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PACS 12.39.Dc – Skyrmions
PACS 74.20.De – Phenomenological theories (two-fluid, Ginzburg-Landau, etc.)
PACS 74.72.Kf – Pseudogap regime

Abstract – We show that a layered superconductor, described by a two-component order param-
eter, has a gapped state above the ground state, topologically protected from decay, containing
flow and counterflow in the absence of an applied magnetic field. This state is made of skyrmions,
breaks time reversal symmetry and produces a weak local magnetic field. We estimate the den-
sity of carriers that condense into the pseudogap of the cuprate superconductors based on the
assumption that the pseudogap is a skyrmion state.

Copyright c© EPLA, 2014

Introduction. – An important concept in condensed
matter physics is that of an order parameter (OP), intro-
duced by Lev Landau in the last century to describe the
transition to the superconducting state. Interestingly, one
of Landau’s first proposals of an order parameter was the
supercurrent, also suggested to exist in the microscopic
superconducting ground state of Felix Bloch [1]. These
ideas were soon dismissed since a spontaneous circulating
supercurrent increases the kinetic energy. In this letter we
find an excited but stable state with these spontaneously
circulating supercurrents, containing flow and counterflow
in the layers, even without the presence of an external
magnetic field. This is a skyrmion state found to exist
above the homogeneous state in a layered superconduc-
tor, described by a two-component OP. The decay of the
skyrmion state into other configurations of lower free en-
ergy is prevented by its topological stability, which gives
rise to an energy gap. The skyrmion state breaks the
time reversal symmetry and produces a very weak mag-
netic field inside the superconductor due to the supercur-
rents. The gap above the ground state, the topological
stability and the unusual magnetic order that breaks the
time reversal symmetry found here leads us to suggest that
the pseudogap of the layered superconductors is indeed a
skyrmion state.

Cuprate superconductors. – The temperature-vs.-
doping diagram of the cuprate superconductors has three
basic common features: i) an antiferromagnetic Mott

insulator state based on Cu2+ spins at zero doping that
rapidly disappears by increasing the doping; ii) a super-
conducting state under a dome-shaped curve that defines
the critical temperature Tc, whose maximum, Tmax

c , de-
fines the underdoped, optimally doped, and overdoped
states, respectively; and iii) a pseudogap state that
emerges in the underdoped regime at a temperature T ∗,
claimed to be a phase transition line when plotted vs. dop-
ing [2]. It decreases with increasing doping level, and, at
a particular doping [3], the pseudogap and the supercon-
ducting transition coincide, T ∗ = Tc in the slightly over-
doped regime.

The pseudogap state [4] breaks the time-reversal sym-
metry [2,5,6], as dichroism has been observed below T ∗ [6].
A state described by an OP with broken time reversal
symmetry must have an accompanying magnetic order [7]
and, for this reason, there has been an intense search
for this accompanying magnetic order associated to the
pseudogap. Proposals have been made to explain it, such
as by Varma [8], based on microscopic orbital currents.
Indeed polarized neutron diffraction experiments [9,10]
indicate a magnetic order below the pseudogap, but
NMR/NQR [11,12] and μSR [13,14] experiments set a very
restrictive limit to the maximum magnetic field inside the
superconductor, hereafter called hmax, which cannot be
larger than hmax ∼ 0.1 to 0.01G. We show here that the
skyrmion state breaks the time reversal symmetry and
links the pseudogap to the weak internal magnetic field
hmax.
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Since the discovery of stripe order in the cuprates,
charge, magnetism and superconductivity are believed to
coexist in geometrical periodic arrangements [15]. The
pseudogap also breaks the translational symmetry since
a tetragonal lattice, the so-called checkerboard pattern
(CB), is found there. The CB is commonly associated
to a charge density wave [16], has the size of four times
the crystallographic unit cell and was firstly discovered by
scanning tunneling microscopy inside the vortex cores [17]
of Bi2Sr2CaCu2O8+x. Later the CB was also found in
the absence of a magnetic field in a slightly underdoped
version of this compound above the superconducting tran-
sition temperature [18]. The CB is not necessarily com-
mensurate with the crystallographic structure [19]. It has
been observed by distinct experimental techniques, such
as X-ray scattering, used to report an intrinsically mod-
ulated kinetic lattice four times the crystallographic unit
cell [20] in the optimally doped YBa2Cu3O6.92 compound,
above and below Tc. The possibility of describing the CB
through an OP has been considered by Rosen et al. [21].

