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Abstract 

Some algebraic properties of Schwinger's quantum kinematical phase space theory are 
presented. These properties lead to a definition of the maximum number of degrees of freedom 
of an arbitrary finite dimensional quantum system which is different from the one originally 
proposed by Schwinger. 

I. Introduction 

The search for classical structures in quantum mechanics has been a challenging 
theoretical problem since the foundations of quantum theory. 

After the establishment of the universality of chaotic behaviour and the subsequent 
quest for chaotic properties in quantum mechanics [1] this issue has received a new 
income of interest. 

One of the earliest steps in this direction was that of the Wey-Wigner formalism 
[-2]. It is essentially a kinematical approach that relates quantum mechanical particle 
observables to classical ones. The quantum state space is infinite dimensional and it is 
spanned by the continuous indexed basis of position and momentum particle eigen- 

states. 
Schwinger introduced, some time ago, a quantum kinematical construction for 

finite dimensional spaces that is analogous to the infinite dimensional one [3]. In the 
past few years, there has been a renewal of interest in the concept of these finite phase 
spaces and it has been proposed as a natural route to generalize the Wey Wigner 
formalism to finite dimensional systems [4]. Also, some interesting algebraic proper- 
ties have been studied, which bear a very close analogy to those of continuous classical 
phase spaces [5]. 

In the case of infinite dimensional quantum systems, the problem of defining the 
number of degrees of freedom is rather straightforward. The problem is not so simple 
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for finite dimensional quantum systems. Clarifying this point is the main purpose of 
this work. We show that in the latter case, the tensor product of two finite dimensional 
quantum spaces can be reduced to a single degree of freedom vector space if the 
dimensions of the original spaces are relatively prime. Such a result will be obtained as 
a natural consequence of some elementary facts of number theory. 

The paper is organized in the following way: 
In Section 2, we review Schwinger's theory as a direct discrete analogy of the 

continuum case, presenting the notations and form to be used later. 
In Section 3 we derive the necessary algebraic properties and their consequences 

which are the main result of this paper. Such properties lead to a definition of the 
maximum number of degrees of freedom for an arbitrary finite dimensional quantum 
system that is not quite the same one proposed originally by Schwinger. In Section 
4 we present some closing remarks and open problems. 

2. The finite phase space 

2.1. The continuum case 

Let W be the infinite dimensional quantum state space with position and mo- 
mentum states [q > and [p > of a non-relativistic single particle motion in one dimen- 
sion. The kets [q> and [p> stand for eigenstates of the usual pair of conjugate 

^ ^ 

operators (Q, P) defined by the well known properties (we use from now on h = 1) 

"Commutation relations" ~[Q'- ~'] = i], (2. l a) 
([O, Q] P] = 0, 

"Completeness relation" {Sdp [p> <p[ = S dq [q> (q[ = i, (2.1b) 

where ] is the unity operator on W. 

. . . . . .  f<PIP'> = 6(p - (2.1c) "Normalization conaluons ].< q I q' > = 6(q - q'),P' )' 

"Overlap equation" { < q lP > = (2n)- 1/2 eiqp. (2.1 d) 

The unitary translation operators on both position and momentum spaces are 

f/q(q) = e i"p, (tp(e) = e i~. (2.2) 

The above operators obey the usual properties 

(tp(~)lp> = [p + e>, (tp(e)lq) = ei~qlq) 

f',(t/)lq> = [q + q>, fZq(r/)lp> = einplp> 

which imply the following equations: 

( tp(e)  ~ 'q(r / ) ]p> = (tip(e)]p> e i~p = [p -I- e> e inp (2.3a)  
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and 
Vq(r/) (Jp(e) Ip) = Vp(rl) lp -I- t') = eintP+~)lp + e,). (2.3b1 

By comparing (2.3a) and (2.3b) we get 

f/q(q) 0p (e) = e ~"~ [Jp (e) f/,(r/). (2.4) 

This equation will be important, later on, when it will be compared with its finite 
dimensional version. 

We could have started, in a rather more economical way, with the position space 
and the position operator and introduced the momentum operator as the hermitian 
generator of unitary translations in q-space. There is an evident symmetry here. We 
could otherwise have started with p-space and introduced the position operator as 
a translation generator in momentum space [6]. In any way all the properties listed 
above would follow immediately. 

