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Abstract

This article explores the use of types constrained by the definition of functions
of given types. This notion supports both overloading and a form of subtyping,
and is related to Haskell type classes and System O. We study an extension of the
Damas-Milner system, in which overloaded functions can be defined. The inference
system presented uses a context-independent overloading policy, specified by means
of a predicate used in a single inference rule. The treatment of overloading is less
restrictive than in similar systems. Type annotations are not required, but can be
used to simplify inferred types. The work motivates the use of constrained types as
parameters of other, higher-order types.

1 Introduction

The problems with the treatment of overloading in languages with support
for polymorphism and type inference, such as for example Miranda [11] and

SML [6,9], have been discussed elsewhere [13,3]. In SML, for example, one
cannot write:

square x = X * X

the reason coming from the fact that ‘*’ is overloaded for integers and reals.
Equality is treated differently in SML, by the introduction of a special poly-
morphic type variable, constrained so that its instances must admit equality.
For example, the type of a function member, that tests membership in a list,
is given as follows:
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‘fa list —> ‘‘a -> bool

In Miranda, this type is not constrained in this way, but applying member to
lists whose elements are functions generates a run-time error.

Type classes [2] are used in Haskell [4,10] to deal with problems like these.
A type class is introduced to specify types of overloaded functions, as in:

class Num a where
#), (*):: a->a->a

and:

class Eq a where
(==):: a -> a -> bool

Instance declarations then specify which types are instances of this class, and
give definitions of overloaded functions for this type, as in:

instance Num Int where
(+) = PrimAddInt

and:

instance Eq Int where
(==) = PrimEqInt

and also:

instance Eq a,b => Eq (a,b) where
(a,b) == (c,d) = (a==c) & (b==4)

The last example illustrates subclassing: if equality is defined on a and b, then
it is defined on the product type (a,b).
System O [8] aimed at some improvements in relation to type classes:

e With type classes, inferred types depend on class declarations. This is in
constrast with the Damas-Milner system, for which all type declarations
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can be removed from any typeable program and the program still remains
typeable.

e Type classes cannot be defined to be formed by polymorphic type instances:
for example, one cannot define a type class formed by product types (a,b),
(a,b,c), ..., all having, say, a projection function first.!

System O uses universally quantified types, with possibly a constraint on
the quantified variable that is a (possibly empty) set of bindings o :: @ — T,
indicating that there must exist an overloaded operator o :: p — (7[a :— p]),
for an instance p of a.?

The main difference of our system in relation to System O is that we
eliminate some restrictions imposed in System O in the definition and use
of overloaded symbols. System O requires explicit declaration of the type of
an overloaded function (our system does not). Thus, there is no inference of
types of overloaded symbols in System O. In System O, the argument of an
overloaded function must be of a type that is constructed from a given type
constructor (including —, the constructor of function types), and all the ar-
gument type constructors of overloaded functions must be (pairwise) distinct.
As an example, functions with the following types cannot be overloaded in
System O:

sort : (&« = o — Bool) — [a] — [o]
and
sort : (a — Int) — [a] — [¢]

We say that a quantified constrained type is a class type. A class type
may be viewed as representing a collection of (lower-order) types, the set of its
instances, all having given (overloaded) functions that operate on parameters
of corresponding types. These instance types may be concrete and abstract
types. (The implications of using class types as the type of abstract types
are not dealt with in this paper, being left as a topic for further work.) In a
system with type declarations, class types can be used in type annotations to
simplify inferred types, as illustrated in Section 2.

The rest of the paper is organized as follows. Section 2 explores some uses
of class types. Section 3 introduces the type rules of our system. Section 4
presents the type inference algorithm. Section 5 gives a semantics for terms
and type expressions of System CT. Section 6 concludes.

I Where first(a,b) = a, first(a,b,c) = a, ...
2 The notation ofa :— 7] indicates the usual textual substitution.
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2 Examples

In this section we explore some uses of class types, using a Haskell-like nota-
tion.

