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Abstract

A nonlinear modal solution methodology capable of solving equilibrium and stability problems of uni-dimensional
structural elements (beams, columns and arches) with unilateral contact constraints is presented in this work. The contact
constraints are imposed by an elastic foundation of the Winkler type, where special attention is given to the case in which
the foundation reacts in compression only, characterizing the contact as unilateral. A Ritz type approach with moveable
boundaries, where the coordinates defining the limits of the contact regions are considered as additional variables of the
problem, is proposed to solve this class of unilateral contact problems. The methodology is illustrated by particular prob-
lems involving beams, beam-columns and arches, and the results are compared with available results obtained by finite
element and mathematical programming techniques. It is concluded that the Ritz type approach proposed is particularly
suited for the analysis of structural problems where the number, but not the length, of the contact regions between the
bodies are known a priori. Therefore, it can substitute in these cases finite element applications and be used as a benchmark
for more general and complex formulations as well.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Contact interactions between a deformable structure and an elastic foundation are usually modeled by
means of bilateral boundary conditions: displacements and/or forces prescribed in some (known) area of
the structure. Such models are satisfactory for some engineering applications, but they stop being reliable
when loss of contact occurs. Generally, in this case, it is necessary to establish unilateral boundary conditions
as part of the solution, since the true contact area is unknown a priori. Structural elements used in foundation
structures, pavements, flotation structures, beam-column joints, pipes on elastic foundation, piles partially
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embedded in soil, saddle-supported pipelines, composite laminate structures and protection shells in aggressive
environments are examples of structures found in civil and mechanical engineering where unilateral contact
may occur.

Even in the range of small deformations and under linear elastic behavior of the material, unilateral con-
straints introduce high nonlinearities, which cannot be dealt satisfactorily by usual nonlinear structural anal-
ysis methods. So, in order to study the equilibrium and stability of slender structural elements with unilateral
constraints two types of nonlinearities, geometric and contact, must be taken into account and a reliable and
efficient solution method is necessary.

In general, the first step to obtain the numerical solutions of contact problems consists in the discretization
of the continuous system. For this, some numerical technique, such as Ritz method, finite element method
(FEM) or boundary element method (BEM) is usually employed. After the discretization, attention is given
to the selection of a proper methodology to treat adequately the contact constraints. Among several options
found in the literature, one can mention:

(i) Transformation of the contact problem into a minimization problem without constraint through the
adaptation of usual formulations of structural mechanics—differentiable functional and bilateral con-
straints—to the case of unilateral contact constraints. The convergence of these procedures, which are
unavoidably of iterative nature, or incremental-iterative nature, is not guarantied. However, these pro-
cedures may or not introduce new concepts and existing computational codes for nonlinear analyses can
be adapted to this particular case, leading to economy in computational time if no change in the contact
region occurs between two load steps (Adan et al., 1994; Holmes et al., 1999; Silveira and Gonc�alves,
2001; Li and Berger, 2003).

(ii) Use of mathematical programming techniques. This approach allows the solution of the contact problem
with or without explicit elimination of unilateral constraints. Methods such as Lagrange’s multipliers or
penalties allow the elimination of the unilateral constraints (Simo et al., 1985; Barbosa, 1986; Wriggers
and Imhof, 1993; Wriggers, 2002; Wriggers and Zavarise, 2004; Fisher and Wriggers, 2005). Usually
these methods are based on the use of the special finite elements derived to simulate the impenetrability
condition between two surfaces (Wriggers and Imhof, 1993; Wriggers, 2002). On the other hand, the uni-
lateral constraints can be maintained in the formulation, retaining the original philosophy of the prob-
lem, and an alternative linear complementary problems (LCPs) can be obtained and solved by, for
example, Lemke’s or Dantig’s algorithms (Lemke, 1968; Ascione and Grimaldi, 1984; Joo and Kwak,
1986; Barbosa, 1986; Silveira, 1995; Koo and Kwak, 1996; Silva, 1998; Silva et al., 2001; Silveira and
Gonc�alves, 2001; Wriggers, 2002; Pereira, 2003; Holanda and Gonc�alves, 2003).