The tetragonal symmetry. – We claim that a two-
component OP Ginzburg-Landau theory can describe the
superconducting and the pseudogap states of the layered
compounds, above and below the critical temperatures Tc

and T ∗, in the neighborhood T ≈ Tc ≈ T ∗ where a power
expansion of the free energy in terms of an OP is attain-
able. Here we suggest that the breaking of both time
and translational invariance symmetries are consequences
of a skyrmion state, whose intrinsically circulating cur-
rents in the layers, naturally produce a charge density
wave, since the divergence of the superficial current does
not necessarily vanish within a layer. The detailed de-
scription of this charge density wave associated to the
skyrmion lattice will be given elsewhere. Here we obtain
the skyrmion solution of the two-component OP theory.
We consider the particular temperature T = Tc = T ∗, be-
cause at this temperature there are no free parameters, as
the condensate energy is nearly zero, since it becomes of
fourth-order power in the OP. Therefore at this temper-
ature there should exist material independent universal
properties of the layered superconductors. The free en-
ergy reduces to a sum of the kinetic and of the magnetic
energies, which are both positive and the homogeneous
state, which has the OP and the local magnetic field equal
to zero, has the lowest free energy. Nevertheless above
it lives the skyrmion state, an inhomogeneous state with
non-vanishing OP and non-vanishing local magnetic field,
topologically protected from decay into the homogeneous
ground state. The circulating supercurrents in the layers
associated to the skyrmion state for d- and s-wave cases
can be seen in fig. 1 inside the cell.

We show here that the kinetic energy of the skyrmion
state yields a gap, which we claim to be the pseudogap
itself. The magnetic energy is residual in comparison to
the kinetic energy since hmax must fall below the ex-
perimental threshold described before. Nevertheless the

Fig. 1: (Color online) The superficial current �Js is shown for d
and s waves for a square unit cell. The two d-wave skyrmions
are centered in the middle of the sides and the single s-wave
skyrmion is at the corner.

Fig. 2: (Color online) The magnetic energy between layers vs.
L/d is shown here. Three L/d ratios are shown for d-wave,
2.42 (d1), 2.94 (d2) and 4.49 (d3), and also for s-wave, 2.86
(s1), 3.83 (s2), and 5.50 (s3). The d2 and s2 points are the
minimum of d- and s-wave curves, respectively. The curves are
normalized to the minimum of the d-wave magnetic energy.

skyrmion lattice stores magnetic energy between layers
because of the circulating supercurrents. This magnetic
energy reaches a minimum with respect to the ratio L/d,
where d is the interlayer distance, as shown in fig. 2 for d-
and s-wave symmetry, respectively. Interestingly below a
certain ratio, L/d ≈ 2.2, the skyrmions disappear for both
d- and s-wave symmetries. Considering a crystallographic
cell with size a ≈ 0.39 nm, and d ≈ 1.17 nm, such as in
YBa2Cu3O6.92, this lowest bound becomes L/a ≈ 6.6.
Notice that in case of d-wave the unit cell, as shown in
fig. 1, contains two skyrmions. Hence a smaller unit cell
with a single skyrmion has a size L′ = L/

√
2, and in this

case, L′/a ≈ 4.7, thus very close to the commonly ob-
served CB cell of L = 4a, such as in the optimally doped
YBa2Cu3O6.92 [20]. The fact that the checkerboard size
does not fall exactly in the magnetic energy minimum of
fig. 2 must be a consequence of some discarded residual in-
teraction, such as the fourth-order OP correction present
in the condensate energy. In summary, the theoretically
predicted skyrmion lattice falls within the range of the
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observed CB and so the later can be expected to be a
consequence of the former. The fact that the temperature
T = Tc = T ∗ is supposedly near to T = Tmax

c , allows us
to estimate the number of carriers in the pseudogap for
the optimal doping.