2.1 Types with Fquality and Ordering Relations

We consider first the possibility of defining a type that represents any type
over which equality (say ‘==") is defined:
The equality class type is as follows:

type Eqt =t { (==):: t -> t -> Bool }

Type Int is automatically an instance of Eq t if there is a built-in oper-
ator ‘==’ with the required type. Type Eq t can be seen — in a language
supporting class types and type definitions of this form — as an abbreviation
for Vt {(==) : t -t — Bool}.t.

A function member to test membership on lists of elements that can be
compared on equality can be written as follows:

member:: [Eq t] -> t -> Bool
member _ [] = false
member a (b:x) = (a==b) || member a x

Using class types, the mechanism corresponding to Haskell instance declara-
tions is not used (it would correspond to an explicit declaration of subtyping).
Types with an ordering relation (say ‘<’) are treated analogously:

type Ord t =t { (): t— t— Bool }

As with equality, type Int is an instance of Ord t if there is an operator
‘<’ with type Int—Int—Bool. For any t; that is an instance of Ord t, type
[t;] becomes (automatically) an instance of Ord t by defining:

[1 < _ = false
_ <[] true
(a1:x1) < (a2:x2) = if al<a2 then x1<x2 else false

The inferred type of this particular definition of ‘<’ can be [0rd t]—[t]—
Bool. The constraint information (0Ord) needs to occur only once. The type
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[0rd t]—[t]— Bool can be seen as an abbreviation for

Vt{(<) : t — t — Bool}. [t] — [t] — Bool

2.2 Arithmetic Operations

For an example of a class type Num constraining types with arithmetic opera-
tions, consider:

type Num t =t { (+), (*):: t >t >t
negate:: t ->t ... }

A square function can be written as:

square:: Num t > t
square X = X * X

The type annotation is used to indicate a more specific type (a subtype), and
provides an abbreviated notation, but is not required (see Section 4).
We can then write:

squares:: (Num a, Num b, Num c) -> (a, b, c)
squares (x,y,z) = (square x, square y, square z)

Finally, note that class types can also be used as (super)types of abstract
types, in a type system that allows the use of alternative abstract type imple-
mentations for a given abstract type signature, based on the overloading of
functions and constants defined in these alternative implementations.

3 Type System

We use a kernel language that is almost identical to Core-ML [5,1]. We include
value constructors (k € K) and type constructors (C' € C) and assume (for
simplicity) that overloaded variables are distinct from value constructors and
non-overloaded variables. All lambda-bound variables are non-overloaded.
Term variables (z € X) are considered to be divided into three groups:
of overloaded (o € O), non-overloaded (u € U), and value constructors (k €
K), the latter being considered as constants, having a value fixed in a global
environment. Figure 1 gives the syntax of pre-terms and types of system CT.
Types are modified (with respect to the type system of Core-ML) to include

class types. A class type Va{o; : 7,...,0, : T,}. 0 represents all types
ola :— 7] constrained to have functions with types oy : 74,... ,0, : 7, where
I =rla:— 7], fori=1,... n.
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Terms e € B ex=z| \ue| ee| letz=ein¢

Simple Types T € T ro=a| 7—=7 | Cn...7

Types 0 € T ou=1| Vafor :11,...,0, T} O

Fig. 1. Abstract Syntax of system CT

x:okFx:o

Du:tke:7
'FXu.e:m— 7

'Fe: 7" =71 L'+e:7
F'kee: 7

FFe:o Cx:obe€ 7
'Fletx=eine : 7

I'oj:m,Fe:o
'Fe:Vad{o;:71;}.0

a & tv(T)

I'Fe:Vai{o;:1;}.0 ['Fo;: mifa:— 7]

v

v

I'Fe:ola:— 7]

Fig. 2. Type Rules of System CT

)
)

0
0
(VAR)
(ABS)
(APPL)
(LET)

(GEN)

(INST)

The type rules are given in Figure 2. A typing contert I is a set of pairs,
written as x : 0. In our system, a variable x can occur more than once in a
typing context, if x € O. A pair x : 0 is called a typing for x. The notation
[', indicates a typing context for which it is assumed that x does not appear
(this does not cause any restrictions due to the possibility of renaming bound

variables).

