

þρ2b
Δ
dr2þρ2bdθ

2

	
;

H¼−
2ba
ρ4b

dt∧dφ∧ ½ðr2−a2cos2θÞsin2θdr−rΔsin2θdθ�;

A¼−
Qr
ρ2b

ðdt−asin2θdφÞ;

Φ¼2 ln

�
ρ

ρb

�
; (219)

where

ρ2 ¼ r2 þ a2cos2θ; ρ2b ¼ ρ2 þ 2br

Δ ¼ r2 − 2ðM − bÞrþ a2:
(220)

The solution describes a black hole with mass M, charge Q,
angular momentum J ¼ Ma, and magnetic dipole momentum
μ ¼ Qa. When the twist parameter b ¼ Q2=2M is set to zero,
the solution reduces to the Kerr solution of vacuum general
relativity.

2It is only the first condition AðclÞ ¼ 0, which emerges from the
classical spinning particle approximation. Correspondingly, we call
AðclÞ a classical anomaly and AðqÞ (which appears only at the operator
level) a quantum anomaly.
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The Kerr-Sen black hole admits a generalized conformal
Killing-Yano tensor where the torsion is identified as the
naturally occurring 3-form H (Houri et al., 2010b). As can be
easily seen from the expression for the fields, when b ¼ 0 H
vanishes and the generalized conformal Killing-Yano reduces
to the principal conformal Killing-Yano tensor of Kerr.
As a result of the existence of the generalized conformal

Killing-Yano tensor, the equations of motion for a charged
particle moving in the Kerr-Sen background separate.
Furthermore, the natural linear scalar field equations separate,
as does the Dirac equation (Houri et al., 2010b; Wu and Cai,
2003). The properties generalize to the higher-dimensional
analogs of the Kerr-Sen black hole found by Chow (2008).

D. Killing-Yano tensors and G-structures

Some special geometries that are known in the literature
present reduced holonomy, and among reduced holonomy
spaces a number of these are known to admit conformal
Killing-Yano tensors and conformal Killing-Yano tensors with
torsion. Such spaces are of interest from the intrinsic geo-
metrical point of view, and as they naturally arise as solutions
of gauged and ungauged supergravity theories, and can have
potential application in the AdS/CFT correspondence. In this
section we limit ourselves to Riemannian signature.
We begin with a brief reminder of the concept of reduced

holonomy. Given an n-dimensional Riemmanian manifoldM
with a metric g and a connection ∇, parallel transport of
tensors around closed loops will in general result in the tensors
being changed by an OðnÞ transformation, SOðnÞ in case M
is orientable. While in flat space the transformation would be
trivially the identity, in a generic curved space this need not be
so, and this is accounted for by the curvature of the
connection. Such nontrivial transformations form a group,
the holonomy group of M. It is possible to prove that the
holonomy group is a closed Lie subgroup of OðnÞ, in
particular, compact (Borel and Lichnerowicz, 1952). A
theorem by Ambrose and Singer (1953) relates the Lie algebra
of the holonomy group to the transformations generated by the
curvature 2-form of ∇. When the holonomy group is strictly a
subgroup of SOðnÞ then it is said that the holonomy of
ðM; g;∇Þ is reduced. Berger (1955) gave a complete classi-
fication of the possible holonomy groups for Riemannian
manifolds that are simply connected, irreducible, and non-
symmetric. What is known as Berger’s list includes the groups
UðmÞ, SUðmÞ, SpðmÞ, SpðmÞ · Spð1Þ, G2, and Spinð7Þ,
which we discuss in more detail in this section. On the other
hand, Riemannian symmetric spaces are locally isometric
to homogeneous spaces of the kind G=H, which have
holonomy H.
A concept related to reduced holonomy is that of a

G structure. Given the natural GlðnÞ frame bundle associated
with M and a group G, a G structure is a principal G sub-
bundle. In several cases the G structure can be prescribed by a
set of tensors that do not vanish at any point and that are
invariant under the action of G, for example, an almost
complex structure J determines a Glðn=2;CÞ structure.
These cases are relevant for physics since manifold with
special tensors appears naturally for examples in solutions of
supergravity theories. In fact, in this context the formalism of

G structures has evolved into a machinery that has been used
to classify supergravity solutions. The literature in this respect
is quite vast: for an initial list of examples, by no means
complete, see Tod (1983), Mac Conamhna (2004), Cariglia
and MacConamhna (2005), Gauntlett, Gutowski, and Pakis
(2003), Gauntlett and Pakis (2003), and Meessen, Ortin, and
Vaula (2010) and referring works.
There is a relation between G structures given by a set of

tensors and reduced holonomy when for examples such
tensors are covariantly constant. As G is a subgroup of
OðnÞ we can write in terms of Lie algebras soðnÞ ¼
gþ g⊥, and decompose the Levi-Cività connection as

∇ ¼ ∇g þ ∇g⊥ ; (221)

where ∇g takes values in g and, respectively, ∇g⊥ in g⊥. If the
tensors are covariantly constant then it must be ∇ ¼ ∇g, and
the holonomy group is necessarily a subgroup of G. For
example, in the case of the groups in Berger’s list each of them
can be obtained as a holonomy group for a given set of
covariantly constant forms.
It is possible to generalize the above construction by

considering G-invariant tensors that have nonzero covariant
derivative. The covariant derivative of the G-invariant tensors
can be decomposed into irreducible representations of G, and
thus classified. This has been done for the first time, in the
case of almost Hermitian manifolds, by Gray and Hervella
(1980), then for G2 structures by Fernández and Gray (1982),
for SUðnÞ structures by Chiossi and Salamon (2002), and for
SpðmÞ structures by Cabrera and Swann (2008). There are
works that generalize these results: Brozos-Vázquez, García-
Río, Gilkey, and Hervella study manifolds with pseudo-
Riemannian metrics and discuss the pseudo-Hermitian and
para-Hermitian cases (Brozos-Vázquez et al., 2012), while
Barberis, Dotti, and Santillán (2012) studied properties of the
Killing-Yano equation on Lie groups. Santillan (2012) ana-
lyzed the Killing-Yano equation for a number of structures
outside those of the Berger type analyzed by Papadopoulos.
Papadopoulos (2008) showed that theKilling-Yano equation

can be solved on manifolds that admit forms associated with a
G structurewhereG is one of the groups in Berger’s list, and the
candidate conformal Killing-Yano form is built from the
G-invariant tensors. This implies constraints on the covariant
derivatives of the tensors that can be classified as above.
Papadopoulos (2012) obtained similar results in the case of
connections with totally skew-symmetric torsion. When the
resulting manifolds admit Killing spinors, a direct construction
of conformal Killing-Yano forms in terms of spinor bilinears
was given by Semmelmann (2003) and Cariglia (2004).
The results of Papadopoulos (2008) were obtained as

follows. One starts from the definition of a Killing-Yano
form, Eqs. (26) and (27) with δh ¼ 0:

∇λhμ1���μr ¼ ∇½λhμ1���μr�: (222)

By taking h to be one of the G-invariant forms associated with
one of the groups in Berger’s list, automatically ∇gh ¼ 0 and
Eq. (222) becomes a set of constraints for the components of
the connection along g⊥. By using a frame that is adapted to
the G structure, i.e., such that the special tensors have
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canonical components in the frame, calculations tend to
simplify and it is possible to compute the restrictions that
the Killing-Yano equation imposes on the connection. We now
discuss the results found.

1. Uðn=2Þ structures
An almost complex structure J, that is a smooth (1,1) tensor

field onM, defines a Glðn=2Þ structure. If the real metric g is
Hermitian with respect to the complex structure then this
induces a Uðn=2Þ structure. When the Kähler form ω, defined
by ωðX; YÞ ¼ gðX; J · YÞ, is closed the structure becomes an
almost Kähler structure, and if in addition the complex
structure is integrable then one has a Kähler structure.
One can choose an adapted frame feig ¼ feα; eβ̄g, such

that g ¼ δijeiej ¼ 2δaβ̄e
αeβ̄, and ω ¼ −iδaβ̄eα ∧ eβ̄, and look

for conditions under which ω or ω∧k are Killing-Yano
forms. The Gray-Hervella decomposition of the frame con-
nection under Uðn=2Þ irreducible representations yields four
such representations, usually indicated with W1;…; W4.
These arise as such: the tensor ∇ω has components in
T�M ⊗ uðn=2Þ⊥ of the type

ð∇ωÞαβγ; ð∇ωÞαβ̄ γ̄; ð∇ωÞᾱβγ; ð∇ωÞᾱ β̄ γ̄: (223)

Since in the adapted frame the components of ω are constant,
∇ω can be rewritten in terms of the spin connection Ωi;jk.
Then the irreducible Uðn=2Þ representations are (Gillard,
2005; Santillan, 2012)

ðW1Þᾱ β̄ γ̄ ¼ ðΩÞ½ᾱ;β̄ γ̄�;
ðW2Þᾱ β̄ γ̄ ¼ ðΩÞᾱ;β̄ γ̄ − ðΩÞ½ᾱ;β̄ γ̄�;

ðW3Þᾱβγ ¼ ðΩÞᾱ;βγ −
2

ðn=2Þ − 1
ðΩÞδ̄; δ̄½γgβ�ᾱ;

ðW4Þα ¼ ðΩÞδ̄; δ̄α:

(224)

The Killing-Yano equation for ω directly implies that it must
always beW2 ¼ 0 ¼ W3 ¼ W4. This means thatM is almost
Kähler; however, its Nijenhuis tensor does not necessarily
vanish. A similar calculation for ω∧k, with 1 < k < n=2,
shows that in this case all the Wi vanish and the manifold is
strictly Kähler.

2. SUðn=2Þ structures
The analysis is similar to that of the preceding case, and in

addition there is an suðn=2Þ invariant complex volume form
Ψ. Now suðn=2Þ⊥ ¼ uðn=2Þ⊥ ⊕ R, and the R factor corre-
sponds to the trace part of the spin connection

ðW5Þᾱ ¼ Ωᾱ;β
β; (225)

which defines a fifth invariance class.
Asking that Ψ is a Killing-Yano tensor amounts to the

condition W4 ¼ W5 ¼ 0, which yields a balanced Hermitian
manifold. Asking that both ω and Ψ are Killing-Yano tensors
gives W2 ¼ W3 ¼ W4 ¼ W5 ¼ 0, which corresponds to a
special almost Kähler manifold, and asking for ω∧k,
1 < k < n=2, and Ψ implies that all the Wi are zero and
the manifold is Calabi-Yau.

3. Spðn=4Þ · Spð1Þ structures
An almost quaternion-Hermitian structure is given by the

presence of three almost complex structures I; J; K, satisfying
the identities f the imaginary unit quaternions, IJ ¼ K, and
cyclic permutations. There is also a fundamental form
χ ¼ ω∧2

I þ ω∧2
J þ ω∧2

K .
The conditions for a single almost complex structure to be a

Killing-Yano tensor are those discussed above for UðmÞ
structures. To analyze when χ is a Killing-Yano tensor one
can choose a frame adapted to I. The components of the spin
connection Ω in ½spðn=4Þ ⊗ spð1Þ�⊥ are given by the ωJ

traceless part of Ωi;αβ, plus the component ~Ωi;αβ̄ that satisfies

ð ~Ω · JÞi;αβ ¼ ð ~Ω · JÞi;½αβ� and ~Ωi;α
α ¼ 0. When n ¼ 8 this

yields four irreducible representations and therefore 24 ¼ 16
different classes, and for n ¼ 12; 16;…, this gives six irre-
ducible representations and 26 ¼ 64 classes. These classes can
be related to ∇χ. One finds that for χ to be a Killing-Yano
tensor all the components of Ω in ½spðn=4Þ ⊗ spð1Þ�⊥ must
vanish, making χ parallel and M quaternionic Kähler.

4. Spðn=4Þ structures
Similar to the previous section, there are three almost

complex structures I; J; K. The components of the spin
connection Ω in spðn=4Þ are similar, but in this case are
not traceless with respect to ωJ: they are given by Ωi;αβ, plus
the component ~Ωi;αβ̄ that satisfies ð ~Ω · JÞi;αβ ¼ ð ~Ω · JÞi;½αβ�.
Asking that ωI is a Killing-Yano tensor yields the same
conditions as in the section on Uðn=2Þ structures; that is, the
only nonzero components of the spin connection are of the
type Ω½α;βγ�. If now one asks that also ωJ is a Killing-Yano
tensor then the only available solution is Ω½α;βγ� ¼ 0, and the
manifold is hyper-Kähler.

5. G2 structures

In an adapted basis a G2 invariant 3-form for a seven-
dimensional manifold is written as

ϕ ¼ cabcea ∧ eb ∧ ec; (226)

where the cabc coefficients are the multiplication constants of
the imaginary octonions. Since G2 ⊂ SOð7Þ is the automor-
phism group of the imaginary octonions, then a G2 rotation of
the adapted frame will leave the form invariant. The spin
connection form Ω, which has values in the adjoint repre-
sentation of SOð7Þ, decomposes naturally into a partΩþ in the
adjoint representation ofG2, with 14 generators, and a partΩ−

in the fundamental representation, with seven generators.
When Ω− ¼ 0 the holonomy is G2 and ϕ is closed and co-
closed. In the general case instead Ω− is parametrized by the
G2 torsion classes (Fernández and Gray, 1982):

dϕ ¼ τ0 � ϕþ 3τ1 ∧ ϕþ �τ3;
d � ϕ ¼ 4τ1 ∧ �ϕþ �τ2:

(227)

The covariant derivative of ϕ can be written as

∇λϕμνρ ¼ Tλαgαβ � ϕβμνρ; (228)
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where the tensor T is the full torsion tensor (Karigiannis,
2009) given by

T ¼ τ0
4
g − τ3 þ τ1 −

1

2
τ2; (229)

with g the metric. Then the Killing-Yano equation for ϕ
implies that τ1 ¼ 0 ¼ τ2 ¼ τ3 ¼ τ4. Structures with only a
nonvanishing τ0 torsion class are nearly parallel G2. A similar
calculation shows that �ϕ is a Killing-Yano tensor only if all
the torsion components are zero and the manifold is
strictly G2.

6. Spin7 structures

A Spin7 form Ψ on an eight-dimensional manifold is self-
dual. If it is to be a Killing-Yano form, then by definition it is
co-closed. Being self-dual it must then also be closed. But
then the Killing-Yano equation implies that it is covariantly
constant, and the manifold is strictly Spinð7Þ.
A similar analysis for the case of the Killing-Yano equation

using a covariant derivative with totally antisymmetric torsion
was done by Papadopoulos (2012), finding that the Killing-
Yano equation in several cases does not uniquely determine
the torsion classes, leaving space for a bigger set of manifolds
with special holonomy. The manifolds found are the target
spaces of supersymmetric nonrelativistic particles with torsion
couplings. The full conformal Killing-Yano equation (27) has
not been analyzed yet. As seen in Sec. VI.D.2, this is useful in
studying symmetry operators of the Dirac equation, for
example. Kubizňák, Warnick, Houri, and Yasui discussed a
classification of the local form of metrics admitting a principal
Killing-Yano tensor with torsion (Houri et al., 2012). Houri,
Takeuchi, and Yasui (2013) discussed deformations of
Sasakian structures in the presence of totally skew-symmetric
torsion, the fact that they possess a closed conformal Killing-
Yano tensor with torsion, and how they arise as solutions of
five-dimensional gauged and ungauged supergravity, and 11-
dimensional supergravity. Houri and Yamamoto (2013) ana-
lyzed five-dimensional metrics with a rank-2 Killing-Yano
tensor with torsion, such that it has a Killing vector as an
eigenvector with zero eigenvalue. They found geometries
among which there are solutions of minimal supergravity and
Abelian heterotic supergravity describing charged, rotating
Kaluza-Klein black holes.

VI. QUANTUM SYSTEMS

In this section we present some examples of quantum
systems that admit hidden symmetries of the dynamics and
then discuss the general theory of separation of variables for
the Schrödinger and Klein-Gordon equations. We finish with a
discussion of the hidden symmetries of the Dirac equation that
are linear in momenta, the only ones for which there exists a
well-established theory. An important application of sepa-
rability both for the Schrödinger and Klein-Gordon equations
and for the Dirac one will be that of Kerr-NUT-(A)dS
black holes.
It is important to notice that hidden symmetries are not

exclusively a feature of classical systems, rather they appear in
quantum systems as well. The nonrelativistic hydrogen atom
and the harmonic oscillator that we discuss are universally

known systems and for these it will be instructive to compare
the classical and quantum treatments of hidden symmetries.
The theory of separation of variables for the Schrödinger

and Klein-Gordon equations is closely related to that of the
Hamilton-Jacobi equation discussed in Sec. III, quantum
hidden symmetries requiring extra conditions relative to
classical ones. One will be able to follow in detail the
differences between the two cases.
Last, we present a relatively detailed discussion of hidden

symmetries of theDirac equation that are linear in the momenta.
We make use of the efficient formalism of differential forms,
where the sections of the Clifford bundle are identified with
differential forms, and the Clifford algebra maps into a non-
commutative algebra of forms. This formalism is superior in
efficiency and clarity to that of calculus with explicit use of
indices.We discuss hidden symmetries in a curved geometry, as
well as the more general concept of hidden symmetries in the
presence of flux fields. We finish discussing the Dirac equation
for the Eisenhart-Duval lift metrics. More examples of quantum
systems with dynamical symmetries and supersymmetries can
be found in Grignani, Plyushchay, and Sodano (1996),
Plyushchay (1996, 2000a), Leiva and Plyushchay (2003),
Correa, del Olmo, and Plyushchay (2005), Correa, Nieto, and
Plyushchay (2007, 2008), Correa and Plyushchay (2007a,
2007b), Correa et al. (2008a, 2010), Correa, Jakubsky, and
Plyushchay (2009), Jakubsky, Nieto, and Plyushchay (2010,
2011), Arancibia, Guilarte, and Plyushchay (2013), and
Arancibia and Plyushchay (2014), and references therein.