Numerical simulations dealing with the equilibrium and stability of structural elements under contact con-
straints, including here structure-foundation problems, can be easily found in the literature. For example,
finite element applications including contact constraints in the stability of rods, limit-point behaviour of thick
rubber spherical shells and large deformation post-buckling behavior of structures are presented, respectively,
by Stein and Wriggers (1984), Endo et al. (1984) and Simo et al. (1986). Algorithms specifically designed to
trace complex nonlinear equilibrium paths, such as arc-length procedures (Crisfield, 1991), have been used
by Wriggers et al. (1987), Stein et al. (1990), Björkman (1992), Koo and Kwak (1996) and Silveira and Gon-
alves (2001), among others, to solve stability problems of structures with unilateral contact constraints.
Tschöpe et al. (2003a,b) extended methods for the detection of critical points to problems with inequality con-
straints. Different formulations, algorithms and discretisation techniques for structural contact problems are
described in depth on Wriggers’ book (Wriggers, 2002). Recently Wriggers and Zavarise (2004) presented a
state of art of the solution of contact problems within a computational mechanics approach.

The two general approaches defined above for the treatment of the contact constraints have also been
applied to a wide range of structure-foundation problems. For example, Kadkhodayan (2006) studied the
influence of deformable dies on the springback of circular plates and Hsu (2006) analyzed the behavior
of non-uniform beams resting on a nonlinear media. Geotechnical applications, where the soil-structure
interaction is highlighted, can be found in the works of Mezaini (2006), Küc�ükarslan and Banerjee
(2005) and Maheshwari et al. (2004). Also recently, many papers were published concerning the nonlinear
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dynamic response of thin and moderately thick plates resting on a tensionless Winkler or Pasternak-type
foundation (Yu et al., 2007; Güler and Celep, 2005; Celep and Güler, 2004; Celep and Genc�oglu, 2003).
Numerical approximations involving the stability, buckling and post-buckling behavior of plates under uni-
lateral contact constraints imposed by elastic foundation appear in recent papers by Muradova and Stav-
roulakis (2006), Shen and Li (2004), Shen and Yu (2004), Shen and Teng (2004) and Holanda and
Gonc�alves (2003). Wang et al. (2005) provide an important review of the state of the art of beams and
plates on elastic foundation; they include soil modeling as well as analytical and numerical possibilities
for solving this class of contact problem.

This paper focuses on unilateral contact problems involving beams, columns and arches on a tensionless
elastic foundation of the Winkler-type; it adopts the first alternative described above for the treatment of
the contact constraints. Since 1990, the authors of this paper have analyzed several contact problems involving
a deformable structure with contact constraints (Silveira, 1995; Silva et al., 2001; Silveira and Gonc�alves, 2001;
Pereira, 2003; Holanda and Gonc�alves, 2003; Pereira and Silveira, 2006). These works attempted to establish
reliable methodologies for the analysis of structures with unilateral boundary conditions. Therefore, this arti-
cle can be considered as an extension of these previous ones, but adds a new contribution by providing an
alternative methodology for the analysis of structures resting unilaterally on an elastic foundation.

The aim of the present work is to develop a semi-analytical methodology, using a Ritz type approach,
for the elastic equilibrium and instability analysis of beams, columns and arches resting on a tensionless
Winkler-type elastic foundation. In the proposed Ritz approach the displacements and end points of the
contact regions are taken as basic unknowns. This approach is particularly suited for the analysis of struc-
tural problems where the number, but not the location or length of the contact areas, is known a priori,
leading to a fast convergence. When complicated loading cases are considered, one can perform initially
an analysis considering bilateral contact and identify the number of regions where the foundation is under
traction. This data can be considered as a starting point in the iterative procedure, leading usually to a
small number of iterations. The number of contact regions can also be determined, but this leads to a
more involved and numerically less stable algorithm. This leads to highly nonlinear equations. In order
to solve the resulting algebraic nonlinear equations and obtain nonlinear equilibrium paths, the New-
ton–Raphson method is used together with an arc-length iteration procedure (Crisfield, 1991). This incre-
mental-iterative strategy allows limit points to be passed and, consequently, snap buckling phenomena to
be identified. Unilateral contact problems analyses and comparisons with existing results validate the pro-
posed formulation.

