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We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector

of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmologi-

cal constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning

particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal

Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes

such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the

same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al.

[Phys. Rev. Lett. 98, 061102 (2007)] on complete integrability of geodesic motion in these spacetimes.
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Introduction.—Complete integrability and chaotic mo-
tion are two opposite characteristic behaviors of any dy-
namical system. Whereas integrability is exceptional, only
a very few systems render this property, chaotic motion is
generic. In the special case of Hamiltonian systems one has
a notion of complete Liouville integrability; see, e.g., [1].
This means that the equations of motion are ‘‘integrable by
quadratures,’’ i.e., that the solution can be found after a
finite number of steps involving algebraic operations and
integration. Mathematically this translates to the require-
ment that the Hamiltonian system with n degrees of free-
dom admits n functionally independent integrals of motion
which are in involution; i.e., their Poisson brackets mutu-
ally vanish. This is possible only if the system admits a
sufficient number of corresponding symmetries. Well-
known examples of completely integrable mechanical sys-
tems are, for example, the motion in the central potential,
Neumann’s oscillator, or the geodesic motion on an ellip-
soid. In black hole physics one of the rather nontrivial
examples of complete integrability is the integrability of
geodesic motion in rotating black hole spacetimes in four
[2] and higher [3,4] dimensions. The symmetry responsible
for this result is encoded in the hidden symmetry of the so
called principal conformal Killing-Yano tensor [5–7].

In this Letter we study integrability of a new system.
Namely, we extend the result on complete integrability of
geodesic motion in spherical higher-dimensional rotating
black hole spacetimes [8] by including into consideration
the particle’s spin. We demonstrate complete integrability
of the ‘‘bosonic sector of motion’’ of a spinning particle
described by the supersymmetric classical theory [9–18]
where the spin degrees of freedom are described by
Grassmann (anticommuting) variables [19]. Such a theory

is physically very interesting. On one side it provides a
semiclassical description of Dirac’s theory of spin 1

2 fermi-

ons, while on the other side it is closely related to the
classical general-relativistic description of extended ob-
jects with spin, described by Papapetrou’s equations [20].
Our work thus provides a new example of integrability
which is both nontrivial and physically interesting.
In the next two sections we briefly recapitulate the

classical theory of spinning particles and review the basic
properties of higher-dimensional rotating black hole space-
times. Then we present the new bosonic (quadratic in
momenta) integrals of spinning particle motion in all
dimensions and demonstrate that in 4-, 5-, 6-, and
7-dimensional black hole spacetimes such integrals guar-
antee complete integrability of the bosonic sector of the
spinning particle motion. Our conjecture is that the same
conclusion remains true in any dimension. We conclude
with open questions and future possible directions. The
detailed calculations will be presented elsewhere [21].
Classical spinning particle.—We describe the spinning

particle by a classical theory which is a worldline super-
symmetric extension of the ordinary relativistic point-
particle [9–18]. In n number of spacetime dimensions,
we denote the particle’s worldline coordinates by x� (� ¼
1; . . . ; n) and describe its spin by a Lorentz vector of
Grassmann-odd coordinates �a (a ¼ 1; . . . ; n), where a is
a vielbein index. That is, the motion of a particle is
described by a curve � � ðxð�Þ; �ð�ÞÞ, � 2 R and is gov-
erned by the following equations of motion:

D2x�

d�2
¼ €x� þ ��

�� _x� _x� ¼ i

2
R�

�ab�
a�b _x�; (2.1)
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D�a

D�
¼ _�a þ!�

a
b _x

��b ¼ 0: (2.2)

Here ��
�� and !�ab are the Levi-Civita and spin connec-

tions, respectively, and R���� is the Riemann tensor. The

first equation is an analogue of the classical general-
relativistic Papapetrou’s equation, which generalizes the
geodesic equation for an extended object with spin,
whereas the latter equation expresses the simple require-
ment that, in the absence of interactions other than gravity,
the spin is constant along the motion of the particle. The
equations of motion can be derived from the Lagrangian

L ¼ 1

2
g�� _x� _x� þ i

2
�ab�

a D�b

d�
: (2.3)

The theory possesses a generic supercharge Q,

Q ¼ �ae�a��; (2.4)

which obeys

fH;Qg ¼ 0; fQ;Qg ¼ �2iH: (2.5)