The number of carriers in the pseudogap. – The
interpretation of the pseudogap as a skyrmion state leads
to the estimate that the number of carriers that condense
in the pseudogap of the cuprate superconductors near op-
timal doping is 0.01% of the Cooper pair density. Let the
number of carriers that condense in the pseudogap be npg.
Our starting point is the large wavelength limit of the ki-
netic energy density, Fk, (eq. (14)) of the skyrmion state,
responsible for the pseudogap density. For the single-layer
cuprate we obtain that Fk ∼ 0.1hmax meV · nm−3, where
hmax is given in gauss. Taking that hmax ∼ 0.01G, thus
below the experimental threshold, the pseudogap density
becomes Fk ∼ 10−3 meV · nm−3. From this pseudogap
density follows the density of carriers under the extra as-
sumption that near optimal doping the pseudogap and the
superconducting gap of the cuprates have similar values.
According to the BCS the superconducting state lies below
the normal state by the gap density of Fgap = 2Δng, where
2Δ is the energy required to break a single Cooper pair and
ng represents the density of available Cooper pairs, namely
ng = 0.187Δn/EF , n and EF being the electronic den-
sity and the Fermi energy, respectively. Then one obtains
that the gap density for metals is Fgap ∼ 10−4 meV · nm−3

since n ∼ 0.1 nm−3, Δ/EF ∼ 10−4 and 2Δ ∼ 1.0meV. A
similar estimate for the cuprates gives that the gap density
is Fgap ∼ 10meV · nm−3, considering that the gap is ten
times larger than that of metals, 2Δ ∼ 10meV, and ng ∼
1.0 nm−3, since there are a few Cooper pairs [22] occupying
the coherence length volume, ξ2

abξc, where ξab ∼ 1.5 nm,
ξc ∼ 0.3 nm. Assuming that the skyrmion pseudogap
density is the product of a pseudogap times a density,
Fk → 2Δpgnpg, and that, 2Δpg ∼ 10meV, we conclude
that npg ∼ 10−4 nm−3. Therefore the ratio between the
pseudogap and gap carrier densities is npg/ng ∼ 10−4.

First-order equations. – We derive the OP and the
local magnetic field associated to the skyrmion state from
the first-order equations (FOE) instead of the second-
order variational equations. Interestingly Abrikosov [23],
used the FOE to discover the vortex lattice instead of
the second-order Ginzburg-Landau (GL) variational equa-
tions. The GL free energy only sorts among the pos-
sible vortex lattice the one with minimal energy. Later
the FOE were rediscovered by Bogomolny [24] in the con-
text of string theory and shown to solve exactly the GL
second-order equations for a particular value of the cou-
pling constant. The Seiberg-Witten equations, which also
describe topological excitations, namely four-dimensional
monopoles [25], are FOE that belong to the same family
of the Abrikosov-Bogomolny (AB) equations. In this fam-
ily, the FOE determine the OP and the vector potential
associated to topological excitations. In this letter we

obtain the topological solutions (skyrmions) associated to
another set of equations that belong to this family that
lives in the three-dimensional Euclidean space [26,27]. The
existence of topological solutions for the two-component
GL theory was pointed out long ago [28], through a map-
ping into a nonlinear O(3) sigma model.

The skyrmion state. – In his original work T. Skyrme
made protons and neutrons stable by association to a
topologically non-trivial solution of the sigma model [29,
30], the skyrmion, that represents a configuration with
particle-like properties. Skyrmions are found in many
condensed matter systems with an inner structure con-
structed over a physical OP. Skyrmions were reported
in the quantized Hall effect [31], Bose-Einstein conden-
sates [32] and superfluid3He-A [33]. In the antiferromag-
net La2Cu1−xLixO4 [34] the CuO2 layers are modified by
Li atoms, which are dopants that frustrate the original
Neel state, leading to a magnetic state made of skyrmions.
Recently skyrmions were found to form a crystalline or-
der [35] in the helimagnet MnSi [36] and also in the doped
semiconductor Fe1−xCoxSi [37].

The present skyrmion state stems from the superficial
supercurrent �Js circulating in the layers that generates a
spatial magnetic field �h [38]. As shown in fig. 1, there
are two cores of �Js for d-wave (red), with centers in the
middle of the unit cell sides, while for s-wave (black) there
is only one core centered at the corners of the unit cell.
In both cases, there is no net circulation in the unit cell,
and yet there is a single sense of intense circulation set
by the cores. As seen from above a layer, e.g. the plane
of fig. 1, the �h stream lines sink into these cores to re-
emerge from below, and pierce the unit cell a second time,
forming closed loops. The field stream lines are densely
concentrated in the cores. There are some stream lines
that fully cross the stack of layers, in the opposite direc-
tion relative to the sinking ones, never to come back again,
like in an infinitely extended solenoid. The skyrmion
cores are small, concentrated pockets of opposite field with
9.4% and 5.3% of the total cell area, for d- and s-wave,
respectively.