Of course, the finite element method is the most appropriate tool to analyze complex nonlinear systems
with unilateral constraints. However, it is usually expensive with respect to both storage and CPU costs, par-
ticularly in the analysis of two and three dimensional contact problems. As a result, it is difficult to deal with
situations such as sensitivity analyses, optimization, feedback control problems and parametric analyses. Not
surprisingly, in recent years a lot of attention has been paid to reducing the coast of nonlinear solutions by
using reduced-order models (Rega and Troger, 2005). We believe the present methodology, although case spe-
cific and tested for uni-dimensional structural systems, is a semi-analytical reliable alternative for the construc-
tion of reduced-order approximations for several structure-foundation problems with unilateral constraints
which can be effectively used in practical applications.

2. Formulation of the unilateral contact problem

Consider the structural system shown in Fig. 1a consisting of a bar and an elastic tensionless foundation,
and assume that both bodies may undergo large deflections and rotations but small strains, within the elastic
range of the material. In addition, the contact surface is assumed unbonded and frictionless. The column is
defined as a solid elastic continuum which occupies a domain iV (i = 0, x and x + Dx). Its boundary iS is
composed of three regions: iSu, iSf and iSc, where the surface forces are specified on iSf and the displacements
are specified on iSu. The remaining part, iSc, corresponds to the region where contact is likely to occur, which
is not known a priori.

For the structural system, the equilibrium equations, the kinematic relations and the constitutive law are
given, respectively, by:



Fig. 1. Structural system under unilateral contact constraints imposed by an elastic foundation.
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DSij;j þ ðDuxþDx
i;j Sjk;iÞ;k ¼ 0 ð1aÞ

Deij ¼
1

2
ðDui;j þ Duj;i þ Duk;iDuk;jÞ ð1bÞ

DSij ¼ CijklDekl ð1cÞ
where the customary summation convention is used. In Eq. (1a), DSij are the components of the 2nd Piola–
Kirchhoff stress increment tensor, the unknowns of the problem, and x + DxSij are the Cartesian components
of this same tensor at state x + Dx, which are referred to the previous equilibrium configuration x. Dui, Deij

and Cijkl define the increment of displacement and strains and material properties, respectively.
As in many engineering applications, if the designer is interested only on the response of the foundation at

the contact area, it is possible to construct simple mathematical models for describing the response of the
foundation at the contact zone with a reasonable degree of accuracy. Using the well-known Winkler model
(Hetényi, 1946; Kerr, 1964), the following constitutive equation can be written to describe the elastic founda-
tion reaction:
Drb ¼ CbDub ð2Þ

where Drb and Dub are the incremental compressive reaction and deflection of the foundation, respectively, and
Cb is the foundation elastic modulus.

For the two bodies under investigation, the displacements and the surface forces are specified on iSu and iSf,
respectively, and the following conditions must be satisfied on Sc:

(i) The gap in the potential contact area, u, after the increment of the displacements, must satisfy the fol-
lowing inequality constraint at configuration x + Dx:
u P 0 ð3Þ

(ii) Under the assumption of a tensionless foundation model, contact pressure must be compressive, i.e.:
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rb P 0 ð4Þ

(iii) The complementary relation between u and rb is:
Z

xþDxSc

rbu
xþDxdSc ¼ 0 ð5Þ
These three constraints define in a complete way the contact as being unilateral. Fig. 2 shows the domain of
validity of these relations and the contact law.