The overloading policy is controlled by a predicate p, used in rule (LET).
The value given by p(o1,03) is true if “o; and oy can be types of overloaded
function symbols”. The evaluation of p(oy,02) basically tests if o7 and o9
are not unifiable; for a context-independent overloading policy the following

additional conditions must hold:
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* the unification of argument types of functions must fail, and

e if the argument types are functional types, they must be such that they
cannot be the types of overloaded functions (in other words, unification of
the argument types of the argument types must not fail).

Predicate p is defined by:

unify({m = m}) fails and
if m =7, — 71, and ifo, =1 — 1,
— i /
Ty = T9q — Tor, then Oy =Ty — Ty

unify({Tia = T2 }) does not fail

p(o1,02) if o9 =Va{o; : 1;}. 0},

p(0-170-2) — 09 c T
p(oy,01) if 0o =Va{o; : 1;}. ),

o] € 7-
p(o1,09) if oy =Vado; : 1;}. 0},

oy = Va'{0} : Ti}. oy

Quantified type variables in a given type are assumed to be distinct from
other type variables (possibly by renaming).

We also use a function tc : T — T'C', that gives the constructor of a type
given as parameter, defined below, where we let TC' = C U {—, x}:

We use the notation I', x : o to stand for:
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F,U{z:0o}ifzelU
Lxro=qTU{z:0} ifz €O andtc(o) =— and

{z:0'} €T = p(o,0)

The condition “tc(o) = —”, which implies that only functions may be
overloaded, simplifies the semantics and implementation of the system, since
it enables a direct unique identification of the function to be called, in a
context-independent way.

We use: I',(x; : 03)icq1,.. ) as an abbreviation for I',zy : oy,... 2, :
o, and assume systematically that ¢ ranges from 1 to n, where n > 0, to
write only I',x; : 7;; analogously, I' F (x; : 0;) is used as an abbreviation
forT'Fxy:0, ... T'F 2, : 0, and j is assumed systematically to range
from 1 to m, where m > 0, to write Va;{o; : 7;}. 0 as an abbreviation for
Vg Nag. .. Nap{oy : 11,...0p 1 7 }. 0.

The notation tv(I") stands for the set of free type variables of T'.

4 Type inference

Figure 3 presents the type inference algorithm. Function PP computes princi-
pal pairs (type and context) for a given term, together with a set of constraints
for the computed type. We write algorithms using a pattern-matching nota-
tion, resembling modern functional programming languages.

Our algorithm PP works only with simple types, for simplicity. Quantified
types are equivalent to simple types with a set of constraints o; : 7;. We can do
this simplification because lambda-bound variables always have simple types
and because we can type an expression let x = e in €’ by first finding the
possibly polymorphic principal typing for e, and then using instances of this
type for each occurrence of x in €.

For simplicity, we do not consider a-substitutions and assume that if a
variable is let-bound, then it is not lambda-bound. We can see that this
assumption is important in examples for which the assumptions does not hold,
like 1let x = 10 in Az. z or true, for which PP would fail, and let x =
10 in Az. z, for which PP would not give a principal typing.

Variable k is used to denote a set of constraints. We use typing environ-
ments A, which are sets of pairs written in the form = : (7,k,T"), where the
second element is a triple (whose first element is a simple type, the second is
a set of constraints and the third is a typing context). We write A(x) for the
set of triples (7, kg, ;) such that z : (74, ke, [y) € A.