A. Hidden symmetries of the quantum isotropic oscillator

The quantum harmonic oscillator is a physical system of
great importance. Rather than providing here a reminder of all
the applications the harmonic oscillator has (in fact, one for
each system the linearization of which is worth studying), we
provide a quote attributed to Sidney Coleman: “The career of a
young theoretical physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction.”
In this section for simplicity we deal with the isotropic

oscillator. We begin describing the classical system from the
point of view of its dynamical symmetry group. The
Hamiltonian function in n dimension is

H ¼
Xn
i¼1

�
p2
i

2m
þ ω2

2
q2i

�
: (230)

Using the rescaled variables ~qi ¼ ðω ffiffiffiffi
m

p Þ1=2qi,
~pi ¼ ðω ffiffiffiffi

m
p Þ−1=2pi, the Hamiltonian can be written asffiffiffiffi

m
p
ω

H ¼ ~H ¼ 1

2

Xn
i¼1

ð ~p2
i þ ~q2i Þ: (231)

We define new variables zi ¼ ~qi þ i ~pi, in terms of which
~H ¼ ð1=2Þz†z and the equations of motion are

dzi
dλ

¼ −izi: (232)

Using these variables it becomes evident that there is an action
of the group UðnÞ on phase space that preserves the
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Hamiltonian, with UðnÞ strictly bigger than the isometry
group OðnÞ. To build conserved charges we proceed as
follows. Let fTa; a ¼ 1;…; n2 − 1g be n × n complex, trace-
less matrices satisfying T†

a ¼ −Ta, that generate the Lie
algebra of SUðnÞ. With these we build the real quantity

Ca ¼
1

2i
z†Taz: (233)

The only element of the Lie algebra of UðnÞ we are not
describing with these is a multiple of the identity matrix,
which would give rise to the Hamiltonian through a formula
analog to Eq. (233). It is straightforward to check that the Ca
quantities are conserved:

dCa

dλ
¼ 1

2i
½−z†Tað−izÞ þ ðiz†ÞTaz� ¼ 0: (234)

A direct calculation shows that

XCa
¼ −2i

Xn
i¼1

½∂ z̄iCa∂zi þ 2i∂ziCa∂ z̄i �

¼ −
Xn
i¼1

½Ta;ijzj∂zi þ ðTa;ijzjÞ�∂ z̄i �: (235)

In general, transformations that are not isometries will alter the
shape of the trajectory. To illustrate the principle we examine
in detail the case n ¼ 2. Then there are three Ta matrices:

T1 ¼
�
0 i

i 0

�
;

T2 ¼
�

0 1

−1 0

�
;

T3 ¼
�
i 0

0 −i
�
:

(236)

The matrix T2 is real and therefore generates an isometry: T2,
in fact, is the generator of the SOð2Þ Lie algebra acting on
configuration space by δ ~q1 ¼ ϵ ~q2, δ ~q2 ¼ −ϵ ~q1, and the same
for the ~pi. This is a rotation in the 1, 2 plane. The matrix T3

instead generates a forward time evolution in the ð ~q1; ~p1Þ
variables, and a backward time evolution in the ð ~q2; ~p2Þ
variables. Last, the finite transformation associated with T1

can be obtained by exponentiation:

z0 ¼ exp ðsT1Þz ¼
�

cos s i sin s
i sin s cos s

�
z; (237)

where s is a continuous, real parameter, or equivalently

~q01¼ coss ~q1−sins ~p2; ~p0
1¼ coss ~p1þsins ~q2;

~q02¼ coss ~q2−sins ~p1; ~p0
2¼ coss ~p2þsins ~q1:

(238)

Consider, for example, the trajectory λ ↦ (z1ðλÞ; z2ðλÞ)

~q1 ¼ A cos λ; ~p1 ¼ −A sin λ;

~q2 ¼ A sin λ; ~p2 ¼ A cos λ;
(239)

where A > 0 is constant. This is such that ~q21 þ ~q22 ¼ A2, and
similarly for the ~p variables, describing circles in the ~q and ~p
planes with maximum amplitude A. Applying transforma-
tion (238) with s ¼ π=4 we get

~q01 ¼ 0; ~p1 ¼ 0;

~q02 ¼
ffiffiffi
2

p
A sin λ; ~p0

2 ¼
ffiffiffi
2

p
A cos λ;

(240)

which is a harmonic motion along the 2 direction, with
amplitude

ffiffiffi
2

p
Awhich is the correct factor in order to maintain

the same energy.
In fact, applying the transformation (238) we can obtain all

possible trajectories of a given energy E, since the space of
trajectories of a given energy E in phase space is two
dimensional, and we can act with the independent trans-
formations generated by T1, T2, and T3: the action of Uð2Þ on
such space is transitive. The same holds for a generic
dimension n > 2: UðnÞ has n2 generators, with n of these
of the diagonal type, similar to the T3 matrix of the n ¼ 2 case.
These act on each individual pair of variables ð ~qi; ~piÞ as the
forward or backward time evolution. Next, there are nðn − 1Þ
independent nondiagonal transformations. Since the space of
trajectories of a given energy E is 2ðn − 1Þ dimensional, these
are enough to provide a transitive action. We then say that
under the action of UðnÞ there is a unique representative in
each family of trajectories of energy E, E > 0.
The quantum model follows a similar description. The

Hamiltonian is

H ¼
Xn
i¼1

�
P2
i

2m
þ ω2

2
Q2

i

�
; (241)

with ½Ql; Pm� ¼ iℏδlm. The analog of the z, z† variables are
now ladder operators: first define

~Qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=2ω

2ℏ

s
Qi;

~Pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ℏm1=2ω

r
Pi;

and

ai ¼ ~Qi þ i ~Pi: (242)

Then the commutation relations become ½a; a†� ¼ 1 and the
Hamiltonian is written as

H ¼ ℏωffiffiffiffi
m

p
�
a†aþ n

2

�
: (243)

For any matrix T that is a linear combination with real
coefficients of the Ta defined above, the operator Û ¼
exp ða†TaÞ is unitary and acts on a as

Û†aÛ ¼ expðTÞa; (244)
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and therefore it induces a unitary transformation on a that
leaves the Hamiltonian invariant. Conversely, all unitary
transformations on a can be written for some operator Û in
this form. Given the vacuum state j0i such that aij0i ¼ 0 ∀i
and Uj0i ¼ j0i, a generic state is written as

jl1;…; lni ¼
1ffiffiffiffiffiffi
l1!

p � � � 1ffiffiffiffiffiffi
ln!

p ða†1Þl1 � � � ða†nÞln j0i; (245)

and has energy

E ¼ ℏωffiffiffiffi
m

p
�X

i

li þ
n
2

�
¼ ℏωffiffiffiffi

m
p

�
Lþ n

2

�
.

There is a degeneracy in the energy levels that is not explained
only by the SOðnÞ symmetry; however, one can note that the
state above transforms as aUðnÞ tensor with L ¼ P

ili indices
on Cn. Acting with UðnÞ transformations one can recover all
possible combinations of indices and therefore UðnÞ acts
transitively on the states of a given energy E. Last, it is worth
rephrasing the result as follows. States as per Eq. (245) are
solutions of the Schrödinger equation associated with the
Hamiltonian (246). The operators Û are symmetry operators,
meaning that ½Û; H� ¼ 0. Therefore they transform solutions
of the Schrödinger equations into solutions. This theme of
quantum dynamical symmetries being associated with oper-
ators that transform solutions of a differential equation into
solutions will keep appearing in the rest of this section.

B. Nonrelativistic hydrogen atom

For a short historical discussion of the inverse square
central potential see Sec. II.B.3 on the classical Kepler
problem. Quantum mechanically several features are either
kept unchanged or follow with appropriate changes. The
Schrödinger equation for the nonrelativistic hydrogen atom is�

−
ℏ2

2m
∇2 −

e2

r
− E

�
ψð~rÞ ¼ 0: (246)

Since there is a manifest SOð3Þ isometry one can separate
variables using spherical coordinates, such that

∇2 ¼
�
1

r
∂rr

�
2

þ 1

r2
ΔS2 ; (247)

where ΔS2 is the Laplacian on the 2-sphere

ΔS2 ¼
1

sin θ
∂θðsin θ∂θÞ þ

1

sin2θ
∂2
ϕ; (248)

which has the spherical harmonics Yl
mðθ;ϕÞ as eigenfunctions

with eigenvalues −lðlþ 1Þ, where l ¼ 0; 1; 2;… and −l ≤
m ≤ þl are integers. Assuming

ψð~rÞ ¼ 1

r
RðrÞYl

mðθ;ϕÞ; (249)

one gets an ordinary differential equation for R:

�
d2

dr2
−
lðlþ 1Þ

r2
þ 2me2

ℏ2r
þ 2mE

ℏ2

�
RðrÞ ¼ 0: (250)

L2 solutions with appropriate boundary behavior are indexed
by a radial quantum number n and the eigenvalues of the
energy for bound states are

EN ¼ −
mc2α2

2N2
; (251)

where mc2α2=2 ∼ 13.6 eV, and N ¼ nþ lþ 1, with 0 ≤ l ≤
N − 1 for a given value of n. Therefore there is a degeneracy
in the states of a given EN : there are

P
N−1
l¼0 ð2lþ 1Þ ¼ N2

states, many more then one would expect from the SOð3Þ
symmetry alone.
The reason for this is the quantum mechanical version of

the Laplace-Runge-Lenz vector, associated again with an
Oð4Þ group of dynamical symmetries. The quantum mechani-
cal version of Eq. (72) is given by

~A ¼ 1

2
ð~p × ~L − ~L × ~pÞ −me2

~r
r
; (252)

where all quantities in this section are intended in the sense of
operators. The reason why Eq. (252) is used instead of (72) is
that the former presents the right operator ordering to make the
result self-adjoint, as showed initially by Pauli (1926). The
quantum Laplace-Runge-Lenz vector is again a conserved

quantity, in the sense that ½~A;H� ¼ 0. The SOð4Þ algebra
relations hold in the following form:

½Li; Lj� ¼ iℏ
X3
k¼1

ϵijkLk;

½Li; Aj� ¼ iℏ
X3
k¼1

ϵijkAk;

½Ai; Aj� ¼ −2imHℏ
X3
k¼1

ϵijkLk;

(253)

so that exponentiating these operators one finds the SOð4Þ
group of dynamical symmetries, Oð4Þ adding parity. Once

again, the conditions ½~L;H� ¼ 0, ½~A;H� ¼ 0 mean that Oð4Þ
transformations will transform solutions of the Schrödinger

equation into solutions, while ½L2; ~A� ¼ 2iℏ~A means that they
will not in general preserve the square of the angular
momentum. Therefore the Oð4Þ dynamical group transforma-
tions deform different orbitals associated with the same energy
one into the other, and it is possible to show that this action is
transitive on the states of a given energy.

C. Schrödinger and Klein-Gordon equations

In this section we study the following equation for a scalar
field ψ : �

−
ℏ2

2
Δþ VðqÞ − E

�
ψ ¼ 0; (254)
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where Δ ¼ ∇μðgμνÞ∇ν, g is a metric, ∇ is the covariant
derivative with respect to the Levi-Cività connection, and E is
a constant. When the metric is Riemannian Eq. (254) becomes
the time independent Schrödinger equation in a potential,
while if the metric is pseudo-Riemannian it becomes the
relativistic Klein-Gordon equation. With this in mind, in
the reminder of this section we refer to it loosely as the
Schrödinger equation.

1. The general theory of separation of variables

A key role in the early development of quantum theory and
of the Schrödinger equation was played by the hydrogen atom
that had a simple analytical solution. As seen in Sec. VI.B, the
Schrödinger equation separates due to the symmetry of the
problem. In fact, systems for which the Schrödinger equation
separates are extremely important as they provide examples
for which we can obtain analytic solutions. In this section we
admit arbitrary signature metrics but we exclude the techni-
cally more involved case of null second class coordinates. The
first important point to make, as mentioned in Sec. II.B.8, is
that in general the operator version of a quantity that is
conserved for the analogous classical problem of motion in the
metric g with potential V will not provide a good quantum
number, due to anomalous contributions to the conservation
law. Such anomalies arise in a curved background and were
pointed out first by Carter (1977). Carter found that for a rank-
2 Killing tensor K they are proportional to

Kμ
λRλν − Rμ

λKλν ¼ gνρ½K;R�μρ; (255)

where R is the Ricci tensor, and by ½K;R� we mean the matrix
commutator of K and R thought of as linear operators on the
tangent space. No anomalous terms rise for Killing vectors
instead. Therefore the quantum symmetries will be non-
anomalous only if K and R commute and admit common
eigenvalues. The term above arises from quantum integrability
conditions in a curved geometry. For a classically separable
system it says that the Killing web has to be compatible with
the presence of curvature. The equation

KR ¼ RK (256)

is called the Robertson condition. It is clearly satisfied if the
Ricci tensor is zero or, more generally, if the space is Einstein.
There is another notable case: every time the Killing tensor K
is obtained by taking the square of a Killing-Yano tensor the
Robertson condition is automatically satisfied.
We can make these statements more precise. We start by

defining separability of the Schrödinger equation according to
Benenti (Benenti, 2002; Benenti, Chanu, and Rastelli, 2002a,
2002b). There are two natural definitions of separability. We
say that the Schrödinger equation (254) is freely separable if it
admits a complete separated solution

ψðq; cÞ ¼
Yn
μ¼1

ψμðqμ; cÞ (257)

that depends on 2n parameters c ¼ ðCMÞ ¼ ðc1;…; c2nÞ that
satisfy the completeness condition

det

�∂uμ
∂cM

∂vμ
∂cM

�
≠ 0; (258)

where

uμ ¼
ψ 0
μ

ψμ
; vμ ¼

ψ 00
μ

ψμ
.

This notion of separability is directly linked to classical
separability in orthogonal coordinates and can occur only for
this type of coordinates, the classical separability being a
necessary but in general not sufficient condition. In fact, one
can prove the following:
Theorem.—The Schrödinger equation is freely separable if

and only if there exists a characteristic Killing tensor K (with
simple eigenvalues and normal eigenvectors) such that
dðKdVÞ ¼ 0, and the Robertson condition holds.
As discussed in Sec. III this implies that the Hamilton-

Jacobi equation for the HamitonianH ¼ ð1=2Þgμνpμpν þ V is
separable in orthogonal coordinates. When expressed in
orthogonal coordinates, the Robertson condition becomes
Rμν ¼ 0 for μ ≠ ν.
There exists another notion of separability of the

Schrödinger equation that relates to classical separability in
nonorthogonal coordinates. We say that ψ is a reduced
separated solution if it can be written as

ψðq; cÞ ¼
Ym
a¼1

ψaðqa; cÞ ·
Yn

α¼mþ1

exp ðkαqαÞ: (259)

This time there are 2m parameters c ¼ ðcAÞ ¼ ðc1;…; c2mÞ in
the ψa part of the solution, and n −m parameters kα in the
remaining part. This solution is called reduced because one is
reducing the initial possible freedom of having arbitrary
separated functions, trading this off for a specific exponential
form. In total therefore there are nþm free parameters, and
the completeness condition is expressed as

det

�∂ua
∂cA

∂va
∂cA

�
≠ 0; (260)

where

ua ¼
ψ 0
a

ψa
; vμ ¼

ψ 00
a

ψa
;

a ¼ 1;…; m. There is a theorem that is the analog of the
previous one (Benenti, Chanu, and Rastelli, 2002b):
Theorem.—The Schrödinger equation is reductively sepa-

rable if and only if there exists a nondegenerate Killing web
ðS; DÞ, where D is a vector space spanned by Killing vectors
as in Sec. III, such that (i) the potential V is D invariant,
DV ¼ 0; (ii) K is a characteristic Killing tensor with pairwise
and pointwise distinct eigenvalues, orthogonal to the leaves of
S, and such that dðKdV ¼ 0Þ; and (iii) the spaces orthogonal
to D are invariant under the Ricci tensor R, interpreted as a
linear operator, and the restrictions to these spaces of R and K
commute.
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Note that condition (iii) above is equivalent to saying that
the essential eigenvectors are eigenvectors of the Ricci tensor
R, or Ricci principal directions. Then the coordinates qα are
ignorable and condition (iii) can be written as Rab ¼ 0
for a ≠ b.
There exists another, more general type of separability, the

so-called R separability (Moon and Spencer, 1952a, 1952b,
1971; Kalnins and Miller, 1978, 1980b, 1982b, 1984;
Chanachowicz, Chanu, and McLenaghan, 2009). A solution
ψ of the Schrödinger equation is said to be R separable if it can
be written as

ψðq; cÞ ¼ RðqÞ
Yn
μ¼1

ψμðqμ; cÞ: (261)

Notice how the R factor does not depend on the constants c.
Kalnins and Miller (1982a, 1983) gave an intrinsic charac-
terization of R separability for the Helmholtz equation (no
potential term) using a set of commuting operators obeying
appropriate conditions, while Chanu and Rastelli (2006)
considered orthogonal coordinates and described conditions
for R separability for a single fixed value of E, which they
called fixed energy R separation (FER separation), and
allowed for a larger number of classes of separable coordi-
nates. In their definition the function ψ in Eq. (261) depends
on 2n − 1 parameters cI ¼ ðc1;…; c2n−1Þ and satisfies the
condition

rank

�∂uμ
∂cI

∂vμ
∂cI

�
¼ 2n − 1; (262)

where

uμ ¼
ψ 0
μ

ψμ
; vμ ¼

ψ 00
μ

ψμ
.

Chanu and Rastelli showed that the coordinates allowing FER
separation as above are necessarily orthogonal and confor-
mally separable (Sec. III.B.4). In fact, they proved a theorem
with necessary and sufficient conditions for FER separation.
We first define the contracted Christoffel symbols

Γμ ≔ gρσΓμ
ρσ; Γμ ≔ gμνΓν. (263)

We also defined a conformal Stäckel metric as a metric g for
which there exists a function Λ such that ḡμμ ¼ gμμ=Λ (no
sum) is a Stäckel metric, i.e., it corresponds to a row of the

inverse of a Stäckel matrix θðνÞμ (Sec. III.B.1). Last we define a
pseudo-Stäckel factor as a function f that can be written as
f ¼ P

μ ~g
μμϕμðqμÞ, where ~g is a conformal Stäckel metric. In

terms of these one has the following;
Theorem.—FER separation for the Schrödinger equa-

tion (254) holds if and only if (1) the coordinates are
orthogonal, (2) the coordinates are conformally separable,
(3) the function R is a solution of

∂μ lnR ¼ 1
2
Γμ (264)

modulo separated factors, and (4) the function

E − V þ ℏ2

2

ΔR
R

is a pseudo-Stäckel factor for g.
From the theorem it follows that the metric

ḡμν ¼ gμν

E − V þ ðℏ2=2ÞΔR=R
(265)

is a Stäckel metric, associated with standard separation of
variables. As such, the geodesic Hamilton-Jacobi equation for
ḡ is separable, and there exists a complete set of independent
Killing tensors in involution, which for g becomes conformal
Killing tensors. This therefore is a necessary condition for
R separation. Another result of Chanu and Rastelli (2006) is
that if the conditions of the theorem are realized for two
different values of the energy E1 ≠ E2, then the same
coordinates allow R separation for all values of E.