For a given load increment, the solution of the unilateral contact problem can be obtained by solving Eq.
(1a), together with Eqs. 1b, 1c and 2, and by satisfying the appropriate boundary conditions on Su and Sf, as
well as the restrictions (3)–(5) on Sc. However, the nonlinearity due to the unilateral constraints and the non-
linear strain–displacement relations make it difficult to solve this problem directly. For this reason, an equiv-
alent minimization problem is formulated, which is particularly suitable for numerical analysis. According to
Joo and Kwak (1986) and Silveira and Gonc�alves (2001), the optimization’s problem:
Min PðDu;DubÞ ð6Þ
Subject to : �u 6 0; on Sc ð7Þ
where,
P ¼
Z

xV

xSij þ
1

2
DSij

� �
Deij

x dV þ
Z

xþDxSc

xrb þ
1

2
Drb

� �
DuxþDx

b dSc �
Z

xþDxSf

F iDuxþDx
i dSf ð8Þ
is equivalent to the unilateral contact problem described above by Eqs. (1) to (5).

3. Discretization procedure and modal solution

The solution of the minimization problem defined by Eqs. (6) and (7), using mathematical programming
techniques, was presented by Silveira (1995), Silveira and Gonc�alves (2001) and Holanda and Gonc�alves
(2003). Now, a different strategy of solution is proposed assuming that contact constraints (3)–(5) on Sc,
and the elastic foundation displacements, can be introduced in the analysis by considering explicitly the coor-
dinates defining the limits of the contact regions (sk) as additional variables of the problem (see Fig. 1b).
Hence, for a structural member in contact with a tensionless elastic foundation and subjected to conservative
loads, the total potential energy functional can be rewritten as:
P1ðu;Sc; kÞ ¼ Uðu;ScÞ � kFT
r u ð9Þ
where U is the strain energy which is a function of the displacement vector u and of the vector Sc, which con-
tains the coordinates defining the limits of the contact regions (sk). These coordinates are considered here as
additional variables of the problem. Note that the length of each contact region is a function of the system
parameters and is not known a priori. This characterizes the unilateral contact problem as nonlinear. Fr is
a fixed load vector (reference vector) and k is a scalar load multiplier.

If the Ritz method is applied, the following displacement field, written in matrix form, can be used to
approximate P1:
Fig. 2. Domain of validity of the contact constraints.
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u ¼ WA ð10Þ
where the matrix W contains the functions that satisfy the boundary conditions on Su and the components of
vector A are the unknown coefficients. Thus, substituting (10) into (9), considering a small variation in the
total potential energy, and expanding Eq. (9) in a Taylor series, one obtains:
dP1 ¼
oP1

oA
dAþ oP1

oSc
dScþ 1

2
dAT o2P1

oA2
dAþ 2dAT o2P1

oAoSc
dScþ dScT o2P1

oSc2
dSc

� �
þ 0ðdA3; dSc3Þ ð11aÞ
or, using a more compact matrix notation:
dP1 ¼ gTdUþ 1

2
ðdUTMdUÞ þ 0ðdU3Þ ð11bÞ
in which the vector U contains the unknown variables of the problem (A and Sc), g is the gradient vector (out-
of-balance load vector), and M is the Hessian matrix, which can be written as follow:
M ¼
K J

JT S

� �
¼

o2P1

oA2
o2P1

oAoSc

o2P1

oScoA

o2P1

oSc2

2
4

3
5 ð12Þ
where K, S and J are the stiffness, contact and joining matrices, respectively.
For equilibrium, the change in Eq. (11b) should be stationary irrespective of dU and hence, the equilibrium

equations are:
oP1

oU
¼ g ¼

oP1

oA

oP1

oSc

( )
¼

0

0

� �
ð13Þ
which represent a nonlinear algebraic equations system, involving polynomial or transcendental functions of
sk.