A type substitution (or simply substitution) is a function from type vari-
ables to types. If o is a type and S is a substitution, then So is used to denote
the type obtained by replacing each free type variable « in o with S(«). Sim-
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ilarly, for a typing context I', the notation ST denotes {x : So | x:0 € T'},
and for a set of constraints x, the notation Sk denotes {o: ST | o:7 € k}.
Functions lcg, unify and sat, also used by algorithm PP, are defined be-
low. Function lcg computes the type that is the least common generalisation
for a set of types. Function unify computes the most general unifying substi-
tution for a set of equations between type expressions. Function sat(k, A) is
a constraint satisfaction function: it returns true if constraints x are satisfied
in typing environment A, and false otherwise. The functions are as follows.

* lcg is defined by:

leg({r}) =7 (i.e. lcg of a singleton is the single element)
leg(SU{C T ...1, C" 1] ... 7T }) =
if C # (' then «, where « is a fresh type variable
else lcg(SU{Clcg, ... lcgy})
where lcg; = leg({r;, 7!}), fori=1,...,n

and type variables are renamed so that @ = o/ whenever

there are 7,, 7, with lcg({7s, 7}) = @ and leg({1,, 7}) =
leg(SU{a}) =«
leg(SU{n — m, 1 — 75}) = analogous as above,

with “—” as the type constructor

Function lcg takes into account the fact that, for example, lcg({Int —
Int,Bool — Bool}) is @ — «, for some type variable «, and not a@ — ¢/,

for some other type variable o/ Z .

e unify is given by:

unify(0) = 0
unify(FEU{Cn...7, =C"1{...7}) =
if C #2C" then fail
else unify(EU{r =1,... ,7=1,})
unify(EU{a=r1}) =
if a =7 then unify(F)
else if a occurs in 7 then fail
else unify(Ela:— 7)) o {a— 7}
unify(EU{n - =1 —n}) =unify(FU{n =1, =1})
9
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PP(u,A) =
if A(u) = (7,k,T), for some 7, x,T", then (7,x,T)
else (a,0,{u: a}), where « is a fresh type variable
PP(o,A) =
if A(0) #0 then (7, {o:7}, I
where A(o) = {(7;,k;, )}, T=UTL; and 7 = leg({1;})
else (a,(),{o: a}), where « is a fresh type variable
PP(Au.e, A) =
let PP(e,A) = (7',k,T) in
ifu:7 €T, for some 7
then (1 — 7', k, ' — {u:7})
else (o« — 7/, k, T'), where « is a fresh type variable
PP(ee, A) =
let PP(e, A)= (1,k,T)
PP(e',A) = (', k', T"), with type variables renamed
to be different from those in (7, ,T)
S=unify{a=d | z:aclTandz: o €'} U{r =1 = a"}),
where o is a fresh type variable
in if sat(Sk, A) then (Sa”, Sk U Sk, STU SF’) else fail
PP(let x=e ine’, A) =
let PP(e, A) = (1,k,I)
if v € O and te(r) = — and ({z: (7', &,I")} € A= p(1,7'))
then A'= AU {z: (r,k,I)}
elseif x €¢ U
then A'= A, U{z: (1,k,T)}
else A’ =10
in if A’ =( then fail else PP(e', A")

Fig. 3. Type inference for system CT

* sat(k, A) is defined by:
For each o : 7 in k, we have: there exists o : (7/,x/,I") in A such that
unify(r = 7') does not fail and, in this case, letting S = unify({r = 7'}),
sat(Sk', A —{o: (7',k',I")}) also holds.

5 Semantics

Following [7], we use an applicative structure A that is a tuple:

A= (UIA, U2A, AppT’T,,I)

where:
o U = {A"} is the collection of sets A™ constructed inductively as follows:
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- Base case: 7=C (i.e. C'1y...7,, where n = 0). Let K, be the set of all
value constructors & that yield a value in 7. Then A™ = {Z(k) | k € K, }.

