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� Possible explanation for wide variability observed in cancer stem cells frequency.

� Plasticity is necessary for maintenance of cancer stem cell populations.
� Cell population may exhibit a noise-induced transition.
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a b s t r a c t

There is a persistent controversy regarding the frequency of cancer stem cells (CSCs) in solid tumors.
Initial studies indicated that these cells had a frequency ranging from 0.0001% to 0.1% of total cells.
Recent studies have shown that this does not seem to be always the case. Some of these studies have
indicated a frequency of 40%. Through a simple population dynamics model, we studied the effects of
stochastic noise and cellular plasticity in the minimal path size of a cancer stem cells population, similar
to what is done in what is sometimes called the Kierstead–Skellam–Slobodkin (KISS) Size analysis. We
show that the possibility of large variations in the results obtained in the experiments may be a
consequence of the different conditions under which the different experiments are submitted,
specifically regarding the effective cell niche size where stem cells are transplanted. We also show the
possibility of a noise induced transition where the stationary probability distribution of the CSC
population can present bimodality.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years there has been increasing evidence for the
Cancer Stem Cell (CSC) hypothesis (Reya et al., 2001; Clarke and
Fuller, 2006; Vermeulen et al., 2008; Dalerba et al., 2007), accord-
ing to which tumor formation is a result of genetic and epigenetic
changes in a subset of stem-like cells, also known as tumor-forming
or tumor-initiating cells (Bomken et al., 2010). Cancer stem cells
were first identified in various leukemias and, more recently, in
several solid tumors such as brain, breast, cervix and prostate
tumors (Dalerba et al., 2007).

It has been suggested that these are the cells responsible for
initiating and maintaining tumor growth. In this paper, we study a
model for tumor growth that assumes the existence of cancer stem
cells (CSCs), or tumor initiating cells.

The conceptual starting point relevant to CSC theory is con-
structed from the known heterogeneity of tumors. We now know
ll rights reserved.

s Santos),
that cells in a tumor are not all identical copies of each other, but
that they display a striking array of characteristics (Denison, 2012;
Tian et al., 2011; Shackleton et al., 2009; Marusyk and Polyak,
2010; Marusyk et al., 2012). CSC theory recognizes this fact and
develops its consequences. And one of the most immediate
implications for clinical practice is that conventional treatments
can generally attack the wrong cell type. The appeal of the CSC
idea can be described by the following analogy: just as killing the
queen bee leads to the demise of the hive, destroying cancer stem
cells, should, in theory, stop a tumor from renewing itself.
Unfortunately, things are never that simple. In the hive, workers
react quickly to the death of the queen by replacing her with a
new one. And there is some evidence (Welte et al., 2010; Rapp
et al., 2008) to suggest that could also happen in tumors due to a
phenomenon known as cell plasticity, which allows normal tumor
cells to turn into cancer stem cells, should the situation call for it.
One goal of this study is to evaluate the possible effects of this
plasticity. Analogies with superorganisms such as bee colonies are
taken much more seriously in Grunewald et al. (2011).

Stem cells in general (the same applies to CSCs) tend to be
found on specific areas of a tissue where one particular
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microenvironment, called niche (Lander et al., 2012), promotes the
maintenance of its vital functions. This niche has specialized in
providing factors that prevent differentiation and thus maintain
the stemness of CSCs and, ultimately, the tumor's survival. Stem
cells and niche cells interact with each other via adhesion
molecules and paracrine factors. This complex network of interac-
tions exchanges molecular signals and maintains the unique char-
acteristics of stem cells, namely, pluripotency and self-renewal.

Given the extreme complexity of the cellular microenvironment
in general and of the niche in particular (Iwasaki and Suda, 2009;
Lander et al., 2012), wewill formulate an effective stochastic theory
for the population dynamics of CSCs.We are especially interested in
investigating a controversy related to the frequency with which
CSCs appear in various tumors (Ishizawa et al., 2010; Stewart et al.,
2011; Vargaftig et al., 2011; Sarry et al., 2011; Zhong et al., 2010;
Baker, 2008a,b; Johnston et al., 2010). In the initial version of CSC
theory, it was believed that these cells were a tiny fraction of the
total, ranging from 0.0001% to 0.1% (Schatton et al., 2008; Quintana
et al., 2008). However, more recent studies have shown a strong
dependence on the number of stem cells present in a tumor with
the xenograft experimental model used. In explicit contrast towhat
was previously thought, in Quintana et al. (2008) a CSC proportion
of approximately 25% was observed. Other studies have confirmed
this observation (Kelly et al., 2007; Williams et al., 2007; Schatton
et al., 2008), with the proportion potentially reaching 41% (Boiko
et al., 2010). In Gupta et al. (2009) the authors provide evidence that
this discrepancy may be caused by the possibility of phenotypic
switching between different tumor cells. By phenotypic switching
we mean that a more differentiated cancer cell can, under appro-
priate conditions, de-differentiate into a cancer stem cell. This is the
cellular plasticity mentioned above.