3.1. Nonlinear solution strategy

The incremental-iterative solution strategy for geometrically nonlinear elastic contact problems adopted in
this work will be summarized in this section. In the Ritz method context, the equilibrium Eq. (13) can be
rewritten as follow:
g ¼ Fi ðUÞ � kFr ffi 0 ð14Þ
where Fi defines a set of generalized internal forces in terms of the components U = U(A,Sc).
Fig. 3 shows the incremental-iterative solution strategy used to solve Eq. (13) or Eq. (14). Here a constant

cylindrical arc-length constraint is adopted (Crisfield, 1991). In this solution scheme two distinct steps are
required for each load increment: (1) a predictor phase, where approximations for Dk0, DA0 and Sc0 are
obtained; (2) a corrector phase, where these approximations are corrected to satisfy the equilibrium equations.
The arc-length constraint equation is only applied on the unknown amplitudes A.

4. Examples

The general semi-analytical approach proposed is now particularized for two structural systems under uni-
lateral contact constraints.

4.1. Example 1: beam-column

Consider a beam-column of length L and bending stiffness EI, resting on a tensionless Winkler foundation
of stiffness K subjected to two concentrated moments at the supports plus an axial load, as illustrated in
Fig. 1a. For this structural system, the total potential energy is given by (Shames and Dym, 1995):



Fig. 3. Nonlinear solution procedure based on the second order Newton–Raphson method and arc-length strategies.
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P2 ¼
EI

2

Z L

0

1þ 1

2

dw
dx

� �2
" #2

d2w
dx2

� �2

dx� P
2

Z L

0

1þ 1

4

dw
dx

� �2
" #

dw
dx

� �2

dx

þ K
2

Z s1

0

w2dx�M
dw
dx

����
ðx¼0Þ
�M

dw
dx

����
ðx¼LÞ

ð15Þ
where s1 represents the length of the contact region. For this system, the expected behavior of the member is
shown in Fig. 1b, where one contact region of length s1 is expected.

For a simply supported bar, the following linear combination of harmonic functions can be used to approx-
imate the displacement field
w ¼
Xn

i¼1

W i sin
ipx
L

� �
ð16Þ
where i is the number of half-waves, n is the total number of modes necessary to achieve convergence and Wi

are the modal amplitudes. After substitution of (16) and its derivatives in Eq. (15), an approximated form for
P2 is obtained. Hence:
P2ðW i; s1; kÞ ¼ UðW i; s1Þ � V ðW i;M ; kP Þ ð17Þ
where U is the strain energy, which is a function of the modal amplitudes Wi and of the coordinate defining the
limit of the contact region s1 and V is the potential of the external load. The analytic expression for this
approximation is shown in the Appendix A.

The nonlinear algebraic equations for this particular problem are, according to Eq. (13):
oP2

oU
¼ g ¼

oP2

oW i
; i ¼ 1; . . . ; n

oP2

os1

8<
:

9=
; ¼ 0

0

� �
ð18Þ
4.2. Example 2: shallow arch

Now, consider the arch shown in Fig. 4a. It is a circular pinned arch of radius R, length 2cR, bending stiff-
ness EI and membrane stiffness EA in contact with a tensionless Winkler foundation of modulus K. For this
system, the expected deformation pattern is shown in Fig. 4b, where a central contact region defined by the
angles ±/ is expected. The total potential energy of the arch may be written as (Brush and Almroth, 1975):



φ

contact  region

γ γ
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(a) Structural problem (b) Deformation pattern

Fig. 4. Arch under unilateral contact constraints imposed by an elastic foundation.
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P3 ¼
EI

2R3

Z c

�c

du
dh
� d2w

dh2

� �2

dhþ EA

2R

Z c

�c

du
dh
þ wþ 1

2R
u� dw

dh

� �2
" #2

dhþ KR
2

Z /

�/
w2dh� Pwðh ¼ 0Þ

ð19Þ

where u and w are the tangential and transversal displacements, respectively, of a point along the centroidal-
axis, and h is the circumferential co-ordinate. These displacements for a simply supported arch may be approx-
imated by:
u ¼
Xm

iu

U iu sin
ð2iu � 1Þph

2c

� �
ð20aÞ

w ¼
Xn

iw

W iw cos
ð2iw � 1Þph

2c

� �
ð20bÞ
where iu and iw are the number of half-waves, and Uiu and W iw are the modal amplitudes.
The substitution of u and w and their derivatives in Eq. (19) leads to P3 as a function of the modal ampli-

tudes U iu and W iw , contact angle /, and load parameter k, i.e.:
P3ðU iu ;W iw ;/; kÞ ¼ UðU iu ;W iw ;/Þ � V ðW iw ; kPÞ ð21Þ

where the contact angle limit / is the additional variables of the problem. The analytic expression for P3 is
shown in the Appendix B.