- Inductive cases:
7=Cm...7,, where n. > 0 and A™, ..., A™ € Ui let K, be the set
of all value constructors that yield a value in 7. Then, for all v; € A™,

i=1,...,arity(k), A" = Uper, Z(k) v1 .. Varity(k)-
T =17 — Ty, where A", A™ € U': then A™ = A" — A™ the set of
functions from A™ to A™.

« Ut = {A} is the collection of sets A” constructed inductively as follows:
- Base case: A7 € Uf; then A7 = A™ € Us';
- Inductive case: A%, A°2 € Us'; then A = A™ U A™ € U;*.

e App™” is the function

App™" AT 5 (AT 5 AT

from A7 to functions from A7 to A7, defined by:

App™™ fu = f()

*7T:K— UUGU;‘ A? assigns values to value constructors.

An environment is a mapping

n : Variables — Ut U U A7

UEUQA

where Variables include (term) variables and type variables, for every type
variable o we have n(a) € Ui, and for every variable = we have n(x) € A7,
for some o.

The meaning [o]n of a type expression o in environment 7 is defined in-
ductively as follows:

[r=7In=A{f1 zelrln= f(z) € [7']n}
[Cr...mn=U{Z(k)vi...vn | v; €[ri]n, foralli=1,... ,n}

Va{o; : 7;}. o]n = ({[o]a :— 7]]n | 7 is such that n(o;) € [r:[a :— 7]]n}
11
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The denotation of, for example, Int — Bool is a set that includes denota-
tions of overloaded functions f : o for which Int is an instance of the argument
type of o0 and Bool is an instance of the result type of o. The intersection
used in the denotation of Va{z; : 7;}. o “selects” thus overloaded functions.

If " is a typing context, we say that an environment 7 satisfies I if n(z) €
[o]n, for every x : 0 € I'. The notation n = I" abbreviates “n(z) € [o]n, for
every x 1o € I'”.

The meaning of a term e in an environment 7 is defined by induction on
typing derivations I' - e : o, for typing contexts I" such that n = T, as follows:

[TC,z:0Fx:0]n=n(r)
[CFee:rln=App " ([CFe:7 — 7)) ([CFe:7]n)

[TFXuw.e:T7—7n=
the unique f € A — B, where A = [7]n and B = [7']n, such that
foralla € A, App™” fa=[T,u:7tFe:7']nu d

[THFletz=eine :7]n=
if v € U then [I',z:0 € : 7]n[z — d]
else [[,z:o0 b€ 7]y

where d=[I"Fe:o]n
' =nlz — extend(n(z), d)]

extend(f, g) = A\x.if © € dom(g) then g(x) else f(x)

6 Conclusion

In extensions of the Damas-Milner type system, class types, as presented in
this paper, provide a simplified treament of overloading. In system CT, the
overloading policy is controlled by means of a predicate used in a single infer-
ence rule. Types can be inferred, without the need for any type annotations,
and there is an algorithm for computing most general typings. The use of
type annotations can simplify inferred types, though.
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System CT has less restrictions than existing similar systems that extend
ML-like polymorphic type systems with context-independent overloading. For
example, in System CT types of overloaded functions can be such that they
have the same argument type constructor.

More experience is needed on the use of overloading and class types to-
gether in a system with polymorphism and type inference. The main motiva-
tion for our study came out from the idea of defining a form of higher-order
types, that can be used as types of (lower-order) abstract and concrete types.
Lower-order types would be instances of higher-order types. We intend to
explore the use of class types together with higher-order types, following the
idea that higher-order types are types parameterised on other, possibly con-
strained types. We think this idea can enhance a functorial view of modules
as parameterised types.

Further explorations of this system involve incorporating the concept of
class types in a functional programming language, like Haskell or SML, study-
ing the implications of this concept with regards to the subtyping relation and
program development, and studying its relation to intersection types [12].
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