In Zapperi and La Porta (2012), it is suggested that inconsis-
tencies in the numbers of cancer stem cells reported in the
literature can also be explained as a consequence of the different
definitions used by different researchers. Different assays will give
different numbers of cells, which can be orders of magnitude away
from each other.

In this paper we are also interested in knowing what are the
possible effects of cells diffusion in space. For this, we constructed
bifurcation diagrams that show how the population size of CSCs
varies when the size of the niche cells changes. We consider the
effects that the plasticity phenomenon as well as spatio-temporal
noise can have in these diagrams. Finally we studied the effects of
the spatial distribution of cells in stationary probability
distributions.

The paper is organized as follows: in Section 2 we explain the
basic assumptions of our model of CSC population dynamics. In
Section 3 we describe the set of reactions we use in the models. The
effects of inclusion of spatial structure in the analysis are considered
in Section 4. Section 5 closes the paper with conclusions.

2. Assumptions

Mathematical modeling has made significant contributions to
our understanding of the biology of cancer since the pioneering
work of Nordling (1953) and Armitage and Doll (1954), in which
the authors proposed that multiple mutations may explain the
data on the incidence of cancer and its correlation with age (Chen
et al., 2005; Horov et al., 2009). For historical reviews on the
subject, see McElwain and Araujo (2004) and Byrne et al. (2006).

In the model used in this paper, cancer stem cells can perform
three types of divisions, according to Morrison and Kimble (2006):
�
 Symmetric self-renewal: Cell division in which both daughter
cells have the characteristics of the stem cell mother, resulting
in an expanding population of stem cells.
�
 Symmetric differentiation: A stem cell divides into two prog-
enitor cells.
�
 Asymmetric self-renewal: A cancer stem cell (denoted by C) is
generated and a progenitor cell (mature cancer cell, denoted by
P) is also produced.

We developed a simple mathematical model for the stochastic
dynamics of CSCs in which the three division types possess
intrinsic replication rates, which are assumed to be time-
independent. Therefore, besides these division types, we assume
that there is also the possibility of a transformation in which a
progenitor cell can acquire characteristics of stem cells where, for
all practical purposes, we may regard it as having become a de-
differentiated stem cell. In mixed lineage leukemia cells, it was
recently shown that committed myeloid progenitor cells acquire
properties of leukemia stem cells without changing their overall
identity (Leder et al., 2010). These cells do not become stem cells,
but rather develop stem cell like behavior by re-activating a subset
of genes highly expressed in normal hematopoietic stem cells
(Rapp et al., 2008). The biological mechanisms underlying this
transformation are described in Gupta et al. (2009), for example.
As mentioned previously, we refer to this process as cell plasticity.
3. Model

This section describes the basic model investigated in this
paper. It is based on the cell division mechanism and the plasticity
property. We will use the language of stochastic differential
equations (Karlin and Taylor, 2000; Schuss, 2010; Oksendal, 2003).

The model is a natural extension of the one proposed in Turner
et al. (2009). This extension refers to the inclusion of competition
between cells because of the scarcity of resources when popula-
tions become large enough. This new possibility in relation to the
model proposed in Turner et al. (2009) makes the model nonlinear
and prevents that the populations tend to infinity. The model is
described in the next subsection.

3.1. The basic model

We assume that the population dynamics of cancer stem cells
and progenitor cells are governed by the following reactions:

C ⇌
k1

k′2=Ω2

C þ C

P ⇌
k3

k′4=Ω4

P þ P

C,
k5
C þ P

C,
k6
P þ P

P,
k7
∅

P,
k8
C ð1Þ
The first and second reactions, in the forward sense, model cell

proliferation, which occurs at a rate k1 and k3, respectively.
Constants k′2 and k′4 are associated to the reverse process and
describe the intensity of competition between the CSC and
progenitor cells, respectively, and prevents their unlimited expo-
nential growth; Ω2 and Ω4 are constants related to the model's
carrying capacity. The third reaction involving k5 originates from
the asymmetric transformation of CSCs in CSC daughter and
progenitor cell types. The reaction involving the rate k6 is related
to a symmetrical division of stem cells, which gives rise to two
progenitor cells. The penultimate reaction is associated with pro-
genitor cell death at rate k7. Finally, k8 is the de-differentiation rate.



Fig. 1. Potential Vðx; yÞ from Eq. (5) for parameters A¼ B¼ G¼ 1, E¼3 and F¼0.01.
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All rates have dimension (time)�1. The specific unit of time (months,
quarters, years, etc.) will depend on the type and aggressiveness of
the tumor.

