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Abstract

Recently, we have shown that the Penna bitstring model for population senescence can be
used to model cyclic or chaotic behaviours in population dynamics. In this paper, we analyse
the attractor of the dynamics, through the calculation of the Lyapunov exponents. We obtained
that the dynamics is characterized by the existence of some small exponents, which we relate
to the existence of homeochaos, needed for the generation of stability and diversity in living
systems. c© 2001 Elsevier Science B.V. All rights reserved.

PACS: 87.10.+e; 05.45.+b; 02.70.Lq

1. Introduction

Population dynamics can be viewed as the time evolution of one species, more than
one, like the predator–prey case, or even the interactions among many species in a
system. Di:erent behaviours can be observed in the wild, and a sort of mathematical
models are proposed to adjust to the experimental data. They vary from exponential
growth (usually in the early stages of populations dynamics, where the populations
are not constrained by external forces) to chaotic processes [1–4]. So, most of the
studies of population dynamics are done through mathematical models. The aim of
such models (and computer simulations) is highlighted, if we take into account how
di>cult the observations in the wild are.
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The Arst model was introduced by Linnaeus in the XVI century: the exponential
growth model. In this model, a given species can grow indeAnitely. Malthus, in 1798,
pointed out that any population always has the constraints of food supply and envi-
ronment carriage. Using an elephant as example, Darwin showed that after 750 years,
there would be something like 9,000,000 elephants; descendants of one single couple.
The elephant is a very slow breeding species. The Malthus theory has a deep inFuence
in Darwin’s idea of Natural Selection, where the environmental constraints would lead
to the survival of the best Atted [1]. Another model which takes advantage of this
balance of growing and decline of a population is the Logistic Model. This model was
introduced by Verhulst in 1844, and its discrete version, known as logistic map, was
studied by Feigenbaum, who explored the universality in its period-doubling route to
chaos. The relationship between population dynamics and the logistic map was intro-
duced by May [5]. Such a map is very rich in terms of dynamical behaviours, and it
is a mathematical example of period-doubling route to chaos, intermittent behaviour,
tangent bifurcation and crises as well.
The ideas of heredity and mutation related to that of reproduction produced more

sophisticated models (for a review, see Ref. [6]), very suitable for the methods of sta-
tistical physics and computer simulations. One of those models is the Penna bitstring
model [7,8] which has been introduced to simulate the dynamic of age-structured pop-
ulations, with results in good agreement with observational data [9]. However, in most
of the simulations, only one kind of dynamical behaviour was observed: a Axed point,
representing a stable population or the extinction, named Mutational Meltdown [10,11].
As we know, apart from the simple models discussed above, many others on population
dynamics show chaotic dynamics [12–14] or non-trivial behaviour [15]. In our case, by
properly tuning the parameters, we found limit cycles and Anally a chaotic behaviour
[16]. We investigated the return map and performed some tests like sensitivity to initial
conditions, but the complete analysis of those data, via reconstruction of phase space,
was missing. In the present work, by using the time series generated by the model, we
reconstruct the attractor and evaluate the related Lyapunov exponents. So, our approach
is di:erent from that used by Miramontes and Ceccon [13], who used the analysis of
correlation in order to characterize the chaotic state.

2. The model

In the Penna bitstring model [7,8], each genome of an asexual individual is given by
a computer word, 32 bits in most cases. A bit = 1 corresponds to a harmful mutation,
while the value 0 corresponds to a normal gene. The life of an individual is divided
into 32 time intervals, that we, for simplicity, call “years”. The position of each bit is
related to a threatening disease that may act from that time on, during the entire life
of the living being. As an example, a bit 1 in the Afth position means that a genetic
disease will arise when it is 5 years old, and this disease will act until the end of its
existence. On accumulating T harmful mutations, an individual dies. The model has an
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environmental constraint, the Verhulst factor, that gives a probability of an individual
for staying alive within the next time period, given by