2. Klein-Gordon equation for higher-dimensional rotating black
holes

In this section we follow the special notation of Sec. V.B.2,
including the suspension of the Einstein sum convention in
relation to indices of type μ or i.
We have seen in Sec. V.B.2 that Kerr-NUT-(A)dS black

holes and their off-shell generalizations, the canonical metrics
with a principal conformal Killing-Yano tensor, admit a tower
of mutually commuting and independent rank-2 Killing
tensors and Killing vectors. According to the theory discussed
in Sec. III this implies that the Hamilton-Jacobi equation is
separable. Also, since the Killing tensors are built as the
square of Killing-Yano tensors, then the Robertson condition
of Sec. VI.C.1 is satisfied and the Schrödinger equation is
reductively separable. Krtouš and Sergyeyev (2008) proved
the reduced separability by explicitly constructing a set of
commuting operators for the Schrödinger equation and
showing that a reduced separated solution of the form (259)
is a common eigenfunction for all of them. The operators are
given by

LðjÞ ¼ −iℏξðjÞa∇a;

KðjÞ ¼ −ℏ2∇aðKðjÞab∇bÞ:
(266)

These operators are shown to mutually commute by an
explicit calculation

½LðiÞ;LðjÞ� ¼ 0; (267)

½LðiÞ;KðjÞ� ¼ 0; (268)

½KðiÞ;KðjÞ� ¼ 0: (269)

A reduced separated solution is sought of the form

ψ ¼
YN
μ¼1

ψμðxμÞ
YNþϵ−1

k¼0

exp

�
i
ℏ
Ψkψk

�
: (270)

This diagonalizes the mutually commuting operators
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LðiÞψ ¼ Ψiψ ;

KðjÞψ ¼ Ξjψ ;
(271)

if the functions ψμ satisfy the following set of ordinary
differential equations:

ðXμψ
0
μÞ0 þ ϵ

Xμ

xμ
ψ 0
μ þ

1

ℏ2

�
~ΞμðxμÞ −

~Ψ2
μðxμÞ
Xμ

�
ψμ ¼ 0; (272)

where the functions ~Ψμ and ~Ξμ are defined by

~Ψμ ¼
XNþϵ−1

k¼0

Ψkð−x2μÞN−1−k;

~Ξμ ¼
XNþϵ−1

k¼0

Ξkð−x2μÞN−1−k:

(273)

D. Dirac equation

The Dirac equation was derived in 1928, and among its
successes are the description of the relativistic hydrogen atom
and the prediction of the existence of antiparticles. It is
possible to study relativistic spin-1=2 particles on a curved
background by writing the Dirac equation with a curved
metric. With time, mainly inspired by unification theories such
as the string or M theory and by cosmological models, people
have studied extensions of the equation to dimensions higher
than 4.
Hidden symmetries of the dynamics are found studying the

Dirac equation in appropriate backgrounds, as seen in this
section, and in its classical limit, the spinning particle, as seen
in Sec. II.B.8. The key geometrical objects associated with
hidden symmetries are conformal Killing-Yano tensors. This
can be compared to the case of the classical Hamilton-Jacobi
equations, the Schrödinger equation, and the Klein-Gordon
equation, where the main objects playing a role are Killing
vectors and rank-2 Killing-Stäckel tensors, as described in
Secs. III, IV, and VI.C. With the special tensors one can build
either conserved quantities in the classical theory or symmetry
operators in the quantum mechanical one. For the Dirac
equation there is as yet no complete theory of the separation of
variables. There is a clear picture for what concerns symmetry
operators of first order in the derivatives, and several important
known examples fit into this case, such as the Dirac equation
in the Kerr metric, the higher-dimensional Kerr-NUT-(A)dS
metrics, or the Eisenhart-Duval lift metrics discussed in this
section. Open avenues for future research are the description
of symmetry operators of order higher than 1 in the derivatives
for the Dirac operator and the construction of a theory of
separation of variables.

1. Gamma matrices and differential forms

The typical objects that appear in the theory of symmetry
operators of the Dirac equation are commutators and anti-
commutators of Clifford bundle-valued differential operators.
Analyzing such objects using explicit index tensor calculus
leads to long and complicated formulas. A natural formalism
that allows for practical symbolic calculations is instead one

which identifies sections of the Clifford bundle with differ-
ential forms (Benn and Tucker, 1987). Then operations of
commutation and anticommutation can be translated into the
language of differential forms. Also, the properties of con-
formal Killing-Yano tensors, which are originally defined as
differential forms, automatically lift to those of appropriate
differential operators defined on the Clifford bundle.
We use the following conventions. The base spacetime is a

pseudo-Riemannian spin manifold M of dimension n with
metric gμν and local coordinates fxμg. We use lowercase
Greek indices to denote components of spacetime tensors,
associated with general diffeomorphism transformations, and
lowercase Latin indices to denote components associated with
SOðm; n −mÞ transformations, where m ≥ 0. The Clifford
bundle has fibers with a Clifford algebra generated by the
gamma matrices γμ: these connect the Clifford bundle with the
tangent space. The gamma matrices satisfy

γμγν þ γνγμ ¼ 2gμν: (274)

Using this relation any element α of the Clifford algebra can
be reduced to a sum of antisymmetric products
γμ1���μp ≔ γ½μ1 � � � γμp�:

α ¼
X
p

1

p!
αðpÞμ1���μpγμ1���μp : (275)

The coefficients are given by antisymmetric forms
αðpÞμ1���μp ∈ ΩðpÞðMÞ, the rank-p exterior bundle, giving a
unique representation. We therefore have an isomor-
phism γ� of the Clifford bundle with the exterior algebra

ΩðMÞ ¼ ⨁
n

p¼0

ΩpðMÞ of inhomogeneous antisymmetric

forms α ¼ γ�α, where α ¼ P
pα

ðpÞ is an inhomogeneous
form. We typically write α instead of α to describe an element
of the Clifford algebra every time the context is not
ambiguous.
The metric musical isomorphism allows raising and low-

ering: if ω is a 1-form and V a vector, we denote the
corresponding vector and 1-form as ω♯ and V♭, respectively,
with the natural extension to higher rank tensors.
We remind the reader that we defined the wedge product

between forms in Eq. (2) and the hook operation in Eq. (12).
We can decompose a product of any two rank-p and rank-q

gamma matrices γμ1���μp and γν1���νq over single gamma matrices
by using the Clifford algebra relation (274). In terms of a
product of forms, for α ∈ ΩpðMÞ, β ∈ ΩqðMÞ Clifford
bundle forms, with p ≤ q, the Clifford product is explicitly
written as

αβ ¼
Xp
m¼0

ð−1Þmðp−mÞþ½m=2�

m!
α∧
m
β: (276)

∧m is a contraction operator that is defined by recursion:
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α∧
0
β ¼ α ∧ β;

α∧
k
β ¼ ðXa⌟αÞ ∧

k−1ðX
a⌟βÞ ðk ≥ 1Þ;

α∧
k
β ¼ 0 ðk < 0Þ:

(277)

In Eq. (277) the Xa vectors are an orthonormal basis defined as
follows. Given a set of n beins feaμg, we can build n 1-forms
ea ¼ eaμdxμ, with Xa ¼ ðeaÞ♯ a dual vector basis. The ea are
mapped under γ� to a set of matrices that satisfy an equation
analog to Eq. (274) but with the flat metric ηab instead of gμν.
The coefficients eaμ or their inverse Eμ

a act as transformation
matrices to exchange curved spacetime indices with flat
locally freely falling ones.
We lift the covariant derivative on ΩðMÞ to one on

γ�(ΩðMÞ) with the following definition for any α in the
Clifford bundle:

∇aα ¼ ∂aα − ωa∧
1
α; (278)

where ∂aα ¼ Xa½α� ¼ Eμ
a∂μα, ωa is the connection 2-form

ωa ¼ ð1=2Þωabceb ∧ ec, and ωabc are the components of the
spin connection.
If we treat the forms feag as a single object defined on

CliffðMÞ × TðMÞ with an SOðnÞ vector index, then its full
covariant derivative is zero:

∇aeb ¼ ∂aeb þ ωa
b
cec − ωa∧

1
eb ¼ 0: (279)

Finally we introduce the parity operator that acts on an
inhomogeneous form α ¼ P

pα
ðpÞ as

ηα ¼
X
p¼0

ð−1ÞpαðpÞ: (280)

In this formalism the Dirac operator is written asD≡ea∇a¼∇aea, the exterior derivative acting on forms d ¼ ea ∧ ∇a ¼∇aea ∧, and the codifferential δ ¼ −Xa⌟∇a ¼ −∇aXa⌟.

2. Linear symmetry operators

Given a local differential operator such as the Dirac
operator D, an R commuting operator S is an operator that
satisfies

DS ¼ RD (281)

for some operator R. These operators transform solutions of
Dψ ¼ 0 into solutions: given ψ 0 ¼ Sψ , this satisfies
Dψ 0 ¼ DSψ ¼ RDψ ¼ 0, so that ψ 0 is also a solution. In
particular, commuting operators are important, as their eigen-
values yield quantum numbers characterizing the solution,
analogs of constants of motion.
First-order symmetry operators for the Dirac equations are

well known. They have been described in arbitrary dimension
and signature (Carter and Mclenaghan, 1979; Mclenaghan and
Spindel, 1979; Kamran and Mclenaghan, 1984; Benn and
Charlton, 1997b; Benn and Kress, 2004). However, in general
first-order symmetry operators are not sufficient to describe
separability. Fels and Kamran (1990) have shown that there

exist systems with a separable Dirac equation that is explained
by symmetry operators of the order higher than 1. There exist
cases where second-order symmetry operators have been
built; see Carignano et al. (2011), and references therein.
Nevertheless, there is no general construction that is known
for arbitrary dimension, nor are necessary and sufficient
conditions for separability known.
As seen in Sec. II.A.3 Killing-Yano tensors are special

forms satisfying Eq. (27). The equations generalize to the case
of inhomogeneous forms. R-symmetry operators of the
massless Dirac operator that are first order in derivatives
can be written uniquely in terms of conformal Killing-Yano
forms, independently of the dimension n or the signature, as
shown by Benn and Charlton (1997b) and Benn and Kress
(2004). The generic form of these operators is

S ¼ Sh þ αD; (282)

where α is an arbitrary inhomogeneous form, representing the
freedom to add an operator proportional to D, while Sh is
given by

Sh ¼ Xa⌟h∇a þ
π − 1

2π
dh −

n − π − 1

2ðn − πÞ δh; (283)

with h being an inhomogeneous conformal Killing-Yano form
h obeying Eq. (27). π is the degree operator defined in
Sec. II.A.3.
In the special case of strict commutation, the operator S

splits into the Clifford even and Clifford odd parts (Cariglia,
Krtouš, and Kubizňák, 2011a)

S ¼ Se þ So; (284)

where

Se ¼ Kho ≡ Xa⌟ho∇a þ
π − 1

2π
dho; (285)

So ¼ Mhe ≡ ea ∧ he∇a −
n − π − 1

2ðn − πÞ δhe; (286)

where ho is an odd Killing-Yano form and he is an even closed
conformal Killing-Yano form.

3. Separability in Kerr-NUT-(A)dS metrics

Especially interesting is the case when one has a complete
set of mutually commuting operators and their common
eigenfunctions can be found by separating variables. The
corresponding eigenvalues then completely characterize the
separated solution and play the role of separation constants.
One nontrivial example is given by the higher-dimensional

Kerr-NUT-(A)dS black hole metrics of Sec. V.B.2, where the
Dirac equation is separable (Oota and Yasui, 2008) and the
separability is fully accounted for by a complete set of linear
symmetry operators that are mutually commuting and admit
common separable spinorial eigenfunctions.
In this background there exist N þ ε Killing vectors

ξð0Þ;…; ξðN−1þεÞ and N closed conformal Killing-Yano forms
hðjÞ. We associate with them operators Kξð0Þ ;…; KξðN−1þεÞ and,
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respectively, Mhð1Þ ;…;MhðN−1Þ . Using the results of
Sec. VI.D.2 we know that each of these commutes with the
Dirac operator D. Cariglia, Krtouš, and Kubizňák (2011a)
showed that all the operators are mutually commuting.
Therefore, they can be simultaneously diagonalized and it
is possible to construct common spinorial eigenfunctions. The
solution to the eigenvalue problem,

KξðkÞχ ¼ iΨkχ; Mjχ ¼ mjχ; (287)

can be found in the tensorial R-separated form (Cariglia,
Krtouš, and Kubizňák, 2011b)

χ ¼ R exp

�
i
X
k

Ψkψk

�
⨂
ν
χν; (288)

where fχνg is an N-tuple of two-dimensional spinors and R is
a Clifford bundle-valued prefactor. χν is a function of the
variable xν, χν ¼ χνðxνÞ, and satisfies

��
d
dxν

þ X0
ν

4Xν
þ

~Ψν

Xν
ιhνi þ

ε

2xν

�
σhνi

−
ð−ιhνiÞN−νffiffiffiffiffiffiffiffijXνj
p �

ε
i

ffiffiffiffiffiffi
−c

p
2x2ν

þmν

��
χν ¼ 0; (289)

where

~Ψμ ¼
X
k

Ψkð−x2μÞN−1−k; (290)

and

mν ¼
X
j

ð−iÞjmjð−ιhνixνÞN−1−j: (291)

ιhνi is an operator acting only the 2-spinor χν as a σ3 Pauli
matrix, and σhνi acts similarly as a σ1 matrix.
The common eigenspinor (288) is the solution given by

Oota and Yasui (2008) that was found with a direct calculation
that proved separability. The eigenvalues Ψk and mj are
mapped into the arbitrary integration constants found there.
A similar construction holds for weakly charged rotating black
holes (Cariglia et al., 2013a).

4. Fluxes

In some cases of physical interest the Dirac operator gets
modified by the inclusion of flux terms. Typically this happens
in backgrounds with scalar potential, including the massive
Dirac equation, backgrounds with electromagnetic fields,
torsion, or higher order forms in supergravity and superstring
related geometries. It is still possible to study operators that R
commute with the modified Dirac operator (Kubizňák,
Warnick, and Krtouš, 2011), or that graded commute with
it (Açik et al., 2009). Here we focus our attention on the
solution generating the R-commuting case. One interesting
feature arising is that, different from the cases discussed so far
with no flux, where the existence of conformal Killing-Yano
tensors guarantees having linear R-commuting operators, in

the presence of flux anomalies can appear. This means that
even if special tensors exist that satisfy a modified conformal
Killing-Yano equation with flux, in general these will not
generate linear R-commuting operators unless they satisfy an
additional set of constraints.
When fluxes are present they can be represented by an

inhomogeneous form B. Then the Dirac operator with flux is
written as

D ¼ Dþ B: (292)

We define a bracket operator on forms and on the Clifford
bundle by setting

fα; βg≡ αβ − ð−1Þqβα; (293)

for a p form β and a q form α. Then an R-commuting operator
S satisfies

fD; Sg ¼ RD (294)

for some operator R. As before, there is the freedom to add a
term αD, which has the result of at most changing the operator
R. We follow the argument of Benn and Kress (2004) to
construct the generic symmetry operator of D: we look for a
special operator S,

S ¼ 2ha∇a þ Ω; (295)

where ha and Ω are for now unknown inhomogenous forms.
We ask that S satisfy Eq. (294), with R an inhomo-
geneous form.
First, one finds that ha can be generated from an inhomo-

geneous form h via

ha ¼ Xa⌟h; (296)

where the form h satisfies the generalized conformal Killing-
Yano equation

∇ah −
1

π þ 1
Xa⌟dhþ 1

n − π þ 1
ea ∧ δhþ fB;ωag⊥ ¼ 0:

(297)

Here ð·Þ⊥ is the following projector operator for inhomo-
geneous forms:

ðαaÞ⊥ ≡ αa −
1

π þ 1
Xa⌟ðeb ∧ αbÞ

−
1

n − π þ 1
ea ∧ ðXa⌟αaÞ; (298)

which satisfies ea ∧ ðαaÞ⊥ ¼ 0 ¼ Xa⌟ðαaÞ⊥.
Second, the Ω term in Eq. (295) is given by

Ω ¼ π − 1

π
dh −

n − π − 1

n − π
δh −

1

n − π
Xa⌟fB; hag

−
1

π
ea ∧ fB; hag þ f þ ϵ; (299)
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where f and ϵ are an arbitrary 0-form and, respectively,
n form. R is given by

R ¼ −
2η

n − π
δhþ 2η

n − π
Xa⌟fB; hag − 2ηϵ; (300)

with η being the parity operator defined in Eq. (280). In
general it is not sufficient that h satisfies Eq. (297) to generate
an R-symmetry operator S as given by Eq. (295). There is one
last condition to be satisfied:

δ

�
1

n − π
Xa⌟fB; hag

�
− d

�
1

π
ea ∧ fB; hag

�
−∇afB; hag

þ fB;Ωg − 2ðηhaÞ∇aB − RBþ df − δϵ ¼ 0: (301)

This condition does not exist in the case of zero flux, the
conformal Killing-Yano equation being sufficient in that case.
For this reason Eq. (301) is sometimes referred to as an
absence of anomalies for a generalized conformal Killing-
Yano tensor to produce an R-commuting operator in the
presence of flux.
One may choose the forms f and ϵ to simplify the

anomalies. We give a number of examples.
The first example is the Dirac equation with potential,

setting B ¼ iV. One gets the conditions

fV; hag ¼ 2Xa⌟ðVheÞ; fV; hag⊥ ¼ 0; (302)

where he is the even part of h. Then h obeys a conformal
Killing-Yano equation with no flux. Fixing f ¼ 0 ¼ ϵ the
anomaly condition is