Using the law of mass action, we can write

dC
dt

¼ k1C�k2C
2�k6C þ k8P

dP
dt

¼ k3P�k4P
2 þ ðk5 þ 2k6ÞC�ðk7 þ k8ÞP

8>><
>>: ð2Þ

with k2≡k′2=Ω2, k4≡k′4=Ω4. Setting ΩC≡k1=k2, ΩP≡k3=k4, k9≡k5 þ
2k6 and k10≡k7 þ k8 and making the substitutions C ¼ΩCx,
P ¼ΩC

ffiffiffiffiffiffiffiffiffiffiffiffi
k9=k2

p
y and t ¼ τ=k6, Eq. (2) can be written as (see

Appendix A)

dx
dτ

¼ Axð1�xÞ�xþ By≡f ðx; yÞ
dy
dτ

¼ Eyð1�FyÞ þ Bx�Gy≡gðx; yÞ

8>><
>>: ð3Þ

with

A≡
k1
k6

B≡
ffiffiffiffiffiffiffiffiffiffi
k2k9

p
k6

E≡
k3
k6

F≡
ΩC

ΩP

ffiffiffiffiffi
k9
k2

s

G≡
k10
k6

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð4Þ

As ∂f =∂y¼ ∂g=∂x¼ B, Eq. (3) represents a gradient system (Perko,
2000) with potential Vðx; yÞ given by

Vðx; yÞ ¼ 1
6
ð3�3Aþ 2AxÞx2�Bxyþ 1

6
ð3G�3E þ 2EFyÞy2: ð5Þ

As a consequence (Hirsch et al., 2004):
1.
 The eigenvalues of the linearization of Eq. (3) evaluated at
equilibrium point are real.
2.
 If ðx0; y0Þ is an isolated minimum of V then ðx0; y0Þ is an
asymptotically stable solution of (3).
3.
 If ðxðτÞ; yðτÞÞ is a solution of (3) that is not an equilibrium point
then VðxðτÞ; yðτÞÞ is a strictly decreasing function and is perpen-
dicular to the level curves of Vðx; yÞ.
4.
 There are no periodic solutions of (3).

Fig. 1 shows the potential function Vðx; yÞ. Sufficiently small F
(ΩP≫ΩC) implies large differences in equilibrium populations of C
and P. For parameters A¼ B¼ G¼ 1, E¼3 and F ¼ 0:01,
ðx0; y0Þ ¼ ð8:4;70:6Þ. If we set F ¼ 0:0001, keeping the other para-
meters fixed, we get ðx0; y0Þ ¼ ð82;6710Þ.
1 These values correspond to A′¼ 8, B′¼ 5� 10�4, E′¼ 10, F ′¼ 0:6 and G′¼ 1.
3.2. Adiabatic elimination

The proposed model in (1) is in fact a general model of stem
cells and does not even carry any specific characteristic of cancer
stem cells. All properties considered, such as plasticity and
changes in the microenvironment conditions (to be included
later), are also found in stem cell systems of normal tissue. The
features associated with cancer stem cells are related to the large
carrying capacity of progenitor cells when compared with the
carrying capacity of cancer stem cells. This fact is represented
numerically by the choice of model parameters made below,
which results in this discrepancy.
We can write (2) in the form (see Appendix A)

x′¼ A′xð1�xÞ�xþ B′y
y′¼ E′yð1�yÞ þ F′x�G′y

(
ð6Þ

with x′≡dx=dt′, y′≡dy=dt′, t′≡t=k6 and

A′≡k1
k6

B′≡
k2k3k8
k1k4k6

E′≡k3
k6

F′≡
k1k4k9
k2k3k6

G′≡
k10
k6

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð7Þ

Fig. 2 shows the numerical solutions of Eqs. (6) (the rescaled
equation) and (2) for the following parameter values: k1 ¼
1�k5�k6, k2 ¼ 4� 10�13, k3 ¼ 1, k4 ¼ 10�13, k5 ¼ 0:1, k6 ¼ 0:1,
k7¼0.1 and k8 ¼ 0:00001.1 We make the usual assumption
(k1 þ k5 þ k6Þb¼ 1 (Tomasetti and Levy, 2010), where β ≡ 1 is a
general parameter with dimension time(�1) required for dimen-
sional consistency in the following analysis. The values for k5 and
k6 are consistent with those estimated in Tomasetti and Levy
(2010). For these parameter values, ΩC≡k1=k2 ¼ 2� 1012 and
ΩP≡k3=k4 ¼ 1� 1013 (see Appendix A). These are rescaling para-
meters for x and y variables, respectively. Stationary values for P(t)
and C(t) are P1 ¼ 9:6� 1012 cells and C1 ¼ 1:8� 1012 cells,
respectively. By adjusting the k2 and k4 parameters we can easily
obtain more suitable values for the CSC and progenitor cell
equilibrium populations, according to possible new experimental
results.

By using standard adiabatic elimination methods, one can write
Eq. (6) as

x′¼ A′ xð1�xÞ� x
A′

þ B′
A′
y

� �
ϵy′¼ yð1�yÞ þ ϵF′x�ϵG′y

8><
>: ð8Þ

where ϵ≡1=E′. If we consider ϵ≪1 (this is equivalent to considering
the progenitor cell division rate sufficiently large) we can perform
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Fig. 2. Top: numerical solution for rescaled Eq. (6). x(t) and y(t) represent the
rescaled population of cancer stem cells and progenitor cells, respectively. Bottom:
numerical solution for Eq. (2). C(t) and P(t) represent the population of cancer stem
cells and progenitor cells, respectively. P1 and C1 represent the limits of C(t) and
P(t) when t-1, respectively. Parameters values: k1 ¼ 1�k5�k6, k2 ¼ 4� 10�13,
k3 ¼ 1, k4 ¼ 10�13, k5 ¼ 0:1, k6 ¼ 0:1, k7¼0.1 and k8 ¼ 0:00001. P1 ¼ 9:6� 1012 and
C1 ¼ 1:8� 1012. C1=P1 ¼ 0:1875.
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adiabatic approximation (Berglund and Gentz, 2006; Gardiner,
2009) in (8) and, setting y′¼ 0, we obtain the following equation2