The equilibrium equations of the arch are then:
oP3

oU
¼ g ¼

oP3

oUiu
; iu ¼ 1; . . . ;m

oP3

oW iw
; iw ¼ 1; . . . ; n

oP3

o/

8>>><
>>>:

9>>>=
>>>;
¼

0

0

0

8><
>:

9>=
>; ð22Þ
5. Results and discussion

This section aims to validate the proposed semi-analytical methodology for the analysis of structural ele-
ments under unilateral constraints as well as the adopted nonlinear solution strategy. The results of this work
are compared with available results obtained by finite element and mathematical programming techniques.
The finite element methodology for the small displacement analysis where the contact problem is solved as
a linear complementary problem, LCP, involving only the original variables subjected to inequality con-
straints, which is solved by Lemke’s algorithm (Lemke, 1968), can be found in Silva et al. (2001), Pereira
(2003) and Pereira and Silveira (2006). For the geometrically nonlinear analysis of slender structural elements
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under unilateral contact the relevant information is found in Silveira (1995), Silveira and Gonc�alves (2001)
and Holanda and Gonc�alves (2003).

First the behavior of a beam subjected to three different loading cases is analyzed. They are illustrated in
Fig. 5 together with the relevant parameters (given in consistent units) and the expected deformation pattern.
Although small displacements and linear behavior of the material are considered, the unilateral contact must
be solved by an iterative process since the contact lengths are unknown a priori. So, the proposed algorithm
(see Fig. 3) is employed considering only one load step. In all the numerical analysis a convergence factor of
n = 10�3 is adopted. Consider first the beam illustrated in Fig. 5a. Ten terms are considered in Eq. (16). This is
enough to achieve convergence in all examples presented here. Initially, an elastic foundation that reacts in
compression and tension (bilateral contact problem) is considered. The results are presented in Fig. 6a where
the anti-symmetrical behavior of the beam can be observed for different values of the foundation modulus
k = KL4/EI. Good agreement with the analytical and numerical results given by Hetényi (1946) and Pereira
(2003) is observed. Now, a tensionless foundation is considered. The results for the beam deflection and elastic
foundation reaction are presented for the same values of the foundation modulus k in Fig. 6b and c, respec-
tively. The contact region (and the corresponding displacements) decreases steadily as the parameter k

increases, while the beam displacements in the non-contact region increase. This is followed by a drastic
increase in the foundation reaction in the contact region. The dependence of the contact area on the founda-
tion stiffness is one of the main characteristics of tensionless foundation as compared with the conventional
foundation. Again a good agreement is observed between the modal solution and the FE results.