This procedure is Schwinger's starting point for the finite case as we recall in 
Section 2.2 below. Let us consider now two different degrees of freedom. We define 
then two spaces W~, W2 each one with a correspondent pair of conjugate operators 
(01, ]2~1), (02, ~:)2)" The total space is the tensor product of the individual spaces: 

W =  W1®W2. 

Each set of operators acts only on their own space. That is: 

[QI, P I ]  = [02, e2]  = i_l 

and 

[0~, 02] = [t'1, Pz] = [01, P2] = [-02, t'1] = 0. (2.5) 

The total position and momentum states are 

IP)---IP t l ) )@lp  tel) ~ [ p l , p 2 ) ,  I q ) = l q  a ) ® l q  2)=lq1,q2) • (2.6) 

The total position and momentum states are 

{f,q,(ql) = eiP,, , ~'9 " " 
Uo,(el) ei,:,O, and q~(r/2) = e'P2" = ~. (Jp2 (e2) = e '~'2e 

Of course, each pair satisfies an equation similar to (2.4). 

For a given vector t / =  112 , the translation operator Vq(t/)= )q,(q~)® Qq.(~/2) 

acts on W as 

f/q0t) Iq) -- Iq - q). 

Thus, the set of points of the ql_q2 plane obtained, as we apply the f/q(~/) operator 
on the [q ) state, ly of course, on a straight line. Suppose, otherwise, one could find (for 
a certain r/) an operator f'~(~/) that applied on the Iq) state should cover the entire 
qlq2 plane. Obviously, this is impossible for the infinite-dimensional case. But that is 
not so for finite spaces when the dimensions of each space are relatively prime, as we 
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shall see. In this case it is impossible to sustain the concept that the product space has 
two degrees of freedom. 

2.2. Schwinger's quantum kinematics 

Let W be a N-dimensional state space generated by an orthonormalized base 
{ I/ak > }, k = 1,2 . . . .  , N, so that </ak I/a~ > = ~ .  The upper indices are for dual base 
vectors and the sum convention for repeated lower and upper indices is used through- 
out, unless explicitly stated. The completeness of the { ]/ak > } basis can now be written 

as: Ira> </a~l-- 1. 
Next, an unitary operator f/is defined according to cyclic permutation over { I/ak> } 

as follows: 

f'I/ak> --I/ak- 1 >, k = 1,2 . . . .  ,N  

with I/ao > = I/aN > "periodic boundary condition" (2.7) 

From (2.7) one immediately gets ~,N = i. Suppose now that Irk> is a normalized 
eigenket of ~" with eigenvalue vk. Then 

f 'slvk> = (vk)Nlvk> = IVk>. SO (Vk) N = 1 and Vk = e  (2=i/N)k. (2.8) 

That is, there are N distinct eigenvalues given by the Nth squares of unity and the 
set o f N  {Vk} states is also an orthonormalized basis {Irk > }, k = 1,2, . . . ,  N. Let us now 
consider the operator P(VR) = (l/N)vRi f'J. 

In this equation the k index has a double function: It is the power of the v_j phase 
but it is also the k index of the "matrix element" vk_j, where - j  is the same as N - j .  It 
is easy to verify the important relation: 

1 k j k 
v jv z = ~t, (2.9) 

so that: P(Vk)IVz> = 6~ IVl>. This means that P(Vk) "projects states in the Irk> direc- 
tion". So we can write: [a(Vk) = IVk> (vk[ "no sum over k!" 

By applying P(Vk) over I/as> we get P(Vk)I/aN> = Irk> (vk J/aN> (notice that here no 
sum over k is implied!) = (1/N)vkj  1~ j [/as> = (I/N)I/aN j> Vk j, then 

vo , 
</aNI/3(vk)l/aN>=l</aNIvk>12= 6~ j V ~ =  ~O--jV~J----~--/~. 

Making the following phase choice (/aN I Vk> = 1/x/-N, we have then 

</aSl f"l  vk> = </a~l vk> = ~ f ~ .  

We thus observe indeed that v~ is a matrix element of some sort. 

(2.10) 
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A completely analogous procedure can be used to construct an unitary operator 

that acts upon the {IVk)}  basis by the cyclic permutation: 

(} [Vk ) = [Vk+ l ) .  (2.1 1) 

Similarly one can verify that U has the same spectrum of f/, that is: Pk = Vk = e ~2~'N~k 
and, what is most important, the eigenstates of (} are the original I Pk) base states! 