for x:

x′¼ χ�μxþ αxð1�xÞ ð9Þ

where χ≡B′ð1�ϵG′Þ ¼ k8k2ðk3�k10Þ=k1k4k6, μ≡1�ϵB′F ′¼ 1�k8k9=
k3k6 and α≡A′¼ k1=k6. Note that χ can be positive or negative
depending on the magnitudes of k3 and k10.

If we consider ϵ to be small enough with respect to G′, B′ and F ′,
we further simplify and write χ ¼ B′ and μ¼ 1. We can observe that
the plasticity phenomenon (associated with k8) is crucial for the
existence of the constant term χ. For this reason, from now on we
will consider the parameter χ as representing the plasticity
phenomenon in the reduced equation (9).
3.3. The deterministic equation

We will briefly review the deterministic analysis of the pro-
blem. An analytic solution of Eq. (9) is possible. For the initial
condition xð0Þ ¼N0, we get

xðtÞ ¼ 1
2α

δ� ffiffiffi
κ

p
tan

1
2
t
ffiffiffi
κ

p þ arctan
�2N0αþ δffiffiffi

κ
p

� �� �� �
ð10Þ

with δ≡α�μ and κ≡�δ2�4αχ. The physically relevant stable fixed
point is

xn ¼ α�μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2�2αμþ μ2 þ 4αχ

p
2α

: ð11Þ

The x scaled population size dynamics can be thought of as
analogous to the particle moving dynamics in an effective poten-
tial V0ðxÞ, seeking its minimum point, with V0ðxÞ≡�

R
ζðxÞ dx with

ζðxÞ ¼ χ þ δx�αx2 from (9). Thus, V0 is given by the cubic
2 Expanding in Taylor series up to first order in ϵ.
polynomial,

V0ðxÞ ¼
x3α
3

� δx2

2
�xχ:

We see from (11) that by increasing either χ or δ, the minimum xn

of V0 moves to the right in the potential, thus favoring the tumor
stem cell population. Such behavior is, of course, expected, since
an increase of χ means an increase of the frequency in which the
induced plasticity mechanism occurs, and an increase of δ is an
increase of the symmetric stem cell renewal rate, both of which
increase the population.
4. Possible consequences of a spatial structure

Traditionally, anti-tumor treatments have targeted the cells
directly, removing them with surgery or killing them with radia-
tion. Since these are local treatment methods, they often are not
effective in meeting their objectives. The tumors may recur
because not all cells were killed or because some cells escaped
the primary tumor region where the treatments worked. Since
cells compete and/or cooperate with nontumor cells and between
themselves, these interactions may be better conceptualized as an
evolving ecosystem (Pienta et al., 2008; Kareva, 2011).

One of the possible consequences of this way of seeing the
disease is that the destruction of the tumor microenvironment can
be much more effective than just extracting or killing the cells that
live in it. A prime example of this situation comes from paleontol-
ogy: studies analyzing the conditions that preceded mass extinc-
tions suggest that they occurred more frequently and were more
destructive when pulses of disturbances that cause extensive
mortality were accompanied by perturbative pressures such as
climate change. This sequence weakened and destabilized popula-
tions for several generations (Arens and West, 2008).

Motivated by these considerations, it seems promising to
consider mathematical techniques originating in mathematical
ecology, a well-developed branch of applied mathematics
(Cantrell and Cosner, 2003; Petrovskii and Li, 2005). We are now
interested in the possible effects from the incorporation of diffu-
sion in the model. For this, let uðx; tÞ be a population of CSCs at
position x at time t that lives in a one-dimensional domain of
length L. By adding a diffusion term in Eq. (9), we get

∂u
∂t′

¼D
∂2u
∂t′2

þ χ�μuþ αuð1�uÞ≡D ∂2u
∂t′2

þ f ðuÞ ð12Þ

where D is the cell diffusion coefficient and f ðuÞ ¼ χ�μuþ αuð1�uÞ.
This is the deterministic partial differential equation that we will
consider first. Later we will consider a stochastic version. This is a
reaction diffusion equation that is typical in the population
dynamics of species that interact and disperse.

Eq. (12) with χ ¼ 0 is the famous Fisher (1937) equation. In this
equation we analyze the effect of plasticity represented by the
parameter χ on the patch size to sustain a population, similar to
what is sometimes called the Kierstead–Slobodkin–Skellam (KISS)
size (Skellam, 1951; Kierstead and Slobodkin, 1953). The main
motivation for performing this type of analysis is related to the
experimental results obtained in Quintana et al. (2008), where
xenografts in immunosuppressed mice sustained surprisingly high
populations of cancer stem cells. The idea here, therefore, is to
identify some phenomenon related to the size of the CSC niche
that may justify this result. The question is: What is the effect of
transplanting a cancer stem cell population to an environment
where, in theory, they will have more space to live and proliferate?