The second contact problem is shown in Fig. 5c. The results are shown in Fig. 7a (bilateral contact con-
straints), and Fig. 7b and c (unilateral contact constraints). Again, the variation of the beam displacements
and elastic foundation reaction for different values of the non-dimensional elastic foundation stiffness param-
eter k is presented. The good agreement with results obtained through finite element/LCP approach (Pereira,
2003) and analytical formulation (Hetényi, 1946) demonstrates the accuracy and efficiency of the proposed
methodology. The influence of the foundation stiffness parameter k as well as of the type of contact constraints
imposed is clearly noted for large values of k. There is for relatively stiff foundations a marked difference
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Fig. 5. Three examples of beams resting on a tensionless elastic foundation.
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Fig. 6. Contact problem 1 (Fig. 5a): beam resting on an elastic foundation. (a) Bilateral contact: beam displacements for increasing values
of the foundation stiffness, k. (b) Unilateral contact: beam displacements for increasing values of the foundation stiffness, k. (c) Unilateral
contact: foundation reaction.
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Fig. 7. Contact problem 2 (Fig. 5b): beam resting on an elastic foundation. (a) Bilateral contact: beam displacements for increasing values
of the foundation stiffness, k. (b) Unilateral contact: beam displacements for increasing values of the foundation stiffness, k. (c) Unilateral
contact: foundation reaction.
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Fig. 8. Contact problem 3 (Fig. 5c): beam resting on an elastic foundation. (a) Bilateral contact: beam displacements for increasing values
of the foundation stiffness, k. (b) Unilateral contact: beam displacements for increasing values of the foundation stiffness, k. (c) Unilateral
contact: foundation reaction.
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between the displacements of the tensionless and the conventional foundation models. Under unilateral con-
straints the beam displacement w increases on the non-contact region and decreases on the contact region.
Consequently, considerable error may result if the unilateral character of the foundation is not taken into
account in the analysis. As shown in Fig. 7, as k increases, we approach the limiting case of k ?1, the ten-
sionless rigid foundation case. As in many numerical applications, the rigid foundation can be simulated by
considering a very large value for k. Fig. 5e shows the third example. Fig. 8 shows the relevant results for dif-
ferent values of the k. Again a good agreement between the present results with those previously obtained
using the FE/LCP approach (Pereira, 2003) is observed.

Now, consider the arch shown in Fig. 4a. It is a slender circular arch of radius R, length 2cR, bending
stiffness EI and membrane stiffness EA in contact with a tensionless foundation of modulus K. For a con-
centrated load P applied at h = 0, the expected deformation pattern is shown in Fig. 4b, where a central
contact region, defined by the angles ±/, is expected. For the arch, five terms (m = 5) in Eq. (20a) and 10
terms (n = 10) in Eq. (20b) are considered to obtain convergence in all cases. The arch lateral displace-
0 1 2 3 4 5 6 7 8 9 10

θ

-0.01

-0.0075

-0.005

-0.0025

0

0.0025

0.005

0.0075

0.01

w R

Present work

FE/LCP solution

oφ = 3.73 

Bilateral contact

Bilateral contact

Unilateral contact

Unilateral contact

γ γ

θ

P

R R

K

EI, EAh

k = 106

(a) Arch displacement

0 1 2 3 4 5 6 7 8 9 10
θ

-0.0001

-7.5E-5

-5E-5

-2.5E-5

0

2.5E-5

5E-5

7.5E-5

0.0001

R
bh

3

E
I

Present work

FE/LCP solution

oφ = 3.73

k = 106

φ

contact region

φ

(b) Elastic foundation reaction

Fig. 9. Arch in contact with an elastic foundation.
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ment w and elastic foundation reaction rb are shown in Fig. 9a and b, respectively, considering the fol-
lowing data (Walker, 1969): R/h = 500 (h = thickness), c = 10�, EI = 1.4, EA = 420, a non-dimensional
elastic foundation stiffness parameter k = KR4/EI = 106, and P = 0.1. Due to the problem symmetry,
results are shown for half arch. The conventional foundation model (bilateral contact) was also considered
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Fig. 10. Nonlinear response of a beam-column resting on an elastic foundation.
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in Fig. 9a. One can observe that, under unilateral contact constraints, the arch displacement w increases in
the non-contact region. The contact angle between the bodies 2/ = 7.46� coincide with that obtained using
the FE/LCP approach (Silveira, 1995).

The first stability problem under contact constraints is illustred in Fig. 10a. It is a beam-column under an
increasing compressive axial load P and constant bending moments at the supports (see also Fig. 1). The bend-
ing moments M at the supports have a constant small value and act as initial load imperfections, generating in
the unilateral contact case a non-contact region. Thus, this analysis aims to verify the nonlinear response and
changes on the contact and non-contact regions with the monotonic increment of the load P.
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Fig. 11. Nonlinear response and stability of a shallow arch under unilateral contact constraints.
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The results are obtained through the proposed nonlinear solution strategy and by considering the following
data: L = 5; EI = 103; EA = 12 106 and M = 1. Fig. 10a, where the non-dimensional load parameter P/Pe is
plotted as a function of the non-dimensional displacement w/L, shows the nonlinear response of the column
considering both bilateral and unilateral contact.