Pl(t)= 1− N (t)
Nmax

; (1)

where Nmax is the environmental carrying capacity (the maximum of individuals sup-
ported by the environment). No one can live more than 32 years. Sexual maturity is
reached at the age of R, when the individual generates B o:spring in this and the
further years. The heredity appears as follows: the parent genome is copied to the
o:spring one, but M mutations are added randomly. Each mutation is introduced using
the computer instruction OR, with a word mask that has just one bit = 1 at a ran-
dom position, resulting always in a harmful mutation (0 → 1) or unmutated genome
(1 → 1), if that position already had a harmful mutation. Since the algorithm has a
random noise, the system is no longer deterministic. This is very important, because
we are going to use the tools developed to analyse chaotic data in order to analyse the
dynamic behaviour of our simulations. This problem will be discussed later.
The evolution of this system begins with N0 individuals. Along the simulation, many

individuals die due to environmental limitations and accumulation of genetic diseases.
The survivors older than R will reproduce giving birth to B descendants each, and
at this time, mutations will take place. Then, the total number, N (t), is reevaluated
and the system goes on. The key for a chaotic behaviour is a correct balance be-
tween a growing force, B, and an opposite force, the Verhulst factor. With the al-
gorithm in mind, we can resume what we said above using a normalized logistic
equation

X (t + 1)= �(t)X (t)[1− X (t)] ; (2)

where X (t)=N (t)=Nmax and �(t) is, roughly speaking, time and B dependent. Dif-
ferent from the logistic map, however, � does not have a predeAned value. It does
not have an explicit functional time dependence also, since it is obtained as the re-
lationship between the population size at two times. As one knows, the dynamics of
the logistic map is regulated by the growth rate. Some dynamic behaviours can also
be obtained in the Penna model by properly switching the factor that regulates the
population growth by increasing the birth rate B and Axing the minimum age of repro-
duction R¡T , in order to assure that sexually immature will die only by the Verhulst
factor.
In our simulations, we have used the parameters: N0 = 105 (106); Nmax = 1:5×

106 (107); B=20 (for a cycle with period 2) and B=35 for chaotic dynamics; R=4;
T =6 and M =1. The values written in parentheses represent just one simulation with
a big sample, done to conArm the results. From now on, the central object of our
study will be the time series N (t), shown in Fig. 1, where we can see the transition
between the period 2 cycle, obtained with B=20, and the chaotic regime, for B=35.
This picture has only illustrative purposes.
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Fig. 1. Evolution of population showing two di:erent regimes: a limit cycle with period 2 and a
chaotic regime. The general parameters are: N0 = 105; Nmax = 1:5 × 106; M =1; T =6; R=4; B=20 for
t ¡ to =3000 and B=35 for t¿ to.

3. Attractor analysis

The technique used here is the reconstruction of the attractor based on time
series introduced by Takens and Mañ&e and known as embedding theorem [17,18]. The
theorem says that for a scalar variable, x(t), which shows a multidimensional phase
space, the geometric structure can be unfolded in a space made out of new vectors,
namely y(t)= [x(t); x(t+L); x(t+2L); : : : ; x(t+L(de−1))]. In this reconstruction, two
parameters are relevant: the time lag L and the embedding dimension de [19].

The time lag is important when we deal with continuous series or a set of dates with
noise [21], and it is directly related to the creation of information. If the time lag is
too large, any correlation between x(t) and x(t+L) is lost, because chaotic systems are
intrinsically unstable. On the other hand, a very small L can destroy the independence
between x(t) and x(t+L). Roughly speaking, it means that we do not allow the system
to produce new information about the state space. As one can observe in Fig. 2, there
is a gradual loss of correlation between Nt and the next point Nt+L as L increases. In
that Agure, some plots of Nt versus Nt+L are shown for di:erent values of L.
The choice of an embedding dimension is a little more critical in this kind of

analysis. A correct value of de means that we are correctly projecting our dynamical
system onto a Rde space, resulting in a complete removal of self-overlaps orbits arising
from projection of the attractor to a low-dimensional space. To understand this problem,
imagine a simple experiment. Take a three-dimensional object, like a spring, and, using
a lamp, project the spring’s shadow on the wall. In the projected image, we can see
some parts of the spring that seem to be close to each other, but in fact, those parts can
be apart. This occurs because we are projecting it onto a space where the dimension
is lower than the real embedding dimension of the object in question. The parts that
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Fig. 2. Return map (Nt versus Nt+L) obtained in the chaotic regime for four values of time lag L. We
show data plotted for four values of L: L=1 (top-left); L=11 (top-right); L=51 (bottom-left); and L=101
(bottom-right). In the Agure, we observe the gradual loss of correlation between Nt and the next point Nt+L.
Here, to =5000 and we have 30,000 data points. The axes are in millions of individuals.