Here, H is the Hamiltonian,

H ¼ 1

2
����g

��;

�� ¼ p� � i

2
�a�b!�ab ¼ g�� _x�;

(2.6)

e�a denotes the vielbein, p� is the momentum canonically
conjugate to x�, and the Poisson brackets are defined as

fF;Gg¼ @F

@x�
@G

@p�

� @F

@p�

@G

@x�
þ ið�1ÞaF @F

@�a
@G

@�a
; (2.7)

where aF is the Grassmann parity of F. For practical
calculations it is useful to rewrite these brackets in a
covariant form [15]

fF;Gg¼D�F
@G

@��

� @F

@��

D�Gþ i

2
�a�bRab��

@F

@��

@G

@��

þ ið�1ÞaF @F

@�a
@G

@�a
; (2.8)

where we have used the phase space covariant derivative

D�F ¼ @�F�!�ab�
b @F

@�a
þ ��

����

@F

@��

: (2.9)

Equations of motion are accompanied by two physical
(gauge) conditions

2H ¼ �1; Q ¼ 0; (2.10)

which state that � is the proper time and the particle’s spin
is spacelike.

An important role for the spinning particle in curved
spacetime is played by nongeneric superinvariants, i.e.,
quantities that Poisson commute with the generic super-
charge. More specifically, a superinvariant S is defined by
the equation

fQ; Sg ¼ 0: (2.11)

The existence of solutions of such an equation imposes
nontrivial conditions on the manifold. (The manifold has to
possess special symmetries such as Killing vectors or
Killing-Yano tensors, for example.) It follows from the
Jacobi identity that any superinvariant is automatically a
constant of motion, fH; Sg ¼ 0. At the same time quantity
fS; Sg is a ‘‘new’’ superinvariant and a constant of motion
(which may, or may not be equal to H). Hence, super-
invariants correspond to an enhanced worldline (super)
symmetry [15].
Linear in momentum superinvariants were studied in

[15,16]. In particular, when the following ansatz for the
superinvariant is used:

Q! ¼ �a1 . . . �ap�1!�
a1...ap�1

��

� i

ðpþ 1Þ2 �
a1 . . . �apþ1 ~!a1...apþ1

; (2.12)

one finds that !�1...�p
is a p-form and has to satisfy the

Killing-Yano equation

r�!�1...�p
¼ r½�!�1...�p� ¼

1

pþ 1
ðd!Þ��1...�p

; (2.13)

and that ~! ¼ d!. Hence, to any Killing-Yano tensor !
there is a corresponding superinvariantQ! given by (2.12).
Conversely, any superinvariant linear in momenta obeying
(2.11) is given by a Killing-Yano tensor and takes the form
(2.12) [15,16].
In what follows we shall construct quadratic in momenta

superinvariants and demonstrate that they enable us to
integrate the bosonic sector of the spinning particle motion
in the general rotating black hole spacetimes in higher
dimensions described in the next section.
Rotating black hole spacetimes.—We are interested in

the motion of a classical spinning particle in the vicinity of
a general rotating Kerr-NUT-(A)dS black hole spacetime
in higher dimensions [8]. We parametrize the total number
of spacetime dimensions as n ¼ 2N þ ", where " ¼ 0, 1
in even and odd dimension, respectively. The Euclidean
version of the metric can be written in an orthonormal form

g ¼ XN
�¼1

ðE� � E� þ E�̂ � E�̂Þ þ "E0 � E0; (3.1)

where we have introduced the basis Ea ¼ fE�; E�̂; E0g,

E� ¼ dx�ffiffiffiffiffiffiffi
Q�

p ; E�̂ ¼
ffiffiffiffiffiffiffi
Q�

q XN�1

j¼0

AðjÞ
� dc j;

E0 ¼ ffiffiffi
S

p X
j

AðjÞdc j:

(3.2)

Here, coordinates x�ð� ¼ 1; . . . ; NÞ [22] stand for the

(Wick rotated) radial coordinate and longitudinal angles,
and Killing coordinates c kðk ¼ 0; . . . ; N � 1þ "Þ denote
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time and azimuthal angles associated with Killing
vectors 	ðkÞ