−2ea∇aðVheÞ þ 2VΩo − 2ðηhaÞ∇aV þ 2η

n − π
δhV ¼ 0:

(303)

There are two interesting specific cases: (i) h is odd, h ¼ ho,
and (ii) h is even, h ¼ he. If h is odd Eq. (303) becomes

ðdVÞ♯⌟h −
V

n − π
δh ¼ 0: (304)

For example, when V ¼ m ¼ const then it must be δh ¼ 0. If
h is even Eq. (303) becomes

dV ∧ hþ V
π
dh ¼ 0; (305)

and when V ¼ m it must be dh ¼ 0. It is known that
symmetry operators of the massive Dirac equation are given
in terms of Killing-Yano tensors of odd rank or in terms of
closed conformal Killing-Yano tensors of even rank (Benn and
Charlton, 1997a).
The second example we consider is when h is a 1-form. In

this case Eq. (297) becomes a conformal Killing vector
equation. The anomaly condition (301) with f ¼ 0 ¼ ϵ
becomes

Lh♯B ¼ −
δh
n
ðπ − 1ÞB: (306)

This is equivalent to invariance under the conformal symmetry
generated by h♯ of the action

S ¼
Z

ðψ̄Dψ þ ψ̄BψÞdnq; (307)

which gives rise to the modified Dirac equation.
The last example is given by Uð1Þ and 3-form fields. If the

Dirac spinor is coupled to a skew-symmetric torsion and a
Uð1Þ field then we can take

B ¼ iA − 1
4
T; (308)

where A is a 1-form and T is a 3-form. As mentioned in
Sec. V.C.1, specifically Eq. (214), the factor of −1=4 arises
naturally if we want to interpret T as the torsion tensor of the
covariant derivative ∇T ¼ ∇þ T, where ∇ is the Levi-Cività
connection.
In general the connection with torsion will act on forms as

∇T
aα ¼ ∇aαþ 1

2
ðXa⌟TÞ∧

1
α: (309)

One can associate with it the following two operations:

δTα ¼ −Xa⌟∇T
aα ¼ δα − 1

2
T ∧

2
α;

dTα ¼ ea ∧ ∇T
aα ¼ dα − T ∧

1
α:

(310)

The generalized conformal Killing-Yano equation (297)
becomes

∇T
ah −

1

π þ 1
Xa⌟dThþ 1

n − π þ 1
ea ∧ δTh ¼ 0; (311)

and each p-form component of h has to satisfy the equation
separately. This equation was originally introduced by
Kubizňák, Kunduri, and Yasui (2009). The Ω and R forms
are given by

Ω ¼ π − 1

π
dh −

n − π − 1

n − π
δThþ 2iA∧

1
h

þ 2 − π

2π
T ∧

1
h −

1

2
T ∧

2
hþ 1

12
T ∧

3
hþ f þ ϵ;

R ¼ −
2η

n − π
δTh − 2ηϵ;

(312)

and S by

S ¼ 2Xa⌟h∇a þ
π − 1

π
dhþ 2iA∧

1
h

þ 2 − π

2π
T ∧

1
h −

1

2
T ∧

2
hþ 1

12
T ∧

3
hþ f; (313)

which is the symmetry operator derived by Houri et al.
(2010c), up to the arbitrary 0-form f and in the case
when A ¼ 0.
The anomaly condition (301) can be reexpressed in the

form
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2iðdAÞ∧
1
hþ AðclÞ þ AðqÞ − df þ δϵ ¼ 0; (314)

where

AðclÞ ¼ 1

π − 1
dðdThÞ − 1

2
dT ∧

1
h

−
1

n − π þ 3
T ∧ δTh; (315)

AðqÞ ¼ 1

n − π − 1
δðδThÞ − 1

6ðπ þ 3ÞT ∧
3
dTh

þ 1

12
dT ∧

3
h; (316)

where one can recognize the “quantum” and “classical”
anomalies discussed by Houri et al. (2010c). It is worth
noting that the A and torsion anomalies are not coupled. If h is
a homogeneous form of rank p then the first three terms in
Eq. (314) are of rank p, pþ 2, and, respectively, p − 2: so
each must be zero independently. Some of these terms might
be further simplified using the freedom of the f and ϵ terms.
When T ¼ 0 this equation has been discussed by Açik et al.
(2009), and when A ¼ 0 by Houri et al. (2010c).
There are two main examples in the literature of generalized

closed conformal Killing-Yano tensors that satisfy the
anomaly equation. One is the generalized closed conformal
Killing-Yano tensor, with torsion given by the 3-form flux H
(Houri et al., 2010b), in Kerr-Sen black hole spacetimes in
generic dimension: it satisfies the anomaly equation with f ¼
0 ¼ ϵ (Sen, 1992; Cvetič and Youm, 1996; Chow, 2008). The
other is minimal five-dimensional supergravity, with the
torsion identified with the dual of the Maxwell field
T ¼ �F= ffiffiffi

3
p

, for the most general black hole solution
(Chong, Cvetič et al., 2005): in this case one has to choose
ϵ ¼ 0 and

f ¼ − 1
12
T ∧

3
h

(Kubizňák, Kunduri, and Yasui, 2009). One can also recover
the symmetry operator

S ¼ 2Xa⌟h∇a þ 3
4
dhþ 2iA∧

1
h (317)

for the massive minimally coupled Dirac equation with torsion
obtained by Wu (2009b) noticing that T ∧

1
h ¼ 0 ¼ T ∧

2
h.

More examples with a 5-form and 7-form are discussed by
Kubizňák, Warnick, and Krtouš (2011).

5. Lift and reduction for Eisenhart-Duval metrics

In this section we discuss the main features of the lift and
reduction procedure for solutions of the Dirac equation in
Eisenhart-Duval metrics. We use the notation introduced
in Sec. IV.
The Eisenhart-Duval lift allows relating the massive

Schrödinger equation in Riemannian d-dimensional spacetime
M to the massless free Klein-Gordon equation in (nþ 2)-
dimensional Lorentzian Eisenhart-Duval spacetime M̂ by

projecting on the base space; see, for example, Horváthy
and Zhang (2009). Similarly, dimensional reduction of the
massless Dirac equation on M̂ can be put in correspondence
with the Lévy-Leblond equation (Lévy-Leblond, 1967), its
nonrelativistic counterpart on M. Duval, Horváthy, and Palla
(1996) derived the Lévy-Leblond equation from a lightlike
reduction from four and five dimensions.
In order to set up the relationship, we examine how to relate

spinorial quantities on M and M̂. Spinors on M have
dimension 2½n=2�, while spinors on M̂ have dimension
2½ðnþ2Þ=2� ¼ 2 · 2½n=2�. We introduce the Pauli matrices

σ1 ≡
�
0 1

1 0

�
; σ2 ≡

�
0 −i
i 0

�
; σ3 ≡

�
1 0

0 −1
�
;

(318)

and define σ� ¼ ðσ1 � iσ2Þ=2. These satisfy ðσ�Þ2 ¼ 0

and fσþ; σ−g ¼ I.
Now we can relate the gamma matrices for M, γa, with

those on M̂, γ̂A, using the following representation:

γ̂þ ¼ σþ ⊗ I; γ̂− ¼ σ− ⊗ I; γ̂a ¼ σ3 ⊗ γa: (319)

Covariant derivatives of a spinor ψ̂ on M̂ can be written in
terms of quantities defined onM using the explicit form of the
spin connection (150):

∇̂− ¼ ∂v;

∇̂þ ¼
�
V
m
∂v þ ∂t

�
− 1

2m
γ̂þdV − e

4m
F;

∇̂a ¼ ∇a − e
m
Aa∂v þ

e
4m

γ̂þγ̂bFba: (320)

This allows expressing the Dirac operator on M̂ as

D̂ ¼ γ̂A∇̂A ¼ γ̂−∂v þ γ̂þ
�
V
m
∂v þ ∂t þ

e
4m

F

�

þ γ̂a
�
∇a −

e
m
Aa∂v

�
: (321)

The symmetry operators of Eq. (283) for a Killing vector K̂
are given by

ŜK̂ ¼ ∇̂K̂ þ 1
4
d̂ K̂ : (322)

In the specific case of the two Killing vectors X̂þ and
X̂− − ðV=mÞX̂þ they take the form

KX̂þ ¼ ∂v (323)

and

K½X̂−−ðV=mÞX̂þ� ¼ ∂t: (324)

Since they both commute with the Dirac operator D̂ on M̂,
then one can ask that solutions ψ̂ on M̂ of D̂ ψ̂ ¼ 0 are
eigenspinors of the two operators. However, for the purpose of
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recovering the Lévy-Leblond equation it is sufficient to
consider the less restrictive condition of ψ̂ being an eigens-
pinor only of KX̂þ :

∂vψ̂ ¼ imψ̂ : (325)

Choosing the im eigenvalue reduces the action of the Dirac
operator to

D̂ ¼ imγ̂− þ γ̂þ
�
iV þ ∂t þ

e
4m

F

�
þ γ̂aDa; (326)

whereDa ¼ ∇a − ieAa is theUð1Þ covariant spinor derivative
on M, and D ¼ ΓaDa represents the Dirac operator on M
with A flux.
One can decompose a spinor ψ̂ on M̂ following the gamma

matrices representation (319):

ψ̂ ¼
�
χ1

χ2

�
; (327)

where χ1 and χ2 are spinors onM. Finally, the massless Dirac
equation on M̂, D̂ ψ̂ ¼ 0, decomposes into the two equations

∂tχ2 þOχ2 þDχ1 ¼ 0; imχ1 −Dχ2 ¼ 0; (328)

where the operator O is given by O ¼ iV þ ðe=4mÞF. In this
way one obtains the nonrelativistic Lévy-Leblond equation for
a particle of mass ~m ¼ m=2, in curved space, with scalar and
vector potentials and with an additional term ðe=4mÞF. This
extra term induces an anomalous gyromagnetic factor g ¼ 3=2
and was not present in the original work by Lévy-Leblond.
Therefore the Eisenhart-Duval metric allows a geometrical
derivation of the Lévy-Leblond equation. This is ultimately
possible since it is possible to embed the Bargmann group
(the central extension of the Galilei group that leaves invariant
the Schrödinger equation and the Lévy-Leblond equation)
in the de Sitter group Oð1; nþ 1Þ (Duval et al., 1985).
While it is always possible to dimensionally reduce the

Dirac equation on M̂ to the Lévy-Leblond equation on M,
sometimes it is possible through reduction to obtain a fully
relativistic Dirac equation on M. To do this it is necessary to
ask that ∂tψ̂ ¼ 0 in addition to Eq. (325), and the nontrivial
projection

iVχ1 ¼ Oχ2: (329)

This projection will be satisfied only for specific combinations
of V and F. For what concerns hidden symmetry operators,
from the lift point of view there exist symmetry operators on
M generated by conformal Killing-Yano tensors that cannot
be lifted on M̂. From the point of view of reduction instead
there are Killing-Yano and closed conformal Killing-Yano
forms on M̂ that arise as lifts of Killing-Yano and closed
conformal Killing-Yano forms on M, but such that their
corresponding symmetry operators cannot be dimensionally
reduced. These Killing-Yano and closed conformal Killing-
Yano forms are exactly those that in lower dimension would
generate anomalous symmetry operators. In the remaining
cases it is possible to establish a correspondence between

symmetry operators on M and M̂. More details and explicit
formulas can be found in Cariglia (2012).

VII. GEODESICS ON LIE GROUPS

In this sectionwe describe a relatively new frameworkwhere
hidden symmetries of the dynamics have been applied, that of
Lie groups. Lie groups naturally have a rich geometrical
structure and therefore dynamical systems associated with
them provide good candidates for the study of hidden sym-
metries. Nevertheless, to our knowledge the study of such
systems has started only recently: Barberis, Dotti, and Santillán
(2012) studied the Killing-Yano equation on a number of Lie
groups with a left-invariant metric, while Cariglia and Gibbons
(2014) analyzed the Toda chain which can be described as
geodesic motion on a Lie group, and for which a generalized
Eisenhart lift metric, as described in Sec. IV.B, naturally arises.
In this section we describe the Toda chain result. A brief

historical digression can help to understand where this
analysis fits. It is a known result by Olshanetsky and
Perelomov (1981, 1983) that there exist a number of physical
systems describing n interacting particles on a line that are
integrable both classically and quantum mechanically. Some
of these systems involve pairwise interaction via a potential
VðqÞ of the following five types: V1 ¼ 1=q2, V2 ¼ 1=sinh2q,
V3 ¼ 1=sin2q, V4 ¼ ℘ðqÞ, and V5 ¼ 1=q2 þ ω2q2, where
℘ðqÞ is the Weierstrass elliptic function, and q is the relative
distance. The first three potentials therefore are special cases
of the fourth, as similarly the fifth potential includes the first.
Separately, the Toda chain is considered which is made by
particles interacting only with the nearest neighbor via an
exponential potential V ¼ expðqÞ. For all the potentials apart
from V4 it is shown how the motion can be obtained as
an appropriate projection of geodesic motion on a higher-
dimensional Lie group. Thus one may ask the following
question: for the systems above, expect V4, we know that there
exist two different higher-dimensional spaces such that the
original motion is the projection of geodesic motion in higher
dimension. The first such space is the appropriate Lie group
described by Olshanetsky and Perelomov (1981), while the
second one is the Eisenhart lift of Sec. IV. Is there a
relationship between these two spaces?
The question was first asked in the case of Toda systems by

Cariglia and Gibbons (2014), and the answer in that case is
that the Lie group is endowed with a generalized Eisenhart lift
metric that can be appropriately reduced to the standard
Eisenhart lift metric. The answer for the other systems listed
by Olshanetsky and Perelomov (1981) is unknown as yet.

A. Geodesic motion for the Toda chain

1. The system

The Toda system describes a chain of particles on a one-
dimensional line, interacting via an exponential, nearest
neighbor potential. It was first presented by Toda (1967),
in particular, showing that among solutions there are solitonic
“traveling waves.” Hénon (1974) and Flaschka (1974) con-
structed constants of motion and showed that the Toda chain is
a finite-dimensional analog of the KdV equation.
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The Hamiltonian of the nonperiodic Toda system is
given by

Hðp; qÞ ¼
Xn
i¼i

p2
i

2
þ VðqÞ ¼

Xn
i¼i

p2
i

2
þ
Xn−1
i¼1

g2i e
2ðqi−qiþ1Þ:

(330)

The particles interact with their nearest neighbor via an
exponential potential. The equations of motion are

_qi ¼ pi;

_p1 ¼ −2g21e2ðq1−q2Þ;

_pi ¼ −2g2i e2ðqi−qiþ1Þ þ g2i−1e
2ðqi−1−qiÞ; i > 1:

(331)

Perelomov and Olshanetsky displayed a Lax pair for the
system, given by the matrices

Lij ¼ δijpj þ gi−1δi;jþ1 þ gie2ðqi−qiþ1Þδi;j−1; (332)

Mij ¼ 2gie2ðqi−qiþ1Þδi;j−1: (333)

This means that the equations of motion can be rewritten in the
form _L ¼ ½L;M�. Agrotis, Damianou, and Sophocleous
(2006) showed the Toda system is superintegrable. It is
important for our purposes to notice that the properties of
integrability and existence of the Lax pair are valid for all
choices of the coupling constants.
We can lift the Lax pair to the Eisenhart lift space by setting

Lij ¼ δijpj þ pygi−1δi;jþ1 þ pygie2ðqi−qiþ1Þδi;j−1;

Mij ¼ 2pygie2ðqi−qiþ1Þδi;j−1:

Since the original Lax pair was defined for all values of the
coupling constants, and since py is constant, then it is still the
case that _L ¼ ½L;M�, and that we can build invariants
according to I i ¼ ð1=2iÞTrLi, i ¼ 1;…; n. However, this
time the I i are polynomials in the momenta pμ ¼
fp1;…; pn; pyg of degree i, and therefore they must corre-
spond to rank-i Killing tensors KM1���Mi

ðiÞ , M ¼ 1;…; nþ 1,
according to

I i ¼
1

i!
KM1���Mi

ðiÞ pM1
� � �pMi

: (334)

So using this technique we can build new examples of
nontrivial higher rank Killing tensors. We can apply the same
reasoning to the generalized Eisenhart lift of Eq. (184), thus
obtaining a Lax pair and Killing tensors for the generalized lift
metric. This technique will work for the lift of any system that
admits a Lax pair where the entries of the Lax matrix L are
homogeneous in the mixed variables ðp; gÞ.

2. The lift on a Lie group

Olshanetsky and Perelomov (1981) showed that the Toda
chain can be obtained by projecting to lower dimension the
geodesic equations on the Lie group X− ¼ SOðnÞnSLðn;RÞ.
The elements of X− are symmetric positive-definite n × n

matrices x with real components and unit determinant
det x ¼ 1. In the rest of this section we mostly follow the
notation used in the original work.
Real symmetric positive-definite matrices x ∈ X− can be

written according to a Cholesky UDU decomposition

x ¼ Zh2ZT; (335)

where h2 is diagonal and with positive elements, and
Z ∈ Z ⊂ SLðn;RÞ, the subgroup of upper triangular matrices
with units on the diagonal. We parametrize h2 as

h2 ¼ diag½e2q1 ;…; e2qn �; (336)

where the qi fields, of the dilaton type, will be identified with
the positions of the particles in the Toda chain (330). The
condition det h2 ¼ 1 implies the restriction

Xn
a¼1

qa ¼ 0; (337)

which amounts to a choice of the position of the system’s
center of mass.
The equation of motion on X− is given by

d
dt

ð_xðtÞx−1ðtÞÞ ¼ 0: (338)

Olshanetsky and Perelomov (1981) showed that if one
chooses specific geodesics for which

Z−1 _Z ¼ M; (339)

with M given by Eq. (333), then Eq. (338) implies the Lax
equations _L ¼ ½L;M�.
It is worth noticing that Eq. (339), which selects specific

geodesics, is equivalent to say that Z−1 satisfies the evolution
equation (41). Flaschka (1974) displayed a different Lax pair,
where the evolution matrix is orthogonal.