To formulate the problem mathematically, we can imagine that
there is a finite domain available for the cells to develop (their
niche). Beyond a certain boundary (i.e. outside the niche), there
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Fig. 3. Bifurcation diagram obtained from Φχ ðum; LÞ ¼ 0 with Φχ ðum; LÞ given by
Eq. (14) with χ ¼ 0:0 (blue, thick line), χ ¼ 0:1 (red, dotted line), χ ¼ 0:01 (black,
dashed line), μ¼ 1, α¼ 8. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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are restrictions (e.g., absence of signaling to support the cancer
stem cell phenotype, normoxic conditions incompatible with the
state of CSCs, adverse pH conditions, etc.) which make the survival
of cancer stem cells unsustainable. Outside the niche, these cells
have a tendency to differentiate into progenitor cells. Thinking of
the niche as a linear domain of length L, our problem can be
mathematically formulated as a boundary value problem with
Dirichlet conditions given by (12) and

uð0; t′Þ ¼ uðL; t′Þ ¼ 0:

Following Méndez et al. (2008), the population density at the
steady state is given by uðx;1Þ≈um sin ðπx=LÞ, where um is the
maximum population density at steady state for a given patch
size L. In Méndez et al. (2008), for a function f ðuÞ in the form
f ðuÞ ¼ a1uþ a2u2 þ a3u3, an approximation to um is found as the
real solution to the equation Φðum; LÞ ¼ 0 with

Φðum; LÞ≡um
3a3
4

u2
m þ 8a2

3π
um þ a1�D

π

L

	 
2� �
: ð13Þ

Allowing the possibility of plasticity (represented by χ), we
insert a term a0 in the f(u) function so that f ðuÞ ¼ a0þ
a1uþ a2u2 þ a3u3. By performing the calculations as in Méndez
et al. (2008), we obtain the new function

Φχðum; LÞ ¼
4a0
π

þ um
3a3
4

u2
m þ 8a2

3π
um þ a1�D

π

L

	 
2� �
: ð14Þ

By solving equation Φχðum; LÞ ¼ 0, we get three solutions that,
when placed on the same figure, make up what we call a
bifurcation diagram (if χ ¼ 0).3 For a0 ¼ χ, a1 ¼ α�μ, a2 ¼�α and
a3 ¼ 0, we consider the case of Eq. (12).

Fig. 3 shows the bifurcation diagram for χ ¼ 0 (blue curve) and
the curves umðLÞ for χ ¼ 0:1 (dotted red curve) and χ ¼ 0:01 (black
dashed curve). We find that the inclusion of plasticity allows small
cancer stem cell populations to survive even in very small niches.
Above a certain approximate critical minimum value for patch size
(KISS size Lc ¼ π

ffiffiffiffiffiffiffiffiffiffiffi
D=a1

p
), the population undergoes an abrupt

increase in its size. If a small cell niche is abruptly increased to a
value significantly greater than Lc, the CSC population will be
absurdly high. This may have been the case for the xenograft
cancer stem cells in immunosuppressed mice reported in Quintana
et al. (2008). This may also be an answer to the question
raised above.

4.1. Effect of noise on the bifurcation diagram

4.1.1. Noise in the cancer stem cell niche
Cells growing in a tissue are not alone: they are constantly

communicating with one another by sending signals through
tissue that are picked up and transmitted by other cells in the
medium. When thousands of cells are together, there are hundreds
of thousands of these signals present every minute, all competing
to be heard. All this complexity induces stochastic fluctuations in
population dynamics that will hereafter be called noise.

A growing body of evidence indicates that noise is generally not
detrimental to biological systems, but can be employed to gen-
erate behavioral diversity (Samoilov et al., 2005; Fange and Elf,
2006). Mechanisms involving noise are important in the develop-
ment of organisms (Arias and Hayward, 2006; El-Samad and
Khammash, 2006), a fact supported by experiments showing that
noise is down-regulated in embryonic stem cells (Zwaka, 2006)
and that fluctuations of the Nanog transcription factor predispose
these cells towards differentiation (Chambers et al., 2007; Kalmar
3 Naturally, the name bifurcation diagram only makes sense in the absence of
plasticity. This is due to the critical nature of Lc, which exists only for χ ¼ 0. When
χ≠0, the equivalent in figures will be called umðLÞ curves.
et al., 2009). In Hoffmann et al. (2008) it was suggested that the
regulation of noise can be an effective strategy in stem cell
differentiation. The results of the present paper suggest that high
levels of noise can stimulate the development of cancer stem cells.

4.1.2. Modeling noise in a spatial environment
Wewill now reformulate the population dynamics in terms of a

stochastic reaction–diffusion equation and reduce it to a determi-
nistic equation that incorporates the systematic noise contribu-
tions (Santos and Sancho, 2001). Let us first formulate the problem
in a general way and then use our model as an example.