The skyrmion’s topological charge is obtained by inte-
gration over a single layer, at x3 = 0 for ĥ = �h/|�h|.

Q =
1
4π

∫
L2, x3=0+

(
∂ĥ

∂x1
× ∂ĥ

∂x2

)
·ĥ d2x, (1)

and one obtains that Q = −2 and −1 for the d- and
s-wave states, respectively, in agreement with the plotted
solutions of fig. 1. Clearly the time reversal symmetry,
(�h → −�h), is broken by the skyrmions.

The theory. – Two-component OP theories are being
considered to describe properties of the high-temperature
layered superconductors [39] and only a multi-component
OP theory can yield a time reversal broken state [40,41].
We assume that the free energy density of a layered su-
perconductor is a sum of the kinetic, field and condensate
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energy densities [26,27], F = Fk + Ff + Fc,

Fk =

〈
| �DΨ|2
2m

〉
, Ψ =

(
ψu

ψd

)
, and Ff =

〈
�h2

8π

〉
, (2)

where 〈· · · 〉 ≡
∫ (

d3x/V
)
(· · · ) and V is the bulk volume.

There is minimal coupling, �D = (h̄/i)�∇ − (q/c) �A, and
the local magnetic field is �h = �∇ × �A. The most general
condensate energy density is Fc = 〈−α0Ψ†Ψ− �α ·Ψ†�σΨ+
βa,b,c,d ψ∗

aψ∗
b ψcψd/2〉, where indices a, b, c, d run over u and

d, and �σ are the Pauli matrices. For T = T ∗ = Tc, the
free energy density becomes F = Fk + Ff [26,27] since Fc

is negligible by fluctuation theory [42] arguments. The or-
der parameter is so small that its fourth-order power terms
can be abandoned in face of the second-order power ones:
Fc ≈ − (α0 + α3) 〈|ψu|2〉−(α0 − α3) 〈|ψd|2〉−�α‖ ·〈Ψ†�σ‖Ψ〉,
where the parallel components are along the layers by
choice of coordinate system. The temperature T = T ∗ =
Tc corresponds exactly to α0 + α3 = 0 and α0 − α3 = 0.
Then Fc ≈ −�α‖ · 〈Ψ†�σ‖Ψ〉 and we shall see below that for
the skyrmion state 〈Ψ†�σ‖Ψ〉 = 0, which leads to Fc ≈ 0.

The second-order variational equations must be solved
for a set of equally spaced superconducting layers such
that two-dimensional layers carry a �Js, and away from
them the condensate evanesces exponentially in a metal-
lic environment. We find this solution by means of the
FOE method, which solves Ampère’s law exactly, �∇×�h =
4π �J/c, �J = (q/2m)

(
Ψ† �DΨ + c.c.

)
, and the Ginzburg-

Landau equation, �D2Ψ = 0 approximately, meaning that,
instead, we solve exactly the so-called integrated equa-
tion, 〈Ψ† �D2Ψ〉 = 0, which can also be expressed as
〈| �DΨ|2 − (h̄/2)�∇2|Ψ|2〉 = 0. The FOE method relies on
the following identity, which allows for a twofold view of
the kinetic energy [27]:

1
2m

∣∣∣ �DΨ
∣∣∣2 =

1
2m

∣∣∣�σ · �DΨ
∣∣∣2 +

h̄q

2mc
�h · Ψ†�σΨ

− h̄

4m
�∇

[
Ψ†

(
�σ × �D

)
Ψ + c.c.

]
. (3)

From it an equivalent, but distinct, formulation of the
current density is obtained,

�J =
q

2m

[
Ψ†�σ

(
�σ · �DΨ

)
+ c.c.

]
− h̄q

2m
�∇×

(
Ψ†�σΨ

)
. (4)

Imposing that the order parameter satisfies

�σ · �D Ψ = 0, (5)

leads to the exact determination of the local field from
Ampère’s law,

�h = �C − 4πμBΨ†�σΨ, (6)

where μB = h̄q/2mc is Bohr’s magneton. Thus for fields
that satisfy the FOE, eq. (3) becomes

1
2m

∣∣∣ �DΨ
∣∣∣2 = μB

(
�C − 4πμBΨ†�σΨ

)
· Ψ†�σΨ

+
h̄2

4m
∇2

(
Ψ†Ψ

)
(7)