3. The generalized Eisenhart metric

In this section we endow X− with a right-invariant
metric whose geodesics correspond to trajectories in the n-
dimensional nonperiodic Toda system when appropriately
projected. We see that the higher-dimensional metric is a
generalized Eisenhart lift metric.
In order to present the results we need a small number of

results on upper unitriangular matrics. We indicate a generic
such matrix as Z. They form a subgroup of SLðn;RÞ, with Lie
algebra Z generated by the strictly upper triangular matrices
Mab, a; b ¼ 1;…; n, a < b, with components

ðMabÞij ¼ δiaδjb: (340)

From the definition it follows that M2
ab ¼ 0. M matrices

satisfy the product rule

MabMcd ¼ δbcMad: (341)
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We also use diagonal matrices D, with elements ðDÞij ¼ diδij
(no sum). They obey mutual product rules

MabD ¼ dbMab; DMab ¼ daMab: (342)

In particular, we use a basis of diagonal, zero trace matrices
given by Ma, a ¼ 1;…; n − 1:

Ma ¼ diag½0;…; 1;…; 0;−1�; (343)

with the 1 term in the ath position. It is convenient to also
define Mn ¼ 0.
Analogous properties are satisfied by lower diagonal

matrices, which we indicate by M̄ab, a; b ¼ 1;…; n, a > b,
with components

ðM̄abÞij ¼ δiaδjb; (344)

as they satisfy

M̄abD ¼ dbM̄ab; DM̄ab ¼ daM̄ab: (345)

The mixed MM̄ product rule is

MabM̄cd ¼ δbcðMad þ M̄ad þ δadIaÞ; (346)

where Ia is the diagonal matrix with a 1 in the ath element and
zero otherwise. We use these matrices to parametrize the Lie
algebra of SLðn;RÞ using the set fMab; M̄ab;Mag.
We use the M matrices to parametrize a generic matrix Z ∈

Z as

Z ¼ exp

�X
a<b

ωabMab

�
: (347)

We have in mind the specific case _ZZ−1 ¼ M, where M is
the second matrix in the Lax pair. This implies
_ωa;aþ1 ¼ 2gae2ðqa−qaþ1Þ, and _ωab ¼ 0 otherwise, so we can
simplify our initial assumption and set to zero all ωab unless
b ¼ aþ 1. Doing this is equivalent to considering a 2ðn − 1Þ-
dimensional submanifold ~X of X−, with coordinates qa and
ωa;aþ1. We write ωa instead of ωa;aþ1. The parametrization
becomes

Z ¼ exp

�Xn−1
a¼1

ωaMa;aþ1

�
: (348)

~X is a totally geodesic submanifold of X− since by con-
struction geodesics on ~X can be obtained from generic
geodesics on X− by imposing _ωab ¼ 0 for b > aþ 1. It is
convenient defining ω0 ¼ 0 ¼ ωn.
Using repeatedly Eq. (341) one finds that for a < b

Zab ¼
1

ðb − aÞ!ωaωaþ1 � � �ωb−1 (349)

and

Z−1
ab ¼ ð−1Þb−aZab: (350)

In order to display the right-invariant metric we first
build right-invariant forms on ~X, invariant under the full
group SLðn;RÞ, calculating the form dxx−1 ¼ ρAMA,
A ¼ 1;…; n2 − 1. Following Olshanetsky and Perelomov
(1981) we write

_xðtÞx−1ðtÞ ¼ 2Z½1
2
Z−1 _Z þ diagð _q1 � � � _qnÞ

þ1
2
h2ðZ−1 _ZÞTh−2�Z−1: (351)

We can analyze separately the three terms that arise from the
terms in square brackets. The first one is

Z−1dZ ¼
Xn−1
a¼1

dωaMa;aþ1. (352)

These are left-invariant forms of the subgroup Z. The second
term is calculated by Cariglia and Gibbons (2014) and is
given by

2
Xn−1
a¼1

dqaMa þ 2
X
b<c

�Xn−1
a¼1

dqaðδacZba þ ð−1Þc−bδabZac

þð−1Þc−aZbaZac − δcnZbcÞ
�
Mbc; (353)

while the third term by

Xn−1
a¼1

e−2ðqa−qaþ1ÞdωaM̄aþ1;a þ e−2ðq1−q2Þω1dω1M1

þ
Xn−1
a¼2

ðe−2ðqa−qaþ1Þωadωa − e−2ðqa−1−qaÞωa−1dωa−1ÞMa

þ
X
b<c

�Xn−1
a¼1

e−2ðqa−qaþ1Þgabcdωa

�
Mbc: (354)

On the other hand, we have the expansion

dxx−1 ¼
Xn−1
a¼1

ρaMa þ
X
a<b

ρabMab þ
X
a>b

ρ̄abM̄ab; (355)

in terms of right-invariant forms. Comparing the two expan-
sions we find

ρ̄aþ1;a ¼ e−2ðqa−qaþ1Þdωa; (356)

the other ρ̄ forms being zero on ~X. The ρ̄ forms correspond to
the conserved quantities

c̄aþ1;a ¼ e−2ðqa−qaþ1Þ _ωa; (357)

such that setting c̄aþ1;1 ¼ 2ga we recover the condition
_ZZ−1 ¼ M, with M defined in Eq. (333). Next, we find the
forms
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ρ1 ¼ 2dq1 þ e−2ðq1−q2Þω1dω1;

ρa ¼ 2dqa þ ðe−2ðqa−qaþ1Þωadωa

−e−2ðqa−1−qaÞωa−1dωa−1Þ; a > 1:

(358)

These give rise to the conserved quantities

λ1 ¼ _q1 þ g1ω1;

λa ¼ 2_qa þ gaωa − ga−1ωa−1; a > 1;
(359)

which imply the equations of motion arising from Eq. (330).
The forms ρa are defined for a ¼ 1;…; n − 1. It is useful to
define an nth form ρn, linearly dependent on the other ones, by
setting a ¼ n in Eq. (358):

ρn ¼ 2dqn − e−2ðqn−1−qnÞωn−1dωn−1 ¼ −
Xn−1
a¼1

ρa: (360)

Last, there are the forms of type ρab. In fact, we only
explicitly need the following ones:

ρa;aþ1 ¼ 2ωaðdqaþ1 − dqaÞ þ dωa

þωa

2
½ðωaþ1e−2ðqaþ1−qaþ2Þdωaþ1 −ωae−2ðqa−qaþ1ÞdωaÞ

− ðωae−2ðqa−qaþ1Þdωa−1 −ωa−1e−2ðqa−1−qaÞdωa−1Þ�:
(361)

Any right-invariant metric can generate the conserved
quantities given above. In particular, we make the following
choice:

ĝ ¼
Xn
a¼1

�
ρa
2

�
2

þ
Xn−1
a¼1

ρ̄aþ1;aρa;aþ1

2

¼
Xn−1
a¼1

�
ρa
2

�
2

þ
�Xn−1

a¼1

ρa
2

�2

þ
Xn−1
a¼1

ρ̄aþ1;aρa;aþ1

2

¼
Xn
a¼1

dq2a þ
1

2

Xn−1
a¼1

e−2ðqa−qaþ1Þdω2
a: (362)

We can immediately recognize that this is the generalized
Eisenhart lift metric in the same format as given by Eq. (183)
[the coupling constants are at this stage hidden in the
definition of the ω variables, Eq. (357)].
Performing a dimensional reduction to the standard

Eisenhart lift is straightforward. We can define the variable

y ¼
Xn−1
a¼1

gaωa: (363)

On allowed trajectories it satisfies

_y ¼
Xn−1
a¼1

2g2ae2ðqa−qaþ1Þ ¼ 2VðqÞ; (364)

where the potential V is given in Eq. (330). On the other hand,
on trajectories we also have

1

2

Xn−1
a¼1

e−2ðqa−qaþ1Þ _ωa
2 ¼ 2VðqÞ; (365)

so we have the equality between forms

1

2

Xn−1
a¼1

e−2ðqa−qaþ1Þdω2
a ¼

dy2

2VðqÞ (366)

on all allowed trajectories. Then this identity holds on the
whole span of the trajectories and we can rewrite the metric as

ĝ ¼
Xn
a¼1

dq2a þ
dy2

2VðqÞ ; (367)

which is the standard Eisenhart metric.
We remark that the isometries of the metric ĝ, given by the

Killing vectors associated with the right-invariant forms of
SLðn;RÞ, become transformations that leave the higher-
dimensional Hamiltonian unchanged

H ¼
Xn
a¼1

p2
qa

2
þ
Xn−1
a¼1

p2
wa
e2ðqa−aaþ1Þ; (368)

and hence are transformations that mix q and ω coordinates
while leaving the energy of the original Toda chain
unchanged. Consider as an example the conserved quantities
calculated above. The first ones are of the kind

c̄aþ1;a ¼ 2pωa
; (369)

which generate trivial translations of the ω variables.
Next, the quantities

λ1 ¼ pq1 þ pω1
ω1;

λa ¼ pqa þ pωa
ωa − pωa−1

ωa−1; a > 1;
(370)

generate the transformations

δq1 ¼ ϵ;

δω1 ¼ ϵω1;
(371)

δpω1
¼ −ϵpω1

; (372)

and

δqa ¼ ϵ;

δωa ¼ ϵωa; δωa−1 ¼ −ϵωa−1
(373)

δpωa
¼ −ϵpωa

; δpωa−1
¼ ϵpωa−1

; (374)

where ϵ is an infinitesimal parameter. Their meaning is that it
is possible to make a constant shift of one of the variables qa
while keeping the energy unchanged by at the same time
making a constant rescaling of the ga and ga−1 couplings. In
the case of the conserved quantities associated with the
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conserved forms of Eq. (361), these give rise to more
complicated transformations where δpωa

is not constant.
Summarizing, the symmetries of the metric (362) give the

dynamical transformations that leave the energy unchanged,
where varying pωa

is allowed. In particular, the transforma-
tions that are of lowest order in the momenta are those given
by the Killing vectors, which form an SLðn;RÞ algebra.

VIII. CONCLUDING REMARKS

Dynamical symmetries are the full symmetries of the
equations of motion of classical and quantum systems,
extending the traditionally considered isometries and provid-
ing the complete set of energy preserving transformations in
phase space. Such symmetries have been known for a long
time and have attracted the attention of researchers from
different angles and at different stages; however, a compre-
hensive, unified, and modern treatment is lacking. It was
keeping in mind these requirements that the present review
was written with the intention of providing an initial tool for
graduate students and young researchers interested in an
introduction to the topic, and for specialists to find a place
where several of the more modern results are gathered. We
have provided a number of examples in Sec. II.B inspired
from different areas of physics, relativistic as well as not, some
including gravitation, some in flat space, some older and
somewhat classical examples as well as more modern ones,
such as the spinning particle and the quantum dot. We have
given an introduction to the theory of spin-zero separation of
variables, in both the classical setting, the Hamilton-Jacobi
equation discussed in Sec. III, and the quantum mechanical
version, the Schrödinger and Klein-Gordon equations dis-
cussed in Sec. VI.C. The spin-zero case is the simplest
possible and admits a fairly mature theory of the intrinsic
characterization of separability, but even there we can see at
least two areas for further improvement. First, to our knowl-
edge a theory of the intrinsic -R separation for generic
nonorthogonal variables and the presence of a scalar and a
vector potential has not been finalized as yet, although several
of the necessary ingredients are already in place. Also, a more
directly geometrical interpretation of the R factor would be
desirable: we believe that in this respect embedding the
dynamical system in higher dimensions through the
Eisenhart lift procedure has the potential to provide a
geometrical interpretation for it. Second, we know very little
about more complicated transformations in phase space.
While the theory of separation of variables mainly deals with
canonical transformations associated with phase space func-
tions that are second order polynomials in the momenta,
transformations that are of higher order or nonpolynomial
have not been systematically studied. We know specific
examples but there is not yet a complete theory. Even deeper
relations among Hamiltonian systems, such as, for example,
the coupling constant metamorphosis discussed by Hietarinta
et al. (1984) and following works, are not related to canonical
transformations and represent an open window for a more
complete understanding.
Outside the realm of the zero spin case, what we know is

mostly concrete results and partial theories. The simplest cases
with nonzero spin are given by the semiclassical spinning

particle and the quantum mechanical Dirac equation, dis-
cussed in Secs. II.B.8 and, respectively, VI.D. A theory of
symmetry operators of the Dirac equation in generic dimen-
sion exists only for linear operators. Conserved quantities of
second order in the momenta for the spinning particle have
been discussed recently for the rotating black holes of the
Kerr-NUT-(A)dS metrics, and they seem to work in their
known form specifically for these metrics. Some partial results
for integrability and separability of higher spin equations are
also known, but even less is known in this case of a general
theory. The possibility of choosing both a set of coordinates
and a locally freely falling frame to describe the spin variables
represents a much bigger freedom compared to that of the
spin-zero case.
We have discussed the Eisenhart lift as a powerful geo-

meterization of dynamics that allows one to easily find the full
group of symmetries of the dynamics, and to extend the theory
of separability of variables to the case with a scalar and a
vector potential. In general, it seems the appropriate tool to
describe the dynamics of Hamiltonian systems.
Much of the recent interest in hidden symmetries of the

dynamics in the general relativity area has stemmed from the
discovery that the Kerr-NUT-(A)dS metrics admit a principal
conformal Killing-Yano tensor and a whole tower of Killing-
Yano and Killing tensors. We have given an account of how
the construction works and how it relates to the other topics
discussed in this review. It would certainly be important to
obtain a classification of Lorentzian geometries that admit a
principal conformal Killing-Yano tensor: this potentially can
provide new metrics that support integrable dynamics.
By studying the generalization of the conformal Killing-

Yano equation to some specific cases when fluxes are present
we have shown one possible way to look for hidden
symmetries of the dynamics when the field content of the
theory is richer. It is therefore a perfectly reasonable expect-
ation that various supergravity backgrounds and other string
theory inspired backgrounds might be compatible with more
elaborate dynamical symmetry transformations. Here, once
more, our knowledge is partial and a theory exists mainly for
the case discussed of spacetimes with specific types of fluxes.
One last subject we touched on is that of geodesics on Lie

groups. This subject has been studied relatively little from the
point of view of hidden symmetries. In particular, there are
two outstanding questions. The first is what is the relation
between the known geodesic description in higher dimensions
of some integrable systems of particles on a line, and the
standard Eisenhart lift. We have seen that the answer is
particularly simple when the integrable system is given by the
n-particle Toda chain; however, the answer for the other cases
is not known yet. Second, it is still an open conjecture whether
all such integrable systems admit a similar geodesic descrip-
tion in higher dimensions in terms of symmetric spaces. We
wonder whether an answer to the latter question might be
related to the former and to the study of dynamical
symmetries.
Undoubtedly the study of dynamical symmetries is here to

stay: it is both very important for our understanding of
physical systems and at the same time our current knowledge
of the subject has plenty of room for expansion and
refinement.

Marco Cariglia: Hidden symmetries of dynamics in classical … 1329

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



ACKNOWLEDGMENTS

The author is grateful to G. E. A. Matsas for suggesting to
write a review on the subject of hidden symmetries, thanks
C. M. Warnick who has collaborated on the review at an initial
stage, and G.W. Gibbons and D. Kubizňák for useful
discussions.

REFERENCES

Abraham, R., and J. E. Marsden, 1978, Foundations of Mechanics
(AMS Chelsea Publishing, Providence, RI).

Açik, O., U. Ertem, M. Önder, and A. Verçin, 2009, Classical
Quantum Gravity 26, 075001.

Agricola, I., 2006, Archivum Mathematicum 042, 5.
Agrotis, M. A., P. A. Damianou, and C. Sophocleous, 2006, Physica
A (Amsterdam) 365, 235.

Alhassid, Y., E. A. Hinds, and D. Meschede, 1987, Phys. Rev. Lett.
59, 1545.

Aliev, A. N., 2006a, Phys. Rev. D 74, 024011.
Aliev, A. N., 2006b, Mod. Phys. Lett. A 21, 751.
Aliev, A. N., 2007, Phys. Rev. D 75, 084041.
Aliev, A. N., and V. P. Frolov, 2004, Phys. Rev. D 69, 084022.
Ambrose, W., and I. M. Singer, 1953, Trans. Am. Math. Soc. 75, 428.
Apostolov, V., D. M. J. Calderbank, and P. Gauduchon, 2006, J. Diff.
Geom. 73, 359 [http://projecteuclid.org/euclid.jdg/1146169934].

Arancibia, A., J. M. Guilarte, and M. S. Plyushchay, 2013, Phys. Rev.
D 87, 045009.

Arancibia, A., and M. S. Plyushchay, 2014, Phys. Rev. D 90, 025008.
Arnol’d, V. I., 1989, Mathematical Methods of Classical Mechanics
(Springer, New York).

Atiyah, M. F., and N. J. Hitchin, 1985, Phil. Trans. R. Soc. A 315,
459.

Babelon, O., D. Bernard, and M. Talon, 2003, Introduction to
Classical Integrable Suystems (Cambridge University Press,
Cambridge, England).

Bach, R., and H. Weyl, 2012, Gen. Relativ. Gravit. 44, 817.
Baleanu, D., and S. Codoban, 1999, Gen. Relativ. Gravit. 31, 497.
Barberis, M. L., I. G. Dotti, and O. P. Santillán, 2012, Classical
Quantum Gravity 29, 065004.

Bargmann, V., 1936, Z. Phys. 99, 576.
Barucchi, G., and T. Regge, 1977, J. Math. Phys. (N.Y.) 18, 1149.
Benenti, S., 1980, Diff. Geom. Meth. Math. Phys. 836, 512.
Benenti, S., 1991, Symplectic Geometry and Mathematical Physics,
Progress in Mathematics (Birkhauser, Basel), Vol. 99, pp. 1–36.

Benenti, S., 1992, in Differential Geometry and its Applications,
Proceedings of the Conference, Opava (Czechoslovaka) (Silesian
University, Opava), pp. 163–184.

Benenti, S., 1997, J. Math. Phys. (N.Y.) 38, 6578.
Benenti, S., 2002, in SPT 2002: Symmetry and perturbation theory
(Cala Gonone) (World Scientific, Singapore), pp. 10–17.

Benenti, S., 2004 [http://www2.dm.unito.it/~benenti/CP/75.pdf ].
Benenti, S., C. Chanu, and G. Rastelli, 2001, J. Math. Phys. (N.Y.)
42, 2065.