Consider the following stochastic partial differential equa-
tion (SPDE) in the Stratonovich interpretation, with both additive
and multiplicative noises:

∂ϕ
∂t

¼D∇2ϕþ f ðϕÞ þ ϵ1=2gðϕÞηðx; tÞ þ ξðx; tÞ: ð15Þ

In the above equation, ϵ is an explicit measure of the noise strength
given by ηðx; tÞ, ϕðx; tÞ is a field (scalar or vector) that describes the
state of the system (the number of CSCs in our context) at a spatial
location x at time t, and D is the diffusion coefficient. The additive
noise ξðx; tÞ is Gaussian and white in both space and time, with zero
mean and correlations given by

〈ξðx; tÞξðx′; t′Þ〉¼ 2γ2δðx�x′Þδðt�t′Þ:
The multiplicative noise ηðx; tÞ is Gaussian, with zero mean and
correlation

〈ηðx; tÞηðx′; t′Þ〉¼ 2cðjx�x′jÞδðt�t′Þ
with cðjx�x′jÞ as the spatial correlation function. A crucial feature of
(15) is that while ηðx; tÞ has zero mean, our new noise term gðϕÞηðx; tÞ
does not. If gðϕÞ is constant, Eq. (15) has only additive noise. In our
case however, noise is coupled to the system through function g.

4.1.3. Effective deterministic model
As mentioned above, the new noise term has nonzero mean.

We define it as follows:

ϵ1=2〈gðϕÞηðx; tÞ〉≡Ψ ðϕÞ: ð16Þ
Adding and subtracting Ψ ðϕÞ in (15) lead to an equivalent equation,
but with zero mean noise term R

∂ϕ
∂t

¼D∇2ϕþ f ðϕÞ þ Ψ ðϕÞ þ Rðϕ; x; tÞ ð17Þ

where

Rðϕ; x; tÞ ¼ ϵ1=2gðϕÞηðx; tÞ�Ψ ðϕÞ þ ξðx; tÞ: ð18Þ
Rðϕ; x; tÞ is related to the nonsystematic noise effect. This effect will
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the population equilibrium but facilitates the escape of the cells to a situation
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be neglected (Santos and Sancho, 2001), thus leading to an
effective deterministic equation

∂ϕ
∂t

¼D∇2ϕþ f ðϕÞ þ Ψ ðϕÞ ð19Þ

with an effective reaction term f ðϕÞ þ Ψ ðϕÞ. Ψ ðϕÞ can be calculated
using Novikov's (1965) theorem producing

ϵ1=2〈gðϕÞηðx; tÞ〉¼ ϵcð0Þ〈g′ðϕÞgðϕÞ〉: ð20Þ

The deterministic effective model is written as

∂ϕ
∂t

¼D∇2ϕþ f ðϕÞ þ ϵcð0Þg′ðϕÞgðϕÞ: ð21Þ
where population growth is uncontrolled. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 5. Bifurcation diagram with χ ¼ 0:0 (top) and χ ¼ 0:1 (bottom), s¼ 0:0001
(blue, thick line), s¼ 5 (red, dotted line), s¼ 10 (black, dashed line), μ¼ 1, α¼ 8.
Noise enables the survival of CSCs in very small niches. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
4.1.4. Application to our model
Considering the inclusion of a Gaussian noise of intensity s in

parameter α,4 (by the transformation α-αþ sWðtÞ, W(t) is a
Wiener process Oksendal, 2003) we get a model corresponding
to Eq. (15) with f ðϕÞ ¼ χ þ ðα�μÞϕ�αϕ2 (a polynomial of degree
two) and gðϕÞ ¼ ϕð1�ϕÞ. Therefore, the effective deterministic
model is given by

∂ϕ
∂t

¼D∇2ϕþ χ þ ðα�μþ sÞϕ�ðαþ 3sÞϕ2 þ 2sϕ3 ð22Þ

or

∂ϕ
∂t

¼D∇2ϕþ χ þMϕ�Nϕ2 þ Pϕ3 ð23Þ

with M≡α�μþ s, N≡αþ 3s, P≡2s and s≡ϵcð0Þ. Besides the renor-
malization in parameters μ and α, the degree of the polynomial
function to the right of (22) is lifted from two to three. The
systematic contributions of the noise in the proliferation rate give
rise to a cubic term in the effective reaction function. Conse-
quently, the validity range of Eq. (23) is restricted to sufficiently
small noise strengths or small densities. This does not affect our
conclusions, since we are interested in the conditions for extinc-
tions, i.e., situations where the density is indeed small. At higher
densities, the model needs to be modified to include higher-order
saturation effects.

It is interesting to observe the effect of s on the effective
potential Veff ðϕÞ associated with the model without diffusion,
obtained from Veff ðϕÞ ¼ � R ½f ðϕÞ þ Ψ ðϕÞ� dϕ.

Fig. 4 shows this effect. Curves in blue, black and red (thick,
dashed and dotted, respectively) have s¼ 0;5 and 10, respectively.
An increase in noise decreases the equilibrium population repre-
sented by the minimum of the potential, but this decrease is
accompanied by the possibility of the population falling into the
hole on the right with no minimum. And the larger the noise
intensity, the more likely this is to occur. Cancer stem cells
enjoy noise.