	ðkÞ ¼ @c k
: (3.3)

We have further defined the functions

Q�¼X�

U�

; U�¼ Y

��

ðx2
�x2�Þ; S¼ �c

AðNÞ ; (3.4)

AðkÞ
� ¼ X


1 ;...;
k

1<...<
k;
i��

x2
1
���x2
k

; AðjÞ ¼ X

1 ;...;
k


1<...<
k

x2
1
���x2
k

: (3.5)

The quantities X� are functions of a single variable x�, and

c is an arbitrary constant. The vacuum (with a cosmologi-
cal constant) black hole geometry is recovered by setting

X� ¼ XN
k¼"

ckx
2k
� � 2b�x

1�"
� þ "c

x2�
: (3.6)

The constant cN is proportional to the cosmological con-
stant and the remaining constants are related to angular
momenta, mass, and NUT parameters.

The dual vector frame Ea ¼ fE�;E�̂; E0g reads

E� ¼
ffiffiffiffiffiffiffi
Q�

q
@x�; E�̂ ¼

ffiffiffiffiffiffiffi
Q�

q X
j

ð�x2�ÞN�1�j

X�

@c j
;

E0 ¼ 1ffiffiffi
S

p
AðNÞ @c N

: (3.7)

Besides the Killing vectors 	ðkÞ, (3.3), the metric (3.1)

possesses a hidden symmetry of the principal conformal
Killing-Yano tensor [5–7]. In the basis (3.2) the principal
conformal Killing-Yano 2-form reads

h ¼ X
�

x�E� ^ E�̂: (8)

This tensor generates the tower of Killing-Yano tensors
[obeying (2.13)]

fðjÞ ¼ �h^j � 1

j!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 2j� 1Þ!p � ðh ^ . . . ^ h|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

j times

Þ; (3.9)

which, in their turn, ‘‘square’’ to the second-rank Killing
tensors

KðjÞ ¼
X
�

AðjÞ
� ðE� � E� þ E�̂ � E�̂Þ þ "AðjÞE0 � E0:

(3.10)

Obviously, Kð0Þ coincides with the metric and hence it is a

trivial Killing tensor which we include in our tower; so we
take j ¼ 0; . . . ; N � 1.

It was demonstrated in [3,4] that explicit symmetries 	ðkÞ
and hidden symmetries KðjÞ guarantee complete integra-

bility of geodesic motion in these spacetimes. We shall

now demonstrate that this result can be extended to the
spinning particle theory.
Quadratic superinvariants.—The rotating black hole

spacetime (3.1) admits naturally the following (N þ ")
bosonic linear in velocities superinvariants (2.12) corre-
sponding to the isometries 	ðkÞ, (3.3):

Q	ðkÞ ¼ 	�
ðkÞ�� � i

4
�a�bðd	ðkÞÞab: (4.1)

Besides these it also admits N linear in velocities super-
invariants (2.12) associated with the Killing-Yano symme-
tries (3.9). However, such superinvariants are not what we
are after because of two reasons. First, such invariants are
not in involution. In fact one can show that in even dimen-
sions, where such superinvariants are fermionic, their
Poisson brackets do not close and generate an extended
superalgebra, c.f. [17]. Second, such integrals are not
‘‘invertible’’ for velocities. This stems from the defining
property of the Grassmann algebra and the fact that the
term in (2.12) involving velocities contains also �’s.
To circumvent these difficulties we seek new bosonic

superinvariants KðjÞ such that their leading (quadratic in

velocities) term contains no �’s and is completely deter-
mined by the Killing tensors KðjÞ, (3.10):

K ðjÞ ¼ K��
ðjÞ ���� þL�

ðjÞ�� þMðjÞ;

L�
ðjÞ ¼ �a�bLðjÞab

�; MðjÞ ¼ �a�b�c�dMðjÞabcd:

(4.2)

In the absence of spin, such quantities reduce to the qua-
dratic integrals of geodesic motion, responsible for its
complete integrability.
A quantity K of the form (4.2) is a superinvariant (for

the moment we have dropped the index j), i.e., obeying

fQ;Kg ¼ ���D�K� i�� @K
@��

¼ 0; (4.3)

provided that the following three equations are satisfied:

r�K�� þ 2iLð�j�j�Þ ¼ 0;