seem to be together are called false nearest neighbour. In order to And the embedding
dimension, one has to remove those false nearest neighbours.
In our case, the time series is discrete, given by the total number of individuals at

each year (or time step). It means that we have an Nt series instead of N (t), where
16 t6 tmax and tmax = 30; 000. In order to simplify our notation, we start counting the
time when we change B, i.e., our new variable t= t− to. So, the set of the data we deal
with is a discrete time series, which is quite similar to the series produced by iterated
maps, like Feigenbaum and H:enon maps. However, it has an important di:erence from
those maps. The Penna model of aging is not a deterministic model, as the maps cited
above. Considering that all tools and theories developed in order to characterize chaos,
like Lyapunov exponents, were made in deterministic systems, we might assume that
the straightforward application of such a theory on a probabilistic system may not be
correct. In this way, Arstly we need to investigate if the random component of the
system enables us to work on the non-probabilistic (deterministic) part of it. It is very
important to point out here that we are not dealing with a system corrupted by an added
noise. In our case the “noise”, if we can call it that, is an inherent part of the system,
and it creates trajectories that satisAes the exact dynamics, and not trajectories shadowed
by any spurious noise. In this way, our intention is to verify if we can well deAne
an attractor and also Lyapunov exponents, and not to remove any random variables.
To make it, we generated a set of 10 series varying the seed of the random number
generator for the parameters described above, and performed the inspection of the
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Fig. 3. Lyapunov exponents versus matrix dimension dm (for details, see text). The left plot was obtained
for L=1 (de = dm): Alled triangles represent the system with Nmax = 1:5× 106 while open circles represent
a system 10 times bigger. The right plot shows data obtained by using L=5 (de =5dm− 4). The error bars
are of the order of the symbol sizes.

attractor and the calculation of the embedding dimension in all cases. We also generated
a series from a system 10 times bigger (N0 = 106 and Nmax = 1:5 × 107). In order to
assure that our results are not an artifact of the random number generator we used in
our simulations (the usual linear congruential), we performed a set of simulations with
the R250 [20]. We have not found signiAcant changes in the Anal results.
The parameters which quantify the dynamics are the Lyapunov exponents, which

describe how the orbits behave in the phase space. The algorithm [21] used here to
evaluate the exponents assures only positive values. It means that the negative values
of the exponents are indeed negative, but we do not know their magnitude. In this
algorithm, the dependence of the embedding dimension on the time lag is given by
the expression de=(dm − 1)L + 1, where dm is the dimension of the matrix used in
the calculation of the exponents. For this reason, we have used dm (matrix dimension)
instead of de (embedding dimension) in Fig. 3. This plot shows the Lyapunov expo-
nents versus the matrix dimension for two distinct cases. In the left plot, we show the
values of the Lyapunov exponents obtained for L=1, which means that dm and de are
equivalent. We compared the results for the two system sizes: Nmax = 1:5× 106 (Alled
triangles), and for Nmax ten times bigger (open circles). First of all, we note that the
values obtained are independent of the system size, i.e., we observe the independence
of the system dynamics with its size. However, as pointed out by Eckmann et al. [21],
the persistent decreasing of the positive values of these exponents is a signal of the
random noise existent in our system. In order to remove the e:ects of this random
noise, we had to increase the time lag. The results obtained for L=5 are shown in the
right plot of Fig. 3. Now, de=5dm − 4. This result shows that some small positive
Lyapunov exponents arise.
This scenario is very similar to the one described by Kaneko [22], and it was named