Benenti, S., C. Chanu, and G. Rastelli, 2002a, J. Math. Phys. (N.Y.)
43, 5223.

Benenti, S., C. Chanu, and G. Rastelli, 2002b, J. Math. Phys. (N.Y.)
43, 5183.

Benenti, S., C. Chanu, and G. Rastelli, 2005, J. Math. Phys. (N.Y.)
46, 042901.

Benenti, S., and M. Francaviglia, 1979, Gen. Relativ. Gravit. 10, 79.

Benmachiche, I., J. Louis, and D. Martinez-Pedrera, 2008, Classical
Quantum Gravity 25, 135006.

Benn, I., and P. Charlton, 1997a, Classical Quantum Gravity 14,
1037.

Benn, I. M., 2006, J. Math. Phys. (N.Y.) 47, 022903.
Benn, I. M., and P. Charlton, 1997b, Classical Quantum Gravity 14,
1037.

Benn, I. M., and J. M. Kress, 2004, Classical Quantum Gravity 21,
427.

Benn, I. M., and R.W. Tucker, 1987, An Introduction to Spinors and
Geometry (Adam Hilger, Bristol).

Berezin, F. A., and M. S. Marinov, 1977, Ann. Phys. (N.Y.) 104, 336.
Berger, M., 1955, Bull. Soc. Math. Fr. 83, 279 [https://eudml.org/
doc/86895].

Blümel, R., C. Kappler, W. Quint, and H. Walther, 1989, Phys. Rev.
A 40, 808.

Borel, A., and A. Lichnerowicz, 1952, C. R. Acad. Sci. Paris Ser. IV
234, 1835 [ http://www.ams.org/mathscinet‑getitem?mr=13,986b].

Borisov, A. V., A. G. Kholmskaya, and I. S. Mamaev, 2001, Reg.
Chaotic Dyn. 6, 1.

Bountis, T., H. Segur, and F. Vivaldi, 1982, Phys. Rev. A 25, 1257.
Brihaye, Y., and T. Delsate, 2007, Classical Quantum Gravity 24,
4691.

Brink, L., S. Deser, B. Zumino, P. Di Vecchia, and P. Howe, 1976,
Phys. Lett. B 64, 435.

Brink, L., P. Di Vecchia, and P. Howe, 1977, Nucl. Phys. B118, 76.
Brinkmann, H.W., 1925, Math. Ann. 94, 119.
Brozos-Vázquez, M., E. García-Río, P. Gilkey, and L. Hervella,
2012, Annali di Matematica Pura ed Applicata 191, 487.

Cabrera, F. M., and A. Swann, 2008, in Annales de linstitut Fourier
(Association des Annales de linstitut Fourier, Grenoble), Vol. 58,
pp. 1455–1497.

Calogero, F., 1969a, J. Math. Phys. (N.Y.) 10, 2191.
Calogero, F., 1969b, J. Math. Phys. (N.Y.) 10, 2197.
Calogero, F., 1971, J. Math. Phys. (N.Y.) 12, 419.
Calogero, F., 2001, Classical Many-Body Problems Amenable to
Exact Treatments, Lecture Notes in Physics Monographs (Springer,
New York), Vol. M66.

Calogero, F., 2008, Isochronous Systems (Oxford University Press,
New York).

Cariglia, M., 2004, Classical Quantum Gravity 21, 1051.
Cariglia, M., 2012, Phys. Rev. D 86, 084050.
Cariglia, M., V. P. Frolov, P. Krtouš, and D. Kubizňák, 2013a, Phys.
Rev. D 87, 064003.

Cariglia, M., V. P. Frolov, P. Krtouš, and D. Kubizňák, 2013b, Phys.
Rev. D 87, 024002.

Cariglia, M., and G. Gibbons, 2014, J. Math. Phys. (N.Y.) 55,
022701.

Cariglia, M., G.W. Gibbons, J.-W. van Holten, P. A. Horvathy, P.
Kosinski, and P.-M. Zhang, 2014, Classical Quantum Gravity 31,
125001.

Cariglia, M., P. Krtouš, and D. Kubizňák, 2011a, Phys. Rev. D 84,
024004.

Cariglia, M., P. Krtouš, and D. Kubizňák, 2011b, Phys. Rev. D 84,
024008.

Cariglia, M., P. Krtouš, and D. Kubizňák, 2012, Fortschr. Phys. 60,
947.

Cariglia, M., and O. A. P. MacConamhna, 2005, Phys. Rev. Lett. 94,
161601.

Cariglia, M., and E. Silva Araújo, 2013, Eur. J. Phys. 34, 1307.
Carignano, A., L. Fatibene, R. G. McLenaghan, and G. Rastelli,
2011, SIGMA: Symmetry, Integrability and Geometry: Methods

1330 Marco Cariglia: Hidden symmetries of dynamics in classical …

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014

http://dx.doi.org/10.1088/0264-9381/26/7/075001
http://dx.doi.org/10.1088/0264-9381/26/7/075001
http://dx.doi.org/10.1016/j.physa.2006.01.001
http://dx.doi.org/10.1016/j.physa.2006.01.001
http://dx.doi.org/10.1103/PhysRevLett.59.1545
http://dx.doi.org/10.1103/PhysRevLett.59.1545
http://dx.doi.org/10.1103/PhysRevD.74.024011
http://dx.doi.org/10.1142/S0217732306019281
http://dx.doi.org/10.1103/PhysRevD.75.084041
http://dx.doi.org/10.1103/PhysRevD.69.084022
http://dx.doi.org/10.1090/S0002-9947-1953-0063739-1
http://dx.doi.org/10.1103/PhysRevD.87.045009
http://dx.doi.org/10.1103/PhysRevD.87.045009
http://dx.doi.org/10.1103/PhysRevD.90.025008
http://dx.doi.org/10.1098/rsta.1985.0052
http://dx.doi.org/10.1098/rsta.1985.0052
http://dx.doi.org/10.1007/s10714-011-1312-5
http://dx.doi.org/10.1023/A:1026642122280
http://dx.doi.org/10.1088/0264-9381/29/6/065004
http://dx.doi.org/10.1088/0264-9381/29/6/065004
http://dx.doi.org/10.1007/BF01338811
http://dx.doi.org/10.1063/1.523384
http://dx.doi.org/10.1063/1.532226
http://dx.doi.org/10.1063/1.1340868
http://dx.doi.org/10.1063/1.1340868
http://dx.doi.org/10.1063/1.1506181
http://dx.doi.org/10.1063/1.1506181
http://dx.doi.org/10.1063/1.1506180
http://dx.doi.org/10.1063/1.1506180
http://dx.doi.org/10.1063/1.1862325
http://dx.doi.org/10.1063/1.1862325
http://dx.doi.org/10.1007/BF00757025
http://dx.doi.org/10.1088/0264-9381/25/13/135006
http://dx.doi.org/10.1088/0264-9381/25/13/135006
http://dx.doi.org/10.1088/0264-9381/14/5/011
http://dx.doi.org/10.1088/0264-9381/14/5/011
http://dx.doi.org/10.1063/1.2168121
http://dx.doi.org/10.1088/0264-9381/14/5/011
http://dx.doi.org/10.1088/0264-9381/14/5/011
http://dx.doi.org/10.1088/0264-9381/21/2/007
http://dx.doi.org/10.1088/0264-9381/21/2/007
http://dx.doi.org/10.1016/0003-4916(77)90335-9
http://dx.doi.org/10.1103/PhysRevA.40.808
http://dx.doi.org/10.1103/PhysRevA.40.808
http://dx.doi.org/10.1070/rd2001v006n01ABEH000161
http://dx.doi.org/10.1070/rd2001v006n01ABEH000161
http://dx.doi.org/10.1103/PhysRevA.25.1257
http://dx.doi.org/10.1088/0264-9381/24/18/010
http://dx.doi.org/10.1088/0264-9381/24/18/010
http://dx.doi.org/10.1016/0370-2693(76)90115-5
http://dx.doi.org/10.1016/0550-3213(77)90364-9
http://dx.doi.org/10.1007/BF01208647
http://dx.doi.org/10.1007/s10231-011-0192-3
http://dx.doi.org/10.1063/1.1664820
http://dx.doi.org/10.1063/1.1664821
http://dx.doi.org/10.1063/1.1665604
http://dx.doi.org/10.1088/0264-9381/21/4/022
http://dx.doi.org/10.1103/PhysRevD.86.084050
http://dx.doi.org/10.1103/PhysRevD.87.064003
http://dx.doi.org/10.1103/PhysRevD.87.064003
http://dx.doi.org/10.1103/PhysRevD.87.024002
http://dx.doi.org/10.1103/PhysRevD.87.024002
http://dx.doi.org/10.1063/1.4866318
http://dx.doi.org/10.1063/1.4866318
http://dx.doi.org/10.1088/0264-9381/31/12/125001
http://dx.doi.org/10.1088/0264-9381/31/12/125001
http://dx.doi.org/10.1103/PhysRevD.84.024004
http://dx.doi.org/10.1103/PhysRevD.84.024004
http://dx.doi.org/10.1103/PhysRevD.84.024008
http://dx.doi.org/10.1103/PhysRevD.84.024008
http://dx.doi.org/10.1002/prop.201200005
http://dx.doi.org/10.1002/prop.201200005
http://dx.doi.org/10.1103/PhysRevLett.94.161601
http://dx.doi.org/10.1103/PhysRevLett.94.161601
http://dx.doi.org/10.1088/0143-0807/34/5/1307


and Applications 7, 57 [http://www.emis.de/journals/SIGMA/
2011/057/].

Carter, B., 1968a, Phys. Rev. 174, 1559.
Carter, B., 1968b, Commun. Math. Phys. 10, 280 [http://
projecteuclid.org/euclid.cmp/1103841118].

Carter, B., 1968c, Phys. Lett. A 26, 399.
Carter, B., 1971, Phys. Rev. Lett. 26, 331.
Carter, B., 1977, Phys. Rev. D 16, 3395.
Carter, B., and R. G. Mclenaghan, 1979, Phys. Rev. D 19, 1093.
Casalbuoni, R., 1976a, Nuovo Cimento A 33, 389.
Casalbuoni, R., 1976b, Nuovo Cimento A 33, 115.
Casetti, L., and A. Macchi, 1997, Phys. Rev. E 55, 2539.
Cerruti-Sola, M., and M. Pettini, 1995, Phys. Rev. E 51, 53.
Chanachowicz, M., C. Chanu, and R. G. McLenaghan, 2009,
J. Geom. Phys. 59, 876.

Chandrasekhar, S., 1976, Proc. R. Soc. A 349, 571.
Chandrasekhar, S., 1984a, The mathematical theory of black holes
(Springer,
New York), pp. 5–26 [http://link.springer.com/chapter/10.1007%
2F978‑94‑009‑6469‑3_2].

Chandrasekhar, S., 1984b, Proc. R. Soc. A 392, 1.
Chang, Y. F., M. Tabor, and J. Weiss, 1982, J. Math. Phys. (N.Y.) 23,
531.

Chanu, C., and G. Rastelli, 2006, Int. J. Geom. Methods Mod. Phys.
03, 489.

Chanu, C., and G. Rastelli, 2007, SIGMA 3, 021 [http://www.emis
.de/journals/SIGMA/2007/021/].

Charmousis, C., and R. Gregory, 2004, Classical Quantum Gravity
21, 527.

Chen, W., and H. Lü, 2008, Phys. Lett. B 658, 158.
Chen, W., H. Lü, and C. N. Pope, 2006, Classical Quantum Gravity
23, 5323.

Chen, W., H. Lü, and C. N. Pope, 2007, Nucl. Phys. B762, 38.
Chiossi, S., and S. Salamon, 2002, arXiv:math/0202282 [http://www
.ams.org/mathscinet‑getitem?mr=1922042 and https://zbmath.org/
?q=an:1024.53018].

Chong, Z. W., M. Cvetič, H. Lü, and C. N. Pope, 2005, Phys. Rev.
Lett. 95, 161301.

Chong, Z.-W., G.W. Gibbons, H. Lü, and C. N. Pope, 2005, Phys.
Lett. B 609, 124.

Chow, D. D. K., 2008, arXiv:0811.1264.
Colinson, C. D., 1974, Tensor 28, 173 [http://adsabs.harvard.edu/abs/
1974Tenso..28..173C].

Comtet, A., and P. A. Horváthy, 1995, Phys. Lett. B 349, 49.
Connell, P., V. P. Frolov, and D. Kubizňák, 2008, Phys. Rev. D 78,
024042.

Cordani, B., 2003, The Kepler Problem: Group Theotretical Aspects,
Regularization and Quantization, with Application to the Study of
Perturbations (Springer, New York), Vol. 29.

Cordani, B., L. G. Fehér, and P. A. Horváthy, 1988, Phys. Lett. B 201,
481.

Cordani, B., L. G. Fehér, and P. A. Horváthy, 1990, J. Math. Phys.
(N.Y.) 31, 202.

Correa, F., M. A. del Olmo, and M. S. Plyushchay, 2005, Phys. Lett.
B 628, 157.

Correa, F., H. Falomir, V. Jakubsky, and M. S. Plyushchay, 2010, J.
Phys. A 43, 075202.

Correa, F., V. Jakubsky, L.-M. Nieto, and M. S. Plyushchay, 2008,
Phys. Rev. Lett. 101, 030403.

Correa, F., V. Jakubsky, and M. S. Plyushchay, 2009, Ann. Phys.
(Amsterdam) 324, 1078.

Correa, F., L.-M. Nieto, and M. S. Plyushchay, 2007, Phys. Lett. B
644, 94.

Correa, F., L.-M. Nieto, and M. S. Plyushchay, 2008, Phys. Lett. B
659, 746.

Correa, F., and M. S. Plyushchay, 2007a, Ann. Phys. (Amsterdam)
322, 2493.

Correa, F., and M. S. Plyushchay, 2007b, J. Phys. A 40, 14403.
Coulson, C. A., and A. Joseph, 1967, Int. J. Quantum Chem. 1, 337.
Crampin, M., 1984, Rep. Math. Phys. 20, 31.
Cvetič, M., H. Lü, D. N. Page, and C. N. Pope, 2005, Phys. Rev. Lett.
95, 071101.

Cvetic, M., H. Lü, D. N. Page, and C. N. Pope, 2009, J. High Energy
Phys. 07, 082.

Cvetič, M., and D. Youm, 1996, Nucl. Phys. B477, 449.
Dalgarno, A., and R. McCarroll, 1956, Proc. R. Soc. A 237, 383.
Debever, R., 1971, Bull. Soc. Math. Belg 23, 360.
Debney, G. C., R. P. Kerr, and A. Schild, 1969, J. Math. Phys. (N.Y.)
10, 1842.

del Castillo, G. F. T., 1988, J. Math. Phys. (N.Y.) 29, 971.
Duval, C., 1993, Classical Quantum Gravity 10, 2217.
Duval, C., G. Burdet, H. Kunzle, and M. Perrin, 1985, Phys. Rev. D
31, 1841.

Duval, C., G.W. Gibbons, and P. Horváthy, 1991, Phys. Rev. D 43,
3907.

Duval, C., and P. Horváthy, 1982, Ann. Phys. (N.Y.) 142, 10.
Duval, C., and P. A. Horvathy, 2009, J. Phys. A 42, 465206.
Duval, C., P. A. Horvathy, and L. Palla, 1994, Phys. Lett. B
325, 39.

Duval, C., P. A. Horváthy, and L. Palla, 1996, Ann. Phys. (N.Y.) 249,
265.

Duval, C., and S. Lazzarini, 2012, J. Phys. A 45, 395203.
Eisenhart, L. P., 1928, Ann. Math. 30 [http://www.jstor.org/stable/
1968307].

Eisenhart, L. P., 1934, Ann. Math. 35, 284.
Eisenhart, L. P., 1997, Riemannian Geometry (Princeton University
Press, Princeton, NJ).

Emparan, R., and H. S. Reall, 2008, Living Rev. Relativity 11, 6.
Fehér, L. G., and P. A. Horváthy, 1987a, Phys. Lett. B 183, 182.
Fehér, L. G., and P. A. Horváthy, 1987b, Phys. Lett. B 188, 512.
Fehér, L. G., and P. A. Horváthy, 1988, Mod. Phys. Lett. A 03,
1451.

Fels, M., and N. Kamran, 1990, Proc. R. Soc. A 428, 229.
Fernández, M., and A. Gray, 1982, Annali di Matematica Pura ed
Applicata 132, 19.

Flaschka, H., 1974, Phys. Rev. B 9, 1924.
Floyd, R. M., 1974, The dynamics of Kerr fields, Ph.D. thesis,
Birkbeck (University of London).

Fock, V., 1935, Z. Phys. 98, 145.
Fordy, A. P., 1991, Physica D (Amsterdam) 52, 204.
Frolov, V. P., 2008, Prog. Theor. Phys. Suppl. 172, 210.
Frolov, V. P., 2012, arXiv:1210.7115.
Frolov, V. P., P. Krtouš, and D. Kubiznák, 2007, J. High Energy Phys.
02, 005.

Frolov, V. P., P. Krtouš, and D. Kubizňák, unpublished.
Frolov, V. P., and D. Kubizňák, 2007, Phys. Rev. Lett. 98, 011101.
Frolov, V. P., and D. Kubizňák, 2008a, Classical Quantum Gravity
25, 154005.

Frolov, V. P., and D. Kubizňák, 2008b, Classical Quantum Gravity
25, 154005.

Frolov, V. P., and D. Stojković, 2003, Phys. Rev. D 68, 064011.
Galajinsky, A., 2012, Phys. Rev. D 85, 085002.
Galajinsky, A., and O. Lechtenfeld, 2013, J. High Energy Phys. 09,
113.

Galajinsky, A., A. Nersessian, and A. Saghatelian, 2013, J. High
Energy Phys. 06, 002.