4iM���� þr½�L���� ¼ 0;

dM ¼ 0:

(4.4)

Obviously, the last condition is a trivial consequence of the
second and we do not have to discuss it anymore. The
second equation implies that 4iM���� ¼ r½�L����; i.e.,
once L��� is known then M���� is also determined. The

remaining information in the second equation expresses
the requirement that

r½�L���� ¼ r½�L����: (4.5)

Since L��� is not completely antisymmetric, such a con-

dition is highly nontrivial.
In the Kerr-NUT-(A)dS spacetimes we try the following

ansatz for a solution of these equations:
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K�� ¼ f��1...�p�1f��1...�p�1
;

L�
�� ¼ Af½�j�1...�p�1jðdfÞ����1...�p�1

þ BðdfÞ���1...�p�1
f��1...�p�1 ;

M���� ¼ � i

4
r½�L����:

(4.6)

Here, f�1...�p
is a corresponding rank-p Killing-Yano ten-

sor and constants A andB are coefficients to be determined.
This formula generalizes the formula given in [15] for a
p ¼ 2 Killing-Yano tensor f, in which case one can obtain
the expression for K as

K ¼ fQf;Qfg (4.7)

with Qf being the linear superinvariant (2.12), and one has

A ¼ B ¼ �2i=3. For higher-rank Killing-Yano tensors f
we are not aware of any corresponding relation.

Using the explicit form of the Kerr-NUT-(A)dS metric
(3.1) and Killing-Yano tensors fðjÞ, (3.9), therein one can

show [21] that Eq. (4.5) is satisfied when A ¼ B. The first
Eq. (4.4) then fixes the total coefficient and we recover

A ¼ B ¼ � 2i

pþ 1
: (4.8)

With this choice of coefficients the quantities KðjÞ, given
by (4.2) and (4.6), are superinvariants and hence also
constants of spinning particle motion in Kerr-NUT-(A)dS
spacetimes in any dimension [23].

Integrability.—We shall now use the newly constructed
superinvariants to prove Liouville integrability of the
bosonic equations of the spinning particle motion. Our
conjecture is that in Kerr-NUT-(A)dS spacetimes in any
dimension the following quantities:

fH;Kð1Þ; . . . ;KðN�1Þ; Q	ð0Þ ; . . . ; Q	ðN�1þ"Þ g; (5.1)

form a complete set of bosonic integrals of spinning par-
ticle motion that are functionally independent and in in-
volution with respect to the Dirac-Poisson brackets (2.7)—
making this motion completely integrable.

The functional independence of these constants of mo-
tion follows from the independence of the corresponding
Killing vectors 	ðkÞ, (3.3), and Killing tensors KðjÞ, (3.10);
c.f. [3].

To prove the involution we have to show that for any i, j,
k, l one has

fQ	ðkÞ ;Q	ðlÞ g¼0; fQ	ðkÞ ;KðiÞg¼0; fKðiÞ;KðjÞg¼0:

(5.2)

Each bracket corresponds to several terms, characterized
by a number of fermionic and momentum coordinates,
which have to vanish separately. In the zeroth order in
�’s one recovers the Schouten—Nijenhuis brackets of the
corresponding tensors. All such brackets vanish due to the
result on complete integrability of geodesic motion.

The first Poisson bracket (5.2), fQ	ðkÞ ; Q	ðlÞ g, contains an

additional term quadratic in �’s. Using the integrability
condition for Killing vectors and various Bianchi identities
one can show that this term automatically vanishes when
the two Killing vectors commute, i.e., when the zeroth-
order term vanishes. Hence we have shown that the first
condition (5.2) is satisfied in all dimensions.
The situation is more complicated with the other two

brackets in (5.2). The second condition in (5.2) imposes
two highly nontrivial equations, the third imposes three
equations (see [21] for more details). One can show that
such equations are not automatically satisfied when the
corresponding Schouten—Nijenhuis brackets vanish.
Hence, they represent additional requirements (in addition
to the requirements imposed by complete integrability of
geodesic motion) which have to be satisfied in order for the
bosonic part of spinning particle motion to be integrable.
Because of their complexity we have not tried to verify
such equations analytically. However, we have checked
that they are satisfied in 4, 5, 6, and 7 dimensions using
the MAPLE software, proving complete integrability in
these cases. Since there are no special features that depend
on the actual dimension of spacetime we have reasons to
strongly believe that all three equations (5.2) are valid in
any dimension.
Let us finally write down the expressions for the spin-