In fact U 1/~) = (} I~k) (vkl~j) = UIVk)  v f k / x ~ = ( 1 / X ~ ) I v k + X ) V f  k = (1/x/N)l~tl) 
X ( ~ I I Y k + I ) Y j  k ( 1 / N )  l l~t)  t - Yk+l yj k ( l / N )  , t -k N f t j l k t t )  = = VtVkVj^]# l  ) = ( 1 / N ) v t  

= vj I/~j) where we have used the defining equations for U and V and also Eqs. (2.9) 
and (2.10). 

Another very important property is the commutation relation between different 

powers of (J and V: 

and 

k ( f l J y m )  v k l y m + l )  ( } ' f / " IV , , , )  = V,,, = (2.12a) 

= = v,,+ll v,,+t). (2.12b) 

Comparing (2.12a) and (2.12b) one obtains 

f/k (5' = vkl O ' f/k. (2.13) 

This equation is the finite dimensional analogous of Eq. (2.4). The I/~j) states 
correspond to the "position" Iq) kets, while the l v j )  states are the "momentum" IP) 
kets. The (J and ~" operators implement unitary "translations" of momentum and 

position states. 
The finite "index set" of N elements k = 1,2 . . . . .  N can be understood as the 

momentum and position eigenvalues. We denote this set as ZN for the reason to be 
explained in the next section. In this way, we can define as the phase space, the finite 
collection of N 2 elements given, by the cartesian product Zu x ZN. This is to be 
compared to the continuum case where phase space is the set of pairs (p, q) ~ ~2. 

3. Algebraic properties of finite phase spaces 

The main reference for this section is [7]. 

3.1. mod  N algebra 

We start by recalling some definitions and properties of elementary algebra: 
(1) A set A is a ring if there are two operations defined on it: The addition 

operation (denoted by the "sum" symbol " + ") by which it is an abelian group with 
a "zero element" 0 as the identity. The second operation is the multiplication, denoted 
by the symbol " . " ,  together with the associative property and the distributive 

property. 
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(2) If besides this structure, there is also an identity element for a commutative 

multiplication, it is said that A is a commutative ring with an identity element. 

It is easy to verify that the set of integers Z is a commutative ring with an identity 
element. An equivalence relation on Z can be established for each N ~ Z in the 
following manner: for a, b ~ Z we say that a is equivalent to b (mod N) if N divides 
there difference. That is: 

a ~ b ~ N/(a -- b) 

where x / y  means "x divides y". 
This equivalence relation partitions Z in N disjoint sub-sets each one representing 

an equivalence class. 
The first N positive integers {0, 1 . . . .  , N - 1} represents, each one, a different class. 

We call ZN = { lOIN, [ - 1 ] N  . . . .  , [N - 1 I N }  the set of such equivalent classes and denote 
by in the map, that associates to every integer K, the class [KIN  to which it belongs. 
That  is 

is Z ~ ZN, K ~-~ [K]N. 

It can be shown that ZN is also a commutative ring with an identity element and that 
is is a ring homomorfism, that is, is "preserves" the ring structure of Z. 

Let ~bN be the sub-set of {[1]N, [2]N . . . . .  [K]N . . . . .  IN - 1]N} where K is relative 
prime to N. The number of elements of this sub-set is denoted by ~b(N) and is known 
as Euler's totient function. It can be shown that the set ¢,bN together with the 
multiplication operation inherited from ZN is a commutative group. In this way let us 
write 

= . . . ,  Ea jN} 

and define as [bin the product of all these elements: 

[b ] /v  = [ a , ] N - [ a 2 ] N  " "  [a~,. , ]N. 

Let us multiply now each element by a same [a]N ~ q~N, obtaining, of course, a permu- 
tation of these elements (because ~bN is a group). Thus: ( [a ]N ' [a l ]N)×  
([a]u-[az]N) ""([a]N-[ao,N,]s)= [a]~ ~N)= [b]N = [b]N, which means that: [a]~ ~N~ 
= [1]N or [a]N[a]~ ~m l = [1]N. 

Consequently we can find the inverse of any element of ~bN if the value of the totient 
function ~b(N) is given as 

l a i N  1 = [alaN (u)- ' .  (3.1) 

This result is the celebrated "Fermat-Euler  theorem". 
Notice that the finite set of position and momenta defined in the last section takes 

values in ZN. Thus the finite phase space is the cartesian product of the ring ZN by 
itself. 
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3.2. A system with two degrees of  freedom 

Suppose now there are two spaces I41, and Wb with finite dimensions No and N b. 