Marco Cariglia: Hidden symmetries of dynamics in classical … 1331

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014

http://dx.doi.org/10.1103/PhysRev.174.1559
http://dx.doi.org/10.1016/0375-9601(68)90240-5
http://dx.doi.org/10.1103/PhysRevLett.26.331
http://dx.doi.org/10.1103/PhysRevD.16.3395
http://dx.doi.org/10.1103/PhysRevD.19.1093
http://dx.doi.org/10.1007/BF02729860
http://dx.doi.org/10.1007/BF02748689
http://dx.doi.org/10.1103/PhysRevE.55.2539
http://dx.doi.org/10.1103/PhysRevE.51.53
http://dx.doi.org/10.1016/j.geomphys.2009.03.010
http://dx.doi.org/10.1098/rspa.1976.0090
http://dx.doi.org/10.1098/rspa.1984.0021
http://dx.doi.org/10.1063/1.525389
http://dx.doi.org/10.1063/1.525389
http://dx.doi.org/10.1142/S021988780600120X
http://dx.doi.org/10.1142/S021988780600120X
http://dx.doi.org/10.1088/0264-9381/21/2/016
http://dx.doi.org/10.1088/0264-9381/21/2/016
http://dx.doi.org/10.1016/j.physletb.2007.09.066
http://dx.doi.org/10.1088/0264-9381/23/17/013
http://dx.doi.org/10.1088/0264-9381/23/17/013
http://dx.doi.org/10.1016/j.nuclphysb.2006.07.022
http://arXiv.org/abs/math/0202282
http://dx.doi.org/10.1103/PhysRevLett.95.161301
http://dx.doi.org/10.1103/PhysRevLett.95.161301
http://dx.doi.org/10.1016/j.physletb.2004.07.066
http://dx.doi.org/10.1016/j.physletb.2004.07.066
http://arXiv.org/abs/0811.1264
http://dx.doi.org/10.1016/0370-2693(95)00219-B
http://dx.doi.org/10.1103/PhysRevD.78.024042
http://dx.doi.org/10.1103/PhysRevD.78.024042
http://dx.doi.org/10.1016/0370-2693(88)90604-1
http://dx.doi.org/10.1016/0370-2693(88)90604-1
http://dx.doi.org/10.1063/1.528862
http://dx.doi.org/10.1063/1.528862
http://dx.doi.org/10.1016/j.physletb.2005.09.046
http://dx.doi.org/10.1016/j.physletb.2005.09.046
http://dx.doi.org/10.1088/1751-8113/43/7/075202
http://dx.doi.org/10.1088/1751-8113/43/7/075202
http://dx.doi.org/10.1103/PhysRevLett.101.030403
http://dx.doi.org/10.1016/j.aop.2009.01.009
http://dx.doi.org/10.1016/j.aop.2009.01.009
http://dx.doi.org/10.1016/j.physletb.2006.11.020
http://dx.doi.org/10.1016/j.physletb.2006.11.020
http://dx.doi.org/10.1016/j.physletb.2007.11.046
http://dx.doi.org/10.1016/j.physletb.2007.11.046
http://dx.doi.org/10.1016/j.aop.2006.12.002
http://dx.doi.org/10.1016/j.aop.2006.12.002
http://dx.doi.org/10.1088/1751-8113/40/48/007
http://dx.doi.org/10.1002/qua.560010405
http://dx.doi.org/10.1016/0034-4877(84)90069-7
http://dx.doi.org/10.1103/PhysRevLett.95.071101
http://dx.doi.org/10.1103/PhysRevLett.95.071101
http://dx.doi.org/10.1088/1126-6708/2009/07/082
http://dx.doi.org/10.1088/1126-6708/2009/07/082
http://dx.doi.org/10.1016/0550-3213(96)00391-4
http://dx.doi.org/10.1098/rspa.1956.0184
http://dx.doi.org/10.1063/1.1664769
http://dx.doi.org/10.1063/1.1664769
http://dx.doi.org/10.1063/1.527993
http://dx.doi.org/10.1088/0264-9381/10/11/006
http://dx.doi.org/10.1103/PhysRevD.31.1841
http://dx.doi.org/10.1103/PhysRevD.31.1841
http://dx.doi.org/10.1103/PhysRevD.43.3907
http://dx.doi.org/10.1103/PhysRevD.43.3907
http://dx.doi.org/10.1016/0003-4916(82)90226-3
http://dx.doi.org/10.1088/1751-8113/42/46/465206
http://dx.doi.org/10.1016/0370-2693(94)90068-X
http://dx.doi.org/10.1016/0370-2693(94)90068-X
http://dx.doi.org/10.1006/aphy.1996.0071
http://dx.doi.org/10.1006/aphy.1996.0071
http://dx.doi.org/10.1088/1751-8113/45/39/395203
http://dx.doi.org/10.2307/1968433
http://dx.doi.org/10.12942/lrr-2008-6
http://dx.doi.org/10.1016/0370-2693(87)90435-7
http://dx.doi.org/10.1016/0370-2693(87)91662-5
http://dx.doi.org/10.1142/S0217732388001744
http://dx.doi.org/10.1142/S0217732388001744
http://dx.doi.org/10.1098/rspa.1990.0032
http://dx.doi.org/10.1007/BF01760975
http://dx.doi.org/10.1007/BF01760975
http://dx.doi.org/10.1103/PhysRevB.9.1924
http://dx.doi.org/10.1007/BF01336904
http://dx.doi.org/10.1016/0167-2789(91)90122-P
http://dx.doi.org/10.1143/PTPS.172.210
http://arXiv.org/abs/1210.7115
http://dx.doi.org/10.1088/1126-6708/2007/02/005
http://dx.doi.org/10.1088/1126-6708/2007/02/005
http://dx.doi.org/10.1103/PhysRevLett.98.011101
http://dx.doi.org/10.1088/0264-9381/25/15/154005
http://dx.doi.org/10.1088/0264-9381/25/15/154005
http://dx.doi.org/10.1088/0264-9381/25/15/154005
http://dx.doi.org/10.1088/0264-9381/25/15/154005
http://dx.doi.org/10.1103/PhysRevD.68.064011
http://dx.doi.org/10.1103/PhysRevD.85.085002
http://dx.doi.org/10.1007/JHEP09(2013)113
http://dx.doi.org/10.1007/JHEP09(2013)113
http://dx.doi.org/10.1007/JHEP06(2013)002
http://dx.doi.org/10.1007/JHEP06(2013)002


Ganesan, K., and M. Lakshmanan, 1989, Phys. Rev. Lett. 62, 232.
Gauntlett, J. P., J. B. Gutowski, and S. Pakis, 2003, J. High Energy
Phys. 12, 049.

Gauntlett, J. P., and S. Pakis, 2003, J. High Energy Phys. 04, 039.
Gibbons, G., T. Houri, D. Kubizňák, and C. Warnick, 2011, Phys.
Lett. B 700, 68.

Gibbons, G., R. Rietdijk, and J. van Holten, 1993, Nucl. Phys. B404,
42.

Gibbons, G., and P. Ruback, 1987, Phys. Lett. B 188, 226.
Gibbons, G., and P. K. Townsend, 1999, Phys. Lett. B 454, 187.
Gibbons, G., and C. Warnick, 2007, J. Geom. Phys. 57, 2286.
Gibbons, G.W., H. Lü, D. N. Page, and C. N. Pope, 2004, Phys. Rev.
Lett. 93, 171102.

Gibbons, G.W., H. Lü, D. N. Page, and C. N. Pope, 2005, J. Geom.
Phys. 53, 49.

Gibbons, G.W., and N. S. Manton, 1986, Nucl. Phys. B274, 183.
Gibbons, G.W., and C. N. Pope, 2011, Ann. Phys. (Amsterdam) 326,
1760.

Gillard, J. J., 2005, Ph.D. thesis (King’s College London), arXiv:hep-
th/0608139.

Goldberger, W. D., 2009, J. High Energy Phys. 03, 069.
Gonera, C., 1998, Phys. Lett. A 237, 365.
Gorsky, A., and N. Nekrasov, 1994, Nucl. Phys. B414, 213.
Grammaticos,B.,B.Dorizzi, andR.Padjen,1982,Phys.Lett.A89, 111.
Gray, A., and L. M. Hervella, 1980, Annali di Matematica Pura ed
Applicata 123, 35 [http://link.springer.com/article/10.1007%
2FBF01796539].

Grignani, G., M. S. Plyushchay, and P. Sodano, 1996, Nucl. Phys.
B464, 189.

Hagen, C. R., 1972, Phys. Rev. D 5, 377.
Hashimoto, Y., M. Sakaguchi, and Y. Yasui, 2004, Phys. Lett. B 600,
270.

Havas, P., 1975, J. Math. Phys. (N.Y.) 16, 2476.
Hawking, S. Q., 1977, Phys. Lett. A 60, 81.
Hawking, S. W., C. J. Hunter, and M.M. Taylor-Robinson, 1999,
Phys. Rev. D 59, 064005.

Hénon, M., 1974, Phys. Rev. B 9, 1921.
Hénon, M., and C. Heiles, 1964, Astron. J. 69, 73.
Herzog, C. P., M. Rangamani, and S. F. Ross, 2008, J. High Energy
Phys. 11, 080.

Hietarinta, J., B. Grammaticos, B. Dorizzi, and A. Ramani, 1984,
Phys. Rev. Lett. 53, 1707.

Horváthy, P. A., 2006, Rev. Math. Phys. 18, 329.
Horváthy, P. A., and J.-P. Ngome, 2009, Phys. Rev. D 79, 127701.
Horváthy, P. A., and P. Zhang, 2009, Phys. Rep. 481, 83.
Houri, T., D. Kubizňák, C. Warnick, and Y. Yasui, 2010a, Classical
Quantum Gravity 27, 185019.

Houri, T., D. Kubizňák, C. M. Warnick, and Y. Yasui, 2010b, J. High
Energy Phys. 07, 055.

Houri, T., D. Kubizňák, C. M. Warnick, and Y. Yasui, 2010c,
Classical Quantum Gravity 27, 185019.

Houri, T., D. Kubizňák, C. M. Warnick, and Y. Yasui, 2012, Classical
Quantum Gravity 29, 165001.

Houri, T., T. Oota, and Y. Yasui, 2007, Phys. Lett. B 656, 214.
Houri, T., T. Oota, and Y. Yasui, 2008, J. Phys. A 41, 025204.
Houri, T., T. Oota, and Y. Yasui, 2009, Classical Quantum Gravity
26, 045015.

Houri, T., H. Takeuchi, and Y. Yasui, 2013, Classical Quantum
Gravity 30, 135008.

Houri, T., and K. Yamamoto, 2013, Classical Quantum Gravity 30,
075013.

Hughston, L. P., and P. Sommers, 1973, Commun. Math. Phys. 33,
129.

Hulthén, L., 1933, Z. Phys. 86, 21.
Jackiw, R., 1972, Phys. Today 25, No. 1, 23.
Jackiw, R., and N. S. Manton, 1980, Ann. Phys. (N.Y.) 127, 257.
Jacobi, C., 1839a, Compte Rendu 8, 284 [ http://arxiv.org/pdf/
math‑ph/0203032.pdf].

Jacobi, C., 1839b, JRAM 19, 309 [https://eudml.org/doc/147073].
Jacobi, C., 1969, Vorlesungen über Dynamik (Chelsea Publishing
Co., New York).

Jakubsky, V., L.-M. Nieto, and M. S. Plyushchay, 2010, Phys. Lett. B
692, 51.

Jakubsky, V., L.-M. Nieto, and M. S. Plyushchay, 2011, Phys. Rev. D
83, 047702.

Jezierski, J., 1997, Classical Quantum Gravity 14, 1679.
Jezierski, J., and M. Łukasik, 2006, Classical Quantum Gravity 23,
2895.

Kalnins, E. G., and W. Miller, 1978, Trans. Am. Math. Soc. 244, 241
[http://www.jstor.org/stable/1997897].

Kalnins, E. G., and W. Miller, 1980a, SIAM J. Math. Anal. 11, 1011.
Kalnins, E. G., and W. Miller, 1980b, Lett. Math. Phys. 4, 469.
Kalnins, E. G., and W. Miller, 1981, SIAM J. Math. Anal. 12, 617.
Kalnins, E. G., and W. Miller, 1982a, J. Phys. A 15, 2699.
Kalnins, E. G., and W. Miller, 1982b, Intrinsic characterization of
variable separation for partial differential equations of mechanics,
Proceedings of the Symposium on Modern Developments in
Analytical Mechanics, Torino, 1982, Acta Academiae Scientiarum
Taurinensis, Torino 1983, No. 84 [http://www.ima.umn.edu/
~miller/bibli.html].

Kalnins, E. G., and W. Miller, 1983, J. Math. Phys. (N.Y.) 24, 1047.
Kalnins, E. G., and W. Miller, 1984, Adv. Math. 51, 91.
Kalnins, E. G., W. Miller, Jr., and G. C. Williams, 1989, J. Math.
Phys. (N.Y.) 30, 2360.

Kalnins, E. G., G. C. Williams, and W. Miller, 1996, Proc. R. Soc. A
452, 997.

Kamran, N., 1985, J. Math. Phys. (N.Y.) 26, 1740.
Kamran, N., and R. G. McLenaghan, 1984, Phys. Rev. D 30, 357.
Karigiannis, S., 2009, Q. J. Mech. Appl. Math. 60, 487.
Kashiwada, T., 1968, Nat. Sci. Rep. Ochanomizu Univ. 19, 67 [http://
133.65.151.33/ocha/bitstream/10083/2144/1/KJ00004829667.pdf].

Kerr, R. P., 1963, Phys. Rev. Lett. 11, 237.
Kerr, R. P., and A. Schild, 1965, in Proceedings of Symposia in
Applied Mathematics, edited by R. Finn (American Mathematical
Society, Providence, RI), Vol. 17, pp. 199–209.

Kleihaus, B., J. Kunz, and F. Navarro-Lérida, 2008, 977, 94 [https://
catalyst.library.jhu.edu/catalog/bib_2722231].

Knörrer, H., 1980, Inventiones Mathematicae 59, 119.
Krtouš, P., V. P. Frolov, andD.Kubizňák, 2008, Phys. Rev.D78, 064022.
Krtouš, P., D. Kubiznák, D. N. Page, and V. P. Frolov, 2007, J. High
Energy Phys. 02, 004.

Krtouš, P., D. Kubizňák, D. N. Page, and M. Vasudevan, 2007, Phys.
Rev. D 76, 084034.

Krtouš, P., and A. Sergyeyev, 2008, Phys. Rev. D 77, 044033.
Kubizňák, D., 2008, Hidden Symmetries of Higher-Dimensional
Rotating Black Holes, Ph.D. thesis (University of Alberta).

Kubizňák, D., 2009, Phys. Lett. B 675, 110.
Kubizňák, D., and M. Cariglia, 2012, Phys. Rev. Lett. 108, 051104.
Kubiznák, D., and V. P. Frolov, 2007, Classical Quantum Gravity 24,
F1.

Kubizňák, D., and V. P. Frolov, 2008, J. High Energy Phys. 02, 007.
Kubizňák, D., V. P. Frolov, P. Krtouš, and P. Connell, 2009, Phys.
Rev. D 79, 024018.

Kubizňák, D., and P. Krtouš, 2007, Phys. Rev. D 76, 084036.
Kubizňák, D., H. Kunduri, and Y. Yasui, 2009, Phys. Lett. B 678,
240.

1332 Marco Cariglia: Hidden symmetries of dynamics in classical …

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014

http://dx.doi.org/10.1103/PhysRevLett.62.232
http://dx.doi.org/10.1088/1126-6708/2003/12/049
http://dx.doi.org/10.1088/1126-6708/2003/12/049
http://dx.doi.org/10.1088/1126-6708/2003/04/039
http://dx.doi.org/10.1016/j.physletb.2011.04.047
http://dx.doi.org/10.1016/j.physletb.2011.04.047
http://dx.doi.org/10.1016/0550-3213(93)90472-2
http://dx.doi.org/10.1016/0550-3213(93)90472-2
http://dx.doi.org/10.1016/0370-2693(87)90011-6
http://dx.doi.org/10.1016/S0370-2693(99)00266-X
http://dx.doi.org/10.1016/j.geomphys.2007.07.004
http://dx.doi.org/10.1103/PhysRevLett.93.171102
http://dx.doi.org/10.1103/PhysRevLett.93.171102
http://dx.doi.org/10.1016/j.geomphys.2004.05.001
http://dx.doi.org/10.1016/j.geomphys.2004.05.001
http://dx.doi.org/10.1016/0550-3213(86)90624-3
http://dx.doi.org/10.1016/j.aop.2011.03.003
http://dx.doi.org/10.1016/j.aop.2011.03.003
http://arXiv.org/abs/hep-th/0608139
http://arXiv.org/abs/hep-th/0608139
http://dx.doi.org/10.1088/1126-6708/2009/03/069
http://dx.doi.org/10.1016/S0375-9601(98)00903-7
http://dx.doi.org/10.1016/0550-3213(94)90429-4
http://dx.doi.org/10.1016/0375-9601(82)90868-4
http://dx.doi.org/10.1016/0550-3213(96)00062-4
http://dx.doi.org/10.1016/0550-3213(96)00062-4
http://dx.doi.org/10.1103/PhysRevD.5.377
http://dx.doi.org/10.1016/j.physletb.2004.09.002
http://dx.doi.org/10.1016/j.physletb.2004.09.002
http://dx.doi.org/10.1063/1.522489
http://dx.doi.org/10.1016/0375-9601(77)90386-3
http://dx.doi.org/10.1103/PhysRevD.59.064005
http://dx.doi.org/10.1103/PhysRevB.9.1921
http://dx.doi.org/10.1086/109234
http://dx.doi.org/10.1088/1126-6708/2008/11/080
http://dx.doi.org/10.1088/1126-6708/2008/11/080
http://dx.doi.org/10.1103/PhysRevLett.53.1707
http://dx.doi.org/10.1142/S0129055X06002668
http://dx.doi.org/10.1103/PhysRevD.79.127701
http://dx.doi.org/10.1016/j.physrep.2009.07.003
http://dx.doi.org/10.1088/0264-9381/27/18/185019
http://dx.doi.org/10.1088/0264-9381/27/18/185019
http://dx.doi.org/10.1007/JHEP07(2010)055
http://dx.doi.org/10.1007/JHEP07(2010)055
http://dx.doi.org/10.1088/0264-9381/27/18/185019
http://dx.doi.org/10.1088/0264-9381/29/16/165001
http://dx.doi.org/10.1088/0264-9381/29/16/165001
http://dx.doi.org/10.1016/j.physletb.2007.09.034
http://dx.doi.org/10.1088/1751-8113/41/2/025204
http://dx.doi.org/10.1088/0264-9381/26/4/045015
http://dx.doi.org/10.1088/0264-9381/26/4/045015
http://dx.doi.org/10.1088/0264-9381/30/13/135008
http://dx.doi.org/10.1088/0264-9381/30/13/135008
http://dx.doi.org/10.1088/0264-9381/30/7/075013
http://dx.doi.org/10.1088/0264-9381/30/7/075013
http://dx.doi.org/10.1007/BF01645624
http://dx.doi.org/10.1007/BF01645624
http://dx.doi.org/10.1007/BF01340179
http://dx.doi.org/10.1063/1.3070673
http://dx.doi.org/10.1016/0003-4916(80)90098-6
http://dx.doi.org/10.1016/j.physletb.2010.07.014
http://dx.doi.org/10.1016/j.physletb.2010.07.014
http://dx.doi.org/10.1103/PhysRevD.83.047702
http://dx.doi.org/10.1103/PhysRevD.83.047702
http://dx.doi.org/10.1088/0264-9381/14/7/008
http://dx.doi.org/10.1088/0264-9381/23/9/008
http://dx.doi.org/10.1088/0264-9381/23/9/008
http://dx.doi.org/10.1137/0511089
http://dx.doi.org/10.1007/BF00943433
http://dx.doi.org/10.1137/0512054
http://dx.doi.org/10.1088/0305-4470/15/9/020
http://dx.doi.org/10.1063/1.525827
http://dx.doi.org/10.1016/0001-8708(84)90004-5
http://dx.doi.org/10.1063/1.528565
http://dx.doi.org/10.1063/1.528565
http://dx.doi.org/10.1098/rspa.1996.0050
http://dx.doi.org/10.1098/rspa.1996.0050
http://dx.doi.org/10.1063/1.526976
http://dx.doi.org/10.1103/PhysRevD.30.357
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1007/BF01390041
http://dx.doi.org/10.1103/PhysRevD.78.064022
http://dx.doi.org/10.1088/1126-6708/2007/02/004
http://dx.doi.org/10.1088/1126-6708/2007/02/004
http://dx.doi.org/10.1103/PhysRevD.76.084034
http://dx.doi.org/10.1103/PhysRevD.76.084034
http://dx.doi.org/10.1103/PhysRevD.77.044033
http://dx.doi.org/10.1016/j.physletb.2009.03.050
http://dx.doi.org/10.1103/PhysRevLett.108.051104
http://dx.doi.org/10.1088/0264-9381/24/3/F01
http://dx.doi.org/10.1088/0264-9381/24/3/F01
http://dx.doi.org/10.1088/1126-6708/2008/02/007
http://dx.doi.org/10.1103/PhysRevD.79.024018
http://dx.doi.org/10.1103/PhysRevD.79.024018
http://dx.doi.org/10.1103/PhysRevD.76.084036
http://dx.doi.org/10.1016/j.physletb.2009.06.037
http://dx.doi.org/10.1016/j.physletb.2009.06.037