by him as homeochaos. Di:erent hypotheses have been discussed in the last decade,
in order to explain the underlying mechanisms of the way nature does work. Those
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hypotheses try to make a connection between experimental behaviours and the results
obtained with mathematical or computational models, generally simple ones. In this
way, all of them have a speculative characteristic. Two concepts have been pointed
out as approaches to explain the evolution and dynamics of living systems: “the edge
of chaos theory” and “homeochaos”. The idea behind the edge of chaos is that neither
the linear regime nor the chaotic one would be a good place for living systems [23].
The intrinsic instability driven by chaos eliminates the recovering capability from tiny,
introduced perturbations. A pure chaotic living system would not be able to main-
tain its properties under constant changes caused by environmental constraints, like
space, food, predators and so on. On the other hand, a stable regime is not a good
solution as well, since the system would be frozen, incapable of evolving to new con-
Agurations, to respond to the evolutionary challenges and to be able to produce the
tremendous diversity present in nature [24]. In the edge of chaos region, the system
would take advantage of the complexity given by the chaotic region and the home-
ostasis from the linear region. The edge of chaos requires that the system keeps itself
trapped into a narrow deAned region of the space of parameters, in order to avoid
the chaotic and the linear regions, so the homeochaos term was coined to explain the
di>culty of a living system to self sustain in this kind of space. Stable states are
Atted only to stable environments, which is not the case of the problem studied here,
where we have a competition of opposite forces: limited resources and high birth rate.
The problem is that living systems are under strong non-linear interactions and any-
way, can maintain some kind of stability and diversity. The idea is that homeochaos
could do this in a better way than a Axed point or chaos. The homeochaos shows
three distinct features: (i) weak chaos, the positive Lyapunov exponents are close to
zero; (ii) high-dimensional chaos, there are many positive Lyapunov exponents; and
(iii) dynamic stability and robustness against external perturbations. The weak chaos
is required in order to provide dynamical stability, and so, we have small oscillations
when an external perturbation is introduced. In a strong chaos, large oscillations can
pull the population down to a value close to zero, leading to extinction. Since home-
ochaos is sustained in a region larger than the dynamics governed by a critical point
(the chaos-linear frontier), it is more robust to a parameter change.
In conclusion, by calculating the Lyapunov exponents of the chaotic dynamic of a

population given by the Penna model, we observed the fact that this system shows the
basic features of homeochaos. This is the main feature which guarantees the existence
of diversity and the fundamental stability which allows the survival of a population
evolving under strong (and competing) natural pressures.

Acknowledgements

We thank J.G. Moreira for fruitful discussions and suggestions, S. Oli:son
Kamphorst for discussions and for giving us access to the program which calculates
Lyapunov exponents. ATB acknowledges the kind hospitality of the Departamento de



70 A. Castro-e-Silva, A.T. Bernardes / Physica A 301 (2001) 63–70

F&Ssica-UFMG. The simulations were performed in the Digital workstations at Physics
Dept. of UFMG and UFOP. This work was partially supported by the Brazilian Agen-
cies CNPq, FINEP and FAPEMIG.

References

[1] D. Brown, P. Rothery, Models in Biology: Mathematics Statistics and Computing, Wiley, New York,
1993.

[2] N.C. Stenseth, K.-S. Chan, E. Franstad, H. Tong, Proc. Roy. Soc. London B 265 (1998) 1957–1968.
[3] B.E. Kendall et al., Ecology 265 (1999) 1789–1805.
[4] R.F. Costantino et al., Science 275 (1997) 389.
[5] R. May, Science 186 (1974) 645.
[6] E. Baake, W. Gabriel, Annual Reviews of Computational Physics, Vol. VII, World ScientiAc, Singapore,

2000.
[7] T.J. Penna, J. Stat. Phys. 78 (1995) 1629.
[8] T.J. Penna, D. Stau:er, Int. J. Mod. Phys. C 6 (1995) 233.
[9] S. Moss de Oliveira, P.M.C. de Oliveira, D. Stau:er, Evolution, Money, War and Computers, Teubner,

Stuttgart-Leipzig, 1999.
[10] M. Lynch, W. Gabriel, Evolution 44 (1990) 1725.
[11] A.T. Bernardes, Annual Reviews of Computational Physics, Vol. IV, World ScientiAc, Singapore, 1996,

pp. 359–395.
[12] V. Kirzhner, B.I. Lembrikov, A. Korol, E. Nevo, Physica A 249 (1998) 565–570.
[13] O. Miramontes, E. Ceccon, Physica A 257 (1998) 439–447.
[14] M.G. Neubert, J. Theor. Biol. 189 (1997) 399–411.
[15] M. Pascual, S.A. Levin, Ecology 80 (1999) 2225–2236.
[16] A.T. Bernardes, J.G. Moreira, A. Castro-e-Silva, Eur. Phys. J. B 1 (1998) 1–10.
[17] F. Takens, Dynamical Systems and Turbulence, Warwick 1980, Springer, Berlin, 1981, p. 366.
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