Introducing eq. (7) into the integrated equation gives that
〈(�C − 4πμBΨ†�σΨ) · Ψ†�σΨ〉 = 0, which is exactly solved
for the following choice of integration constant:

�C = 4πμB〈Ψ†�σΨ〉
〈
(
Ψ†�σΨ

)2〉
〈Ψ†�σΨ〉2 . (8)

Thus one obtains that,

Fk =
h̄2

4m
〈�∇2

(
Ψ†Ψ

)
〉, and (9)

Ff = 2πμ2
B〈

(
Ψ†�σΨ

)2〉
[
〈
(
Ψ†�σΨ

)2〉
〈Ψ†�σΨ〉2 − 1

]
. (10)

Equations (5) and (6) are nonlinear and must be solved
iteratively. The first one determines Ψ while the second
one, �h. We solve them in the lowest-order approximation,
that is, firstly Ψ is obtained from eq. (5) in the absence of
�h, and, next, �h is determined from eq. (6), using the known
OP solution. The success of this lowest approximation
relies on the fact that �h must be very weak, such that no
further iterations of the FOE are needed. For the case of
a single layer, the solution of �σ · �∇Ψ = 0 is, for x3 
= 0,

Ψ =
∑
�k �=0

c�k e−k|x3|ei�k·�x

(
1

−ik+
k

x3
|x3|

)
, (11)

where k± = k1 ± ik2. The space-time symmetries are bro-
ken, namely, the reflection symmetry, x3 → −x3, and also
the time reversal symmetry, k+ → k−. Although these
features reflect our particular choice of a basis, they are
intrinsic to the solution and cannot be removed from it.
Notice that the density Ψ†Ψ and Ψ†σ3Ψ are continuous
across the layer, and so is h3, according to eq. (6). Nev-
ertheless Ψ†σ1Ψ and Ψ†σ2Ψ are discontinuous across the
layer, and so is �h‖ ≡ h1x̂1+h2x̂2, and, consequently, there
is a superficial current density,

�Js = −2cμB x̂3 × Ψ†(0+)�σΨ(0+). (12)

We next solve �σ · �∇Ψ = 0 for a stack of layers under the
simplifying assumption that all layers are identical:

Ψ =
∑
�k �=0

c�k

ei�k·�x

sinh (kd/2)

(
cosh [k (x3 − d/2)]

ik+
k sinh [k (x3 − d/2)]

)
. (13)

The field �h is obtained analytically by introducing eq. (13)
into eq. (8) firstly, and next to eq. (6). There is a funda-
mental difference between single and multiple layer solu-
tions described by eqs. (11) and (13), respectively. For a
single layer 〈�h〉 = 0, since 〈Ψ†�σΨ〉 = 0. In fact for the
single layer eq. (8) does not apply to determine �C. For
a stack of layers 〈Ψ†σ3Ψ〉 =

∑
�k �=0 |c�k|2/ sinh2 (kd/2), and

〈Ψ†�σ‖Ψ〉 = 0. Thus the stack of layers behaves similarly to
a solenoid, which renders 〈h3〉 ≥ 0, and only 〈�h‖〉 = 0. The
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d1

d2

d3

d-wave

Fig. 3: (Color online) The d-wave local magnetic field compo-
nent, perpendicular to the layers, h3, is shown in colors (blue
negative, green zero and red positive) at the walls of the dL2

unit cell. The (cyan) cones depict the local magnetic field �h
infinitesimally below (top cones) and above (bottom cones) a
layer.

low component of eq. (13) vanishes in the middle plane
(x3 = d/2), and there Ψ†�σ‖Ψ|x3=d/2 = 0. Physically this
means that �h‖ has opposite signs in 0 < x3 < d/2 and
d/2 < x3 < d, and consequently there is a non-zero �Js

in the layers. Fk and Ff are well defined only outside
the layer, thus excluding x3 = 0. The same holds for the
multilayer solution of eq. (13), limited to 0 < x3 < d.

The gap density of the skyrmion state follows from
eqs. (9) and (13), which give that

Fk =
(h/d)2

π2m

∑
�k �=0

|c�k|
2 kd/2
tanh (kd/2)

. (14)

The gap is not very sensitive to the small k regime as
shown by the two limits of the function f(z) = z/ tanh(z),
z ≡ kd/2: f(z → 0) → 1, and f(z = 1) ≈ 1.3. Neverthe-
less the region near to z = 1 matters, because, as shown
below, there lives the skyrmion state, which is stable.