The bifurcation diagram: We can now use Eq. (14) to construct
the bifurcation diagram corresponding to (23). In this case, we put
a0 ¼ χ, a1 ¼M, a2 ¼N and a3 ¼ P with α¼ 8, μ¼ 1.

Fig. 5 shows the bifurcation diagrams for χ ¼ 0 (top of the
figure) and curves um(L) for χ ¼ 0:1 (bottom). We see clearly that
the noise helps cancer stem cells to survive in very small niches.
The minimal patch size Lc ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ðα�μþ sÞ

p
needed to sustain cell

life is reduced with noise. The price to pay is related to lower
values of its stationary population.
4 We consider the inclusion of noise in this parameter by its essential
importance in the population dynamics, since this parameter is associated with
its nonlinear character.
4.2. The effect of diffusion in the stationary probability distribution

In this subsection we estimate the effects induced by diffusion
on the stationary distribution. Let us consider the tumor as a
spatially continuous medium as in the previous section, described
by field variables obeying partial differential equations. We con-
sider the reaction–diffusion equations

∂ϕðx; tÞ
∂t

¼ f ðϕðx; tÞÞ þ D∇2ϕðx; tÞ ð24Þ

where ϕðx; tÞ is a field (scalar or vector) that describes the state of
the system at a spatial location x at time t. A discretization
procedure is commonly used to transform the continuous partial
differential equation to be analyzed into a set of coupled ordinary
differential equations, after approximating the continuous space
by a lattice (García-Ojalvo and Sancho, 1999). In the case of
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Eq. (24), for example, assuming a regular Cartesian lattice, the
discretization leads to

dϕðtÞ
dt

¼ f ðfϕigÞ þ
D
Δx2

∑
j∈nðiÞ

ðϕj�ϕiÞ ð25Þ

where the sum term, which runs over the set of nearest neighbors
of i, represents a possible choice for the discrete version of the
Laplace operator and Δx denotes the lattice spacing. The relation
between the discretized field and the real one is ϕiðtÞ ¼ ϕðiΔ; tÞ,
where i¼ ði1; i2;…; idÞ and d is the space dimension.

A lattice will be used so that the state of the system is described
by a set of scalar variables fxig, i¼ 1;…; Ld defined on a d-
dimensional cubic lattice with lattice points i. Suppose that the
dynamics of the variables xi can be described by the following
stochastic differential equation in the Stratonovich sense:

_xi ¼ f ðxiÞ þ gðxiÞξi�
D
2d

∑
j∈nðiÞ

ðxi�xjÞ: ð26Þ

n(i) is the set of the nearest 2d neighbors of site i, and fξiðtÞg are
Gaussian white noises in time and space with zero mean and an
autocorrelation function given by

〈ξiðtÞξjðt′Þ〉¼ s2δijδðt�t′Þ

and D is the diffusion coefficient. The functions f ðxiÞ and gðxiÞ are
f ðxiÞ ¼ χ�μxi þ αxið1�xiÞ and gðxiÞ ¼ xið1�xiÞ. Following Van den
Broeck et al. (1994), and using a mean-field approximation, the
stationary probability distribution at site i is given by

PstðxÞ ¼ 1
Z
exp

2
s2

Z x

0
dy

f ðyÞ�s2

2
gðyÞg′ðyÞ�Dðy�EðyÞÞ

gðyÞ2

2
664

3
775 ð27Þ

where Z is a normalization constant and

EðyÞ ¼ 〈vijvj〉¼
Z

yiPstðyjjyiÞ dyj ð28Þ

represents the steady state conditional average of yj at neighboring
sites j∈nðiÞ, given the value yi at site i. Using the Weiss mean-field
approximation, neglecting the fluctuation in the neighboring sites,
i.e., EðyÞ ¼ 〈x〉, independent of y, and imposing the self-consistent
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Bottom left: effect of D on Pst for parameters α¼ 0:04, μ¼ 0:06, χ ¼ 0:04 and s¼ 0:5. Bottom
requirement, we obtain

〈x〉¼
Z 1

�1
dx xPstðxÞ ¼ Fð〈x〉Þ: ð29Þ

We are interested in the effect of the diffusion coefficient D in
the stationary probability distribution of the site i. The maxima of
Pst(x) are obtained from f ðyÞ�ðs2=2ÞgðyÞg′ðyÞ�Dðy�EðyÞÞ ¼ 0, or

x3 þ x2ð2α�3s2Þ
2s2

þ xð2D�2αþ 2μþ s2Þ
2s2

�Dmþ χ

s2
¼ 0 ð30Þ

where we put EðyÞ≡m. We see that D40 raises the coefficient of
the linear term in x and the constant term. For the cubic equation
x3 þ Bx2 þ Cxþ F ¼ 0, the condition for having three real roots is
given by (Kavinoky and Thoo, 2008)

Δ≡
q2

4
þ p3

27
o0 ð31Þ

with p¼ C�B2=3 and q¼ 2B3=27�BC=3þ F . For 3s242α ðBo0Þ
and 0omo1, an increase of C and F increases the value of Δ so
that condition (31) is more difficult to achieve. In Fig. 6 (lower
row) we see that an increase in the diffusion constant D has the
effect of hampering the transition from a unimodal to a bimodal
distribution. There is competition between s and D. Fig. 6 (top left)
shows the effect of increased s for D¼0.1 and Fig. 6 (top right)
shows the effect of χ for s¼ 1:5 and D¼1.