Each space carries one degree of freedom in the sense of the formalism developed in 
Section 2.2. That  is: 

An unitary basis: {[~l~,l), (NI . . . .  [/~N,' )} and {Iv (N'') . . . . .  Ivan")} with: (/~'N"klV(tN") 
= V(t N'~k and N~ = N.  or  Nb can be defined such that a pair of uni tary translation 

opera tors  (t~ ~N'~, f.iN,i) can be constructed and obey the following relations: 
f/,N,, (;IN,, = r ip ,  (:(~,, f~(N,,, 

. f(jIN,I[p(kN,I) = pk(N,I[p~N,,), for the "posi t ion" eigenkets, 
ano: ] ~(u,)l p~u,,) = i / ~ 1  ' ) ,  

( iT(N,)  ,,(N,) \ (N) I~k / = ]Vk;~l), for the " m o m e n t u m "  eigenkets. 
and: ) 

- -  v k Irk /~ 

Let us consider the tensor  produce  space W of Wo and Wb: W = Wo ® Wb. The 
dimension of W is clearly N = No. Nb. One could think that  W should carry two 
degrees of freedom in a way similar to the cont inuum case. But that  is not always true. 

Suppose we succeed in defining a couple of basis for W as 

(Nh) X Ii,1N' ) = I/~(,~ o') ® /~,~ / ,  Iv~ N') = I / ~  o') ® Iv~ ' ) ,  (3.2) 

with: k, t e ZN; ko, to ~ ZN°; kb, tb ~ ZN~, and also a pair of uni tary operators  on W: 

. . . . . .  fI(N) = f;;~., ® fji'~) ~(m = V,,~o,® V,~,), (3.3) 

with: G, so ~ ZN,, and rb, sb ~ ZN~, such that  they obey the correct  commuta t ion  
relation: 

fi(N) fj(m __ v(lm ~j(m fl(m. (3.4) 

Then  W has really only one true degree of freedom. Let us see for what  condit ions this 
will happen. We have: f/(N)f](N) = ~.~.,. fji*~°,® ~.f~,. ffi:~., = v(N.).v(~), fji;.). ~f.~.., 

® ~j;';',. ~,~;'~, = vfT~), v[~2), fj(m ® ~'(m and, using the identity: 

= ~N~ + ~N. (3.5)  

together  with (3.4), we get: v(N°)'I)(N~)~°,, r~. = V(N°'V"~o~,,N. + r~..S'° = V(~ "), which means that 

[rosoN~ + r~s~N~]~ = [1]~. 
The above diofantine equat ion [7] for roSa ~ ZN° and rbSb ~ ZN~ can be written as: 

[ 1 -  r.soNb]u = [rbsbNo]~, so No~(1-  rosoNb), which means by definition that: 
[rosoNb] u° = [1]~. (an equat ion in Zuo). In the same way we find a similar equat ion in 
ZN: [rbsbNo]N. = [1]N~. which can be solved uniquely as (using the Fe rma t -Eu le r  
theorem) 

[roso]N. = [N~];° 1 = [N~]~(.. ~°) ' 
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and 

ErbSb]N~ ~-- [Nb]N1 __-- [Nb]~NtNp 1 (3.6) 

only if Nb ~ dPUo and N, ~ 4~u,, that is, if Na and Nb are relatively prime. We must also 
impose that 

f ' ~ l v ~ ) >  -~N)Iv'~) > = f/[~.,@ f/b~,lv~,l ' ,@lvINol',  = vlU.I vlU~llv~ b Vk k k~ / k~ / k.r~ ° k~r~ 

and 

£ r ~  I W u~ > = -~f~ I., ~',~N~'/ = u,~°,̂  " @ (/L, i #~o~>o @ I~,,." ~°~\/ = v~.o,o " v~N°~s.. Id, Nb • 

Then from (3.5) we verify that 

[k]u = [Nbk.ra + Nakbrb]u, [t]u = [Nbs.t. + N~sbtb]u. 