The d- and s-wave models. – Here we select
the coefficients c�k in eq. (13) such that ψu has s
or d angular momentum perpendicular to the layers,
namely, ψu is an eigenvector of the operator L3 =
(h̄/i) (k1∂/∂k2 − k2∂/∂k1). We associate ψu to the
superconducting state since the other component, ψd,
breaks the time-reversal symmetry. The s and d states
correspond to the eigenvalues m = 0 and m = ±2, re-
spectively of L3c�k = ±mh̄c�k, c�k = (k±)m. Therefore
the s and d states correspond to cs

�k
= ψ0 and cd

�k
=

ψ0

(
k2
+ + k2

−
)
/2k2, where ψ2

0 is the density that deter-
mines hmax according to eq. (6). We choose c�k for the

s1

s2

s3

s-wave

Fig. 4: (Color online) The s-wave local magnetic field compo-
nent perpendicular to the layers, h3, is shown in colors (blue
negative, green zero and red positive) at the walls of the dL2

unit cell. The (cyan) cones depict the local magnetic field �h
infinitesimally below (top cones) and above (bottom cones) the
layer.

d-wave state to be an equal admixture of m = 2 and
m = −2 states. Then they are eigenstates of L2

3, and
not of L3. Although the coefficients cd,s

�k
are common to

both components of Ψ, ψd, is in a different L2
3 state than

ψu, because k+ adds an extra angular momentum besides
breaking the time reversal symmetry. For simplicity only
the lowest fourier terms are included, and so, �k = 2π�n/L,
�n = n1x̂1 + n2x̂2, where, ni = −1, 0, 1, i = 1, 2. For the
totally inhomogeneous state n1 = n2 = 0 is excluded.

The weak field �h of the skyrmion state yields a negligible
Ff , as compared to Fk, and consequently, the gap density
of eq. (14) is the dominant term. The search of the opti-
mal unit cell ratio, L/d, that minimizes Ff also determines
the region of existence of the skyrmion state, which lives
near this minimum. According to eq. (10) Ff plunges to a
minimum within a small L range window, around L/d ∼ 3
and 4 for d- and s-wave symmetries, respectively, as shown
in fig. 2. The values d2 and s2 correspond to such min-
ima while the other points (d1, d3) and (s1, s3) are ar-
bitrary selections chosen below and above these minima.
Figure 2 shows that the d-wave state (red curve, left scale)
has almost ten times less stored magnetic energy than the
s-wave state (black curve, right scale). Figures 3 and 4
show that the region around the center of the skyrmions
are pockets of h3 < 0, thus in opposite direction to the
majority of the unit cell, which features h3 > 0. The con-
figurations of figs. 3 and 4 correspond to the three selected
L/d ratios of fig. 2. The same red to blue scale applies to
each of the three displayed cases. The (cyan) cones of
figs. 3 and 4 depict �h slightly below and above a layer,
respectively. Because all layers are equivalent, the bot-
tom plane of (cyan) cones shows �h slightly above a layer.
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Conversely, the top plane of (cyan) cones shows �h slightly
below a layer. In this way the cones around the center
of the skyrmions clearly show the discontinuity of �h‖, and
so, the presence of �Js in the blue regions. Regions with a
dominant h3 component, have very weak �Js, because h3 is
continuous across the layer. These regions take most of the
unit cell, specially its center, where (cyan) cones point up-
ward, but there is also the center of the skyrmions, where
h3 < 0. Notice that the configurations (d2, s2) contain
more green color (h3 = 0) than the (d1, s1), and (d3, s3)
ones, respectively, in agreement to the fact that there the
lowest magnetic energy is reached. Although (d3, s3) are
the configurations with most intense fields (red, h3 > 0;
blue, h3 < 0), their magnetic energies are larger than that
of (d2, s2). The same holds for (d1, s1), which are the
configurations with less h3 < 0 regions as compared to
the others.

We hope that the present macroscopic approach will
bring some understanding to the microscopic mechanism
of pairing in the underdoped regime of the cuprates [43].

Conclusion. – Using the first-order equations we show
that the two-component order parameter layered super-
conductor has a topologically stable inhomogeneous state
with a gap above the homogeneous ground state.
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Note added in proofs: The Gnzburg-Landau equation
can be solved by another approximate method, valid for
T = T ∗ = Tc, that does not appeal to the integrated
equation. The major results of this letters still hold under
this method, which features �C = 0.
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