ning particle momenta in the tetrad basis. Writing

p ¼ p�E
� þ p�̂E

�̂ þ "p0E
0; (5.3)

we find that the momenta can be written in terms of the
constants of motion �k � Q	ðkÞ , �j � KðjÞ, �0 � H ¼
�1=2, as follows, c.f. [7]

p�̂ ¼
ffiffiffiffiffiffiffi
Q�

q X
k

ð�x2�ÞN�1�k

X�

ð�k þ i

4
�a�bðd	ðkÞÞabÞ;

p0 ¼ 1ffiffiffi
S

p
AðNÞ

�
�N þ i

4
�a�bðd	ðNÞÞab

�
: (5.4)

The last components of the momentum, p�, are given by

the solution of the (unfortunately coupled) system of equa-
tions

�j ¼
X
�

½AðjÞ
� ðp2

� þ p2
�̂Þ þL�

ðjÞp� þL�̂
ðjÞp�̂�

þ "ðAðjÞp2
0 þL0

ðjÞp0Þ þMðjÞ; (5.5)

with L�
ðjÞ and MðjÞ given by (4.2) and (4.6).

Discussion.—In this Letter we have constructed new
bosonic quadratic in velocities integrals of spinning parti-
cle motion in higher-dimensional rotating black hole
spacetimes of any dimension. We have further demon-
strated that in 4, 5, 6, and 7 dimensions such integrals,
together with the integrals corresponding to Killing sym-
metries, are functionally independent one of another and
mutually Poisson commute—hence they guarantee
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Liouville integrability of the bosonic part of the spinning
particle motion in this case. We conjecture that this re-
mains true in any dimension. Let us emphasize that in this
Letter we have not dealt with the fermionic part of the
motion, its integrability would require a separate analysis.
Hence the question of complete integrability of the whole
(bosonic and fermionic) system of spinning particle equa-
tions of motion remains open. We might comment, how-
ever, that there are reasons to suspect that the system might
be fully integrable. The Dirac equation in fact, which
corresponds to the quantized system, is solvable in these
metrics and admits separation of variables [24,25]. Also to
achieve such separation of variables it is enough to use a set
of n mutually commuting operators, as many as the
Poisson commuting functions that we have discussed in
this Letter.

The obtained results raise various interesting questions.
Is it possible to formulate the Hamilton-Jacobi theory for
the spinning particle and derive the demonstrated integra-
bility as a consequence of separability of the Hamilton-
Jacobi equation, similar to the geodesic case [2,4]? Even
more interestingly, is it possible to exploit the close rela-
tionship between the discussed spinning particle theory
and the classical general-relativistic theory of spinning
objects described by Papapetrou’s equations? Formally,
such equations are obtained by replacing �i�a�b with
the spin tensor Sab. [It can be explicitly checked that
�i�a�b satisfy the correct Lie algebra of the Lorentz group
under Poisson brackets.] After this identification Eqs. (2.1)
and (2.2) become Papapetrou’s equations with the particu-
lar choice of supplementary condition:

D2x�

d�2
¼ � 1

2
R�


��S
�� _x
;

DS�


d�
¼ 0: (6.1)

Under such a transition, linear superinvariants (4.1) trans-
late into the full integrals of motion for Papapetrou’s
equations (6.1). However, even in the Kerr-NUT-AdS black
hole spacetimes the new quadratic superinvariants (4.2)
become only approximate integrals—to a linear order in
the spin tensor Sab. This highlights the difference between
the two theories. An interesting question is the following:
is it possible to ‘‘upgrade’’ these invariants to provide full
quadratic integrals of motion in Papapetrou’s theory?
Similarly, can we infer some properties of the Dirac equa-
tion in these spacetimes? Dirac’s theory is formally recov-
ered when one replaces �’s with � matrices and �’s with
the spinorial derivative. A natural question is the follow-
ing: are the second order operators corresponding to super-
invariants (4.2) symmetry operators of the Dirac operator?
These are just a few interesting questions left for future
work.
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