We see in Fig. 6 (top left) that for sufficiently large values of s
bistability can occur. This bistable state can lead to the coexistence
of two separate phases in space. In Zhong et al. (2008) the authors
show that this type of bistability can be associated with noninfil-
trative growth of a benign tumor, a case that corresponds to small
noise, as well as an infiltrative type of malignant growth corre-
sponding to intense noise. While increases in s stimulate bistability,
increases in D discourage it, as shown in Fig. 6 (bottom row).
5. Conclusion

We proposed a model to describe population dynamics of CSCs.
Our analysis allows us to address a controversy related to the
frequency of such cells in tumors. Initially, it was thought that
these cells were relatively rare, comprising at most ∼1% of the
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cancer cell population. More recent experiments, however, suggest
that the CSC population need not be small.

When considering the spread possibility of CSCs, we estimate
the conditions to support themselves in a niche with hostile
boundary conditions. Without plasticity, there is a threshold of
the niche size below which the population cannot be sustained.
With plasticity, this threshold is lost and cells can survive in niche,
even in small populations. The inclusion of noise in case of no
plasticity decreases the minimum required niche size, conspiring
again in favor of CSCs.

We briefly considered a simplified model with spatial distribu-
tion in a lattice. The possibility of a bimodal stationary probability
distribution was observed. Using mean-field theory, we demon-
strated that diffusion (D) competes with noise (s) in the construc-
tion of this bimodality. We showed that the discrepancy observed
in the frequency of these cells is entirely consistent with the
original hypothesis of the existence of cancer stem cells, as long as
favorable conditions related to the complexity of the microenvir-
onment are met.
Appendix A. Rescale transforms

In this appendix we detail the rescales made throughout the
main text. The first refers to Eq. (6) and the second refers to Eq. (3).
The general model written in terms of the reactions is

C ⇌
k1

k′2=Ω2

C þ C

P ⇌
k3

k′4=Ω4

P þ P

C,
k5
C þ P

C,
k6
P þ P

P,
k7
∅

P,
k8
C ðA:1Þ

Using the law of mass action we have

_C ¼ k1C 1� C
ΩC

� �
�k6C þ k8P

_P ¼ k3P 1� P
ΩP

� �
þ k9C�k10P

8>>><
>>>:

ðA:2Þ

with k9≡k5 þ 2k6, k10≡k7 þ k8, ΩC≡k1=k2, ΩP≡k3=k4 and k2≡k′2=Ω2,
k4≡k′4=Ω4. Using the rescale C≡ΩCx and P≡ΩPy

_x ¼ k1xð1�xÞ�k6xþ
k8ΩP

ΩC
y

_y ¼ k3yð1�yÞ þ k9ΩC

ΩP
x�k10y

8>>><
>>>:

ðA:3Þ

Using t≡k6t′ and Ω≡ΩP=ΩC

dx
dt′

¼ k1
k6

xð1�xÞ�xþ k8Ω
k6

y

dy
dt′

¼ k3
k6

yð1�yÞ þ k9
k6Ω

x�k10
k6

y

8>>><
>>>:

ðA:4Þ

or

x′¼ Axð1�xÞ�xþ By

y′¼ Eyð1�yÞ þ Fx�Gy

(
ðA:5Þ
with x′≡dx=dt′, y′≡dy=dt′ and

A≡
k1
k6

B≡
k2k3k8
k1k4k6

E≡
k3
k6

F≡
k1k4k9
k2k3k6

G≡
k10
k6

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ðA:6Þ

A.1. Gradient system

Starting from (A.2) and carrying out the transformation S¼ s1c,
P ¼ s2p and t ¼ s3τ, we can write

dc
dτ

¼ k1s3c 1� s1
ΩC

c
� �

�k6s3c þ
k2s2s3
s1

p

dp
dτ

¼ k3s3p 1� s2
ΩP

p
� �

þ k9s1s3
s2

c�k10s3p

8>>><
>>>:

ðA:7Þ

Imposing k2s2s3=s1 ¼ k9s1s3=s2, k6s3 ¼ 1 and s1 ¼ΩC , we obtain
s1≡k1=k2, s2≡ΩC

ffiffiffiffiffiffiffiffiffiffiffiffi
k9=k2

p
and s3 ¼ 1=k6.

In this way we obtain

dc
dτ

¼ k1
k6

cð1�cÞ�c þ
ffiffiffiffiffiffiffiffiffiffi
k2k9

p
k6

p

dp
dτ

¼ k3
k6

p 1�ΩC

ΩP

ffiffiffiffiffi
k9
k2

s
p

 !
þ

ffiffiffiffiffiffiffiffiffiffi
k2k9

p
k6

c�k10
k6

p

8>>>>><
>>>>>:

ðA:8Þ
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