Kubizňák, D., C. M. Warnick, and P. Krtouš, 2011, Nucl. Phys.
B844, 185.

Kunduri, H. K., J. Lucietti, and H. S. Reall, 2006, Phys. Rev. D 74,
084021.

Kunz, J., D. Maison, F. Navarro-Lérida, and J. Viebahn, 2006, Phys.
Lett. B 639, 95.

Kunz, J., F. Navarro-Lérida, and A. K. Petersen, 2005, Phys. Lett. B
614, 104.

Kunz, J., F. Navarro-Lérida, and E. Radu, 2007, Phys. Lett. B 649,
463.

Kunz, J., F. Navarro-Lérida, and J. Viebahn, 2006, Phys. Lett. B 639,
362.

Kuznetsov, V. B., 1996, Phys. Lett. A 218, 212.
Leiva, C., and M. S. Plyushchay, 2003, J. High Energy Phys. 10, 069.
Levi-Civita, T., 1904, Math. Ann. 59, 383.
Lévy-Leblond, J. M., 1967, Commun. Math. Phys. 6, 286.
Lü, H., J. Mei, and C. N. Pope, 2009, Nucl. Phys. B806, 436.
Lü, H., and C. N. Pope, 2007, Nucl. Phys. B782, 171.
Mac Conamhna, O. A., 2004, Phys. Rev. D 70, 105024.
MacKay, N. J., and S. Salour, 2014, Am. J. Phys. (to be published).
Manton, N. S., 1982, Phys. Lett. B 110, 54.
Mathúna, D. Ó., 2008, Integrable Systems in Celestial Mechanics
(Springer, New York), Vol. 51.

Mazzoni, L. N., and L. Casetti, 2008, Phys. Rev. E 77, 051917.
McLenaghan, R. G., and P. Spindel, 1979, Phys. Rev. D 20, 409.
Meessen, P., T.Ortin, andS.Vaula, 2010, J. HighEnergyPhys. 11, 072.
Moon, P., and D. E. Spencer, 1952a, J. Franklin Inst. 253, 585.
Moon, P., and D. E. Spencer, 1952b, Proc. Am. Math. Soc. 3, 635
[http://www.jstor.org/stable/2032602].

Moon, P., and D. E. Spencer, 1971, Field theory handbook: including
coordinate systems, differential equations and their solutions
(Springer-Verlag, Berlin), Vol. 2.

Moser, J., 1975, Adv. Math. 16, 197.
Moser, J., 1980, in The Chern Symposium 1979, edited by W.-Y.
Hsiang, S. Kobayashi, I. Singer, J. Wolf, H.-H. Wu, and A.
Weinstein (Springer, New York), pp. 147–188.

Myers, R. C., and M. J. Perry, 1986, Ann. Phys. (N.Y.) 172, 304.
Neumann, C., 1859, J. Reine Angew. Math. 1859, 46.
Ngome, J.-P., 2009, J. Math. Phys. (N.Y.) 50, 122901.
Niederer, U., 1972, Helv. Phys. Acta 45, 802.
Nirov, K. S., and M. S. Plyushchay, 1997, Phys. Lett. B 405, 114.
Nirov, K. S., and M. S. Plyushchay, 1998, Nucl. Phys. B 512, 295.
Olshanetsky, M. A., and A. M. Perelomov, 1981, Phys. Rep. 71, 313.
Olshanetsky, M. A., and A. M. Perelomov, 1983, Phys. Rep. 94, 313.
Olver, P. J., 2000, Applications of Lie groups to differential equations
(Springer, New York), Vol. 107.

Oota, T., and Y. Yasui, 2006, Phys. Lett. B 639, 54.
Oota, T., and Y. Yasui, 2008, Phys. Lett. B 659, 688.
Oota, T., and Y. Yasui, 2010, Int. J. Mod. Phys. A 25, 3055.
Ortaggio, M., J. Podolský, and M. Žofka, 2008, Classical Quantum
Gravity 25, 025006.

Page, D. N., 1976, Phys. Rev. D 14, 1509.
Page, D. N., D. Kubizňák, M. Vasudevan, and P. Krtouš, 2007, Phys.
Rev. Lett. 98, 061102.

Papadopoulos, G., 2008, Classical Quantum Gravity 25, 105016.
Papadopoulos, G., 2012, Classical Quantum Gravity 29, 115008.
Pauli, W., 1926, Z. Phys. 36, 336.
Penrose, R., 1973, Ann. N.Y. Acad. Sci. 224, 125.
Perelomov, A. M., 2000, Reg. Chaotic Dyn. 5, 89.
Petrov, A. Z., 1969, Einstein Spaces (Pergamon Press, Oxford), p. 1.
Petrov, A. Z., 2000, Gen. Relativ. Gravit. 32, 1665.
Plebanski, J. F., 1975, Ann. Phys. (N.Y.) 90, 196.
Plyushchay, M. S., 1996, Ann. Phys. (N.Y.) 245, 339.

Plyushchay, M. S., 1999, Lect. Notes Phys. 524, 270.
Plyushchay, M. S., 2000a, Int. J. Mod. Phys. A 15, 3679.
Plyushchay, M. S., 2000b, Phys. Lett. B 485, 187.
Plyushchay, M. S., 2001, Nucl. Phys. B, Proc. Suppl. 102–103, 248.
Plyushchay, M. S., and A. Wipf, 2014, Phys. Rev. D 89, 045017.
Podolský, J., and M. Ortaggio, 2006, Classical Quantum Gravity 23,
5785.

Polychronakos, A. P., 1989, Nucl. Phys. B324, 597.
Prasolov, V. V., 1994, Problems and theorems in linear algebra
(American Mathematical Society, Providence), Vol. 134.

Pravda, V., A. Pravdova, and M. Ortaggio, 2007, Classical Quantum
Gravity 24, 4407.

Prince, G. E., and C. J. Eliezer, 1981, J. Phys. A 14, 587.
Robinson, D. C., 1975, Phys. Rev. Lett. 34, 905.
Rogers, H. H., 1973, J. Math. Phys. (N.Y.) 14, 1125.
Santillan, O. P., 2012, J. Math. Phys. (N.Y.) 53, 043509.
Semmelmann, U., 2003, Math. Z. 245, 503.
Sen, A., 1992, Phys. Rev. Lett. 69, 1006.
Simonović, N. S., and R. G. Nazmitdinov, 2003, Phys. Rev. B 67,
041305.

Stäckel, P., 1891, habilitationsschrift, Halle.
Stäckel, P., 1893, Math. Ann. 42, 537.
Stephani, H., and M. MacCallum, 1989, Differential equations:
Their solution using symmetries (Cambridge University Press,
Cambridge, England).

Strominger, A., 1986, Nucl. Phys. B274, 253.
Tachibana, S., 1969, Tôhoku Math. J. 21, 56 [https://projecteuclid
.org/euclid.tmj/1178243034].

Tangherlini, F. R., 1963, Nuovo Cimento 27, 636.
Tanimoto, M., 1995, Nucl. Phys. B442, 549.
Teukolsky, S. A., 1972, Phys. Rev. Lett. 29, 1114.
Teukolsky, S. A., 1973, Astrophys. J. 185, 635.
Tod, K. P., 1983, Phys. Lett. B 121, 241.
Toda, M., 1967, J. Phys. Soc. Jpn. 22, 431.
Uhlenbeck, K., 1975, informal preprint.
Unruh, W., 1973, Phys. Rev. Lett. 31, 1265.
Vaman, D., and M. Visinescu, 1998, Phys. Rev. D 57, 3790.
van Holten, J. W., 1995, Phys. Lett. B 342, 47.
van Holten, J. W., 2007, Phys. Rev. D 75, 025027.
Verhoeven, C., M. Musette, and R. Conte, 2002, J. Math. Phys.
(N.Y.) 43, 1906.

Visinescu, M., 2000, J. Phys. A 33, 4383.
Visinescu, M., 2010, Mod. Phys. Lett. A 25, 341.
Visinescu, M., 2011, Mod. Phys. Lett. A 26, 2719.
Walker, M., and R. Penrose, 1970, Commun. Math. Phys. 18, 265.
Whittaker, E. T., 1917, A Treatise on the Analytical Dynamics of
Particels and Rigid Bodies (Cambridge University Press, London,
UK), 2nd ed.

Will, M., 2009, Phys. Rev. Lett. 102, 061101.
Wojciechowski, S., 1983, Phys. Lett. A 95, 279.
Woodhouse, N. M. J., 1975, Commun. Math. Phys. 44, 9.
Wu, S., and X. Cai, 2003, J. Math. Phys. (N.Y.) 44, 1084.
Wu, S.-Q., 2009a, Phys. Rev. D 80, 044037.
Wu, S. Q., 2009b, Phys. Rev. D 80, 084009.
Yano, K., 1952, Ann. Math. 55, 328.
Yano, K., and S. Bochner, 1953, Curvature and Betti numbers,
Annals of Mathematics Studies Vol. 32 (Princeton University Press,
Princeton, NJ).

Yasui, Y., and T. Houri, 2011, Prog. Theor. Phys. Suppl. 189, 126.
Zhang, P. M., G.W. Gibbons, and P. A. Horváthy, 2012, Phys. Rev. D
85, 045031.

Zhang, P.-M., L.-P. Zou, P. A. Horvathy, and G.W. Gibbons, 2014,
Ann. Phys. (Amsterdam) 341, 94.

Marco Cariglia: Hidden symmetries of dynamics in classical … 1333

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014

http://dx.doi.org/10.1016/j.nuclphysb.2010.11.001
http://dx.doi.org/10.1016/j.nuclphysb.2010.11.001
http://dx.doi.org/10.1103/PhysRevD.74.084021
http://dx.doi.org/10.1103/PhysRevD.74.084021
http://dx.doi.org/10.1016/j.physletb.2006.06.024
http://dx.doi.org/10.1016/j.physletb.2006.06.024
http://dx.doi.org/10.1016/j.physletb.2005.03.056
http://dx.doi.org/10.1016/j.physletb.2005.03.056
http://dx.doi.org/10.1016/j.physletb.2007.04.030
http://dx.doi.org/10.1016/j.physletb.2007.04.030
http://dx.doi.org/10.1016/j.physletb.2006.06.066
http://dx.doi.org/10.1016/j.physletb.2006.06.066
http://dx.doi.org/10.1016/0375-9601(96)00421-5
http://dx.doi.org/10.1088/1126-6708/2003/10/069
http://dx.doi.org/10.1007/BF01445149
http://dx.doi.org/10.1007/BF01646020
http://dx.doi.org/10.1016/j.nuclphysb.2008.08.005
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.017
http://dx.doi.org/10.1103/PhysRevD.70.105024
http://dx.doi.org/10.1016/0370-2693(82)90950-9
http://dx.doi.org/10.1103/PhysRevE.77.051917
http://dx.doi.org/10.1103/PhysRevD.20.409
http://dx.doi.org/10.1007/JHEP11(2010)072
http://dx.doi.org/10.1016/0016-0032(52)90682-0
http://dx.doi.org/10.1016/0001-8708(75)90151-6
http://dx.doi.org/10.1016/0003-4916(86)90186-7
http://dx.doi.org/10.1515/crll.1859.56.46
http://dx.doi.org/10.1063/1.3266874
http://dx.doi.org/10.1016/S0370-2693(97)00599-6
http://dx.doi.org/10.1016/S0550-3213(97)00746-3
http://dx.doi.org/10.1016/0370-1573(81)90023-5
http://dx.doi.org/10.1016/0370-1573(83)90018-2
http://dx.doi.org/10.1016/j.physletb.2006.06.021
http://dx.doi.org/10.1016/j.physletb.2007.11.057
http://dx.doi.org/10.1142/S0217751X10049001
http://dx.doi.org/10.1088/0264-9381/25/2/025006
http://dx.doi.org/10.1088/0264-9381/25/2/025006
http://dx.doi.org/10.1103/PhysRevD.14.1509
http://dx.doi.org/10.1103/PhysRevLett.98.061102
http://dx.doi.org/10.1103/PhysRevLett.98.061102
http://dx.doi.org/10.1088/0264-9381/25/10/105016
http://dx.doi.org/10.1088/0264-9381/29/11/115008
http://dx.doi.org/10.1007/BF01450175
http://dx.doi.org/10.1111/j.1749-6632.1973.tb41447.x
http://dx.doi.org/10.1070/rd2000v005n01ABEH000125
http://dx.doi.org/10.1023/A:1001910908054
http://dx.doi.org/10.1016/0003-4916(75)90145-1
http://dx.doi.org/10.1006/aphy.1996.0012
http://dx.doi.org/10.1007/BFb0104582
http://dx.doi.org/10.1142/S0217751X00001981
http://dx.doi.org/10.1016/S0370-2693(00)00671-7
http://dx.doi.org/10.1016/S0920-5632(01)01563-8
http://dx.doi.org/10.1103/PhysRevD.89.045017
http://dx.doi.org/10.1088/0264-9381/23/20/002
http://dx.doi.org/10.1088/0264-9381/23/20/002
http://dx.doi.org/10.1016/0550-3213(89)90522-1
http://dx.doi.org/10.1088/0264-9381/24/17/009
http://dx.doi.org/10.1088/0264-9381/24/17/009
http://dx.doi.org/10.1088/0305-4470/14/3/009
http://dx.doi.org/10.1103/PhysRevLett.34.905
http://dx.doi.org/10.1063/1.1666448
http://dx.doi.org/10.1063/1.3698087
http://dx.doi.org/10.1007/s00209-003-0549-4
http://dx.doi.org/10.1103/PhysRevLett.69.1006
http://dx.doi.org/10.1103/PhysRevB.67.041305
http://dx.doi.org/10.1103/PhysRevB.67.041305
http://dx.doi.org/10.1007/BF01447379
http://dx.doi.org/10.1016/0550-3213(86)90286-5
http://dx.doi.org/10.1007/BF02784569
http://dx.doi.org/10.1016/0550-3213(95)00086-8
http://dx.doi.org/10.1103/PhysRevLett.29.1114
http://dx.doi.org/10.1086/152444
http://dx.doi.org/10.1016/0370-2693(83)90797-9
http://dx.doi.org/10.1143/JPSJ.22.431
http://dx.doi.org/10.1103/PhysRevLett.31.1265
http://dx.doi.org/10.1103/PhysRevD.57.3790
http://dx.doi.org/10.1016/0370-2693(94)01358-J
http://dx.doi.org/10.1103/PhysRevD.75.025027
http://dx.doi.org/10.1063/1.1456948
http://dx.doi.org/10.1063/1.1456948
http://dx.doi.org/10.1088/0305-4470/33/23/312
http://dx.doi.org/10.1142/S0217732310032500
http://dx.doi.org/10.1142/S0217732311037054
http://dx.doi.org/10.1007/BF01649445
http://dx.doi.org/10.1103/PhysRevLett.102.061101
http://dx.doi.org/10.1016/0375-9601(83)90018-X
http://dx.doi.org/10.1007/BF01609055
http://dx.doi.org/10.1063/1.1539899
http://dx.doi.org/10.1103/PhysRevD.80.044037
http://dx.doi.org/10.1103/PhysRevD.80.084009
http://dx.doi.org/10.2307/1969782
http://dx.doi.org/10.1143/PTPS.189.126
http://dx.doi.org/10.1103/PhysRevD.85.045031
http://dx.doi.org/10.1103/PhysRevD.85.045031
http://dx.doi.org/10.1016/j.aop.2013.11.004