Solving these diofantine equations, as before, one has 

[ka]N.  =- [ k i N "  [Nbr~]#~ ~, Eta]N. = [t]No[NbS.]No ~ 

and 

(3.7) 

r \ [ r b ] s f  \ [ 1 ] s f  

we obtain uniquely: 

= ( [ s . ] 2 ~ = ( [ 1 ] : ~  ([t.]z~=([t]2~ and k=([k~]z~=([k]N°~ 
$ k[-Sb]3/ kr213/' t=k[tb]3 / k i t ]3 /  \[kb]3] \[2k]uJ' 

so that: V (6) = f / ( 2 ) ®  ~,r(3) and ( j tm=  02 ® ~ts)2. 

The two "position" and "momentum" basis vectors are: 

I/t~o 6~ > = ]/~to 2) ) ® 1/~(03'), [V(O 6) ) = IV(O 2) > ® 1)(03)), 

1/~(46J ) = I/~f ) > ® [/.t~3)>, Irk 6) > = 

lU(56~ > = lU~ e) > ® 1U~231>, 

By acting upon the "position" states with 
that it covers the whole position space. 

Ivl :~> ® v~3~>, 

IvY? ~> @ v?~>, 

Ivf  J> @ v~2~>, 

IvY? ~> ® v~>,  

Iv~ 6~> = Iv~ 4~> ® v~3~>. 

the f~t2) ® ~'(3) operator, one finds easily 

[kb]u, = [k]u~" [N, rb][~, 1, [tb]u, = [t]u,[Nbsb][~'. (3.8) 

So we conclude that if N, and Nb are relatively prime there is only one true degree of 
freedom associated to the total vector space W = Wa ® Wb. 

Let us consider two examples: 
For  N, = 2 and Nb = 3, using Eqs. (3.6) and (3.7) and choosing the "vector" 
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That  is, we cover the entire set with only one "straight line"! The same happens of 

course to the momentum base states. So the six-dimensional state space can represent 

only one true degree of freedom. This is because N, = 2 is relatively prime to Nh = 3. 
Suppose now: N,  = 2 and Nb = 2. 

In this case N, and Nb are not relatively prime, so the above machinery does not work. 
But we can construct the four dimensional position product space: 

) "1 ~°~'') ® 1~°2' >' n .  ~IM~'> ® lug°2'>' 
I [IM2,> ® ixf)>, [ix~02, > ® IM2,>. 

The actions of the ~2)  ® f/~2) operator  on this basis splits it in two disjoint sets 

each one a "straight line" in position space parallel to the other. A similar procedure 
could be carried out for the momentum space. 

So we can see the four dimensional quantum space either as a two degree of freedom 

system spanned by the above basis or as a one degree of freedom system with the 
{11,} 41) }, (j  = 0, 1, 2, 3) basis defined in the usual way. But, in no way can the two 
degree of freedom space be reduced into a single degree of freedom system as in the 

preceding example. 
This shows that the number  of degrees of freedom of an arbitrary N-dimensional 

quantum space cannot be the number of prime factors of N, as stated by Schwinger. In 

fact, let N be any integer, then we can factorize N as 

N = P ~ ' . P ~  . . . .  p~....p~m, i =  1 . . . . .  m and c~1 <:~2 < "'" <~ , , ,  

where there are m prime numbers Pi, each one, with power ~i. 
By Schwinger's definition, the maximum number of degrees of f f eedomfwou ld  be: 

f =  ~1 ~- ~2 -~- "'" ~- 0~m" 
However, as we have just seen, the product of two relatively prime numbers can 

represent only one true degree of freedom, so we propose that 

f =  m a x { ~ l , ~ 2 ,  '",O~m} = ~m- 

That  is, the maximum number  of degrees of freedom of a finite N-dimensional 

quantum space is the largest of the powers of the unique factorization of N by prime 

numbers. 

4. Conclusion 

In the present contribution, Schwinger's concept of finite dimensional phase space 
has been explored in an algebraic context. We have addressed the question of the 
definition of the number  of degrees of freedom in such context and proposed a defini- 
tion which comes on naturally from the algebraic properties derived in Section 3. 

A possible relation between this "finite classical structure" and the "continuous 
symplectic structure" of quantum mechanical projective spaces ("space of rays") must 

not be discarded [8, 9]. 
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In the last case, the number of degrees of freedom is half the dimension of projective 
space. 

What possible connection could there be (or not) between this definition and the 
similar one for Schwinger's quantum kinematical finite phase space? 

We hope that the present work may help to shed some light in this search for 
"classical structures" in finite dimensional quantum kinematics. 
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