For the bilateral contact case (conventional Winkler model), the load-displacement response is asymptotic
to the value of the theoretical critical load of the perfect column given by (Brush and Almroth, 1975):
P cr ¼
np
L

	 
2

EIþ L
np

� �2

K ð23Þ
For this geometry and a non-dimensional elastic foundation stiffness parameter k = KL4/EI = 625, the col-
umn buckles with two half-waves (n = 2) and the following relationship is found Pcr/Pe ffi 5.6, with
Pe = p2EI/L2.

For the unilateral contact case, the equilibrium path is asymptotic to the first bifurcation load of the perfect
column (Pcr/Pe ffi 1). This response can be better understood observing the column deformation patterns also
presented in Fig. 10a. Note the reduction of the contact region Sc with increasing P. After the separation of the
bodies the bar deformation is similar to the first buckling mode (n = 1). This example highlights again the fact
that considerable error may result if the appropriate foundation model is not taken into account in the anal-
ysis (Silva et al., 2001).

The influence of the foundation stiffness is illustrated in Fig. 10b, where again the non-dimensional
load parameter P/Pe is plotted as a function of w/L (x/L = 0.85). The non-dimensional foundation stiff-
ness parameter k assumes the values 6.25, 625 and 6250. Independent of the foundation stiffness, the
equilibrium path is asymptotic to the first bifurcation load and reproduces the results obtained by Silveira
(1995).

As a last example, consider the same slender circular arch analysed previously (Fig. 4a). Now, an incre-
mental load P is applied at h = 0 and the nonlinear response is obtained, with the central contact region
defined by the angles ±/. The results are shown in Fig. 11a and b. In Fig. 11a, the variation of the lateral
displacement w is plotted as a function of the load parameter PR2/EI, for different values of the non-
dimensional elastic foundation stiffness parameter k = KR4/EI. The nonlinear equilibrium path of the sys-
tem without foundation (k = 0) was originally presented by Walker (1969), with the arch exhibiting a
snap-through behavior and a limit load PR2/EI = 76.3. For a flexibly foundation (k < 104), no additional
effects were observed in the pre and post-buckling behavior. With k = 104, a small increase is observed in
the limit load (PR2/EI = 83.4). For k P 5 � 104, the snap-through behavior disappears, and for k = 106

and 107 the equilibrium paths are practically linear (very stiff foundation). Again, the results of Silveira
(1995) agree well with those obtained in this work. Fig. 11b shows the variation of contact regions Sc

(2R/) with the applied load.
6. Conclusions

A semi-analytical approach, based on the Ritz method, is proposed in this work for the linear and non-
linear analysis of structural elements in contact with a tensionless elastic foundation. In the Ritz approach,
the modal amplitudes of the displacements as well as the co-ordinates of the lift-off points of the non-con-
tact regions are taken as problem variables. This leads to an eminently nonlinear system of algebraic equa-
tions, even when the structure and foundation models are linear, which are solved by an incremental-
iterative arch-length solution strategy. In order to study the applicability, efficiency and accuracy of the
proposed methodoly, several examples involving beams, columns and shallow arches under unilateral con-
tact constraints are analyzed and compared favorably with available results. The examples show that the
dependence of the contact area on the foundation stiffness is one of the main characteristics of a tension-
less foundation as compared with the conventional foundation. Confirming previous results obtained by
the authors using a finite element formulation and mathematical programming techniques (Silva et al.,
2001; Silveira and Gonc�alves, 2001; Holanda and Gonc�alves, 2003), the results show that in many contact
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problems considerable error may result if the elastic foundation is not adequately modelled and its unilat-
eral constraint character is not taken into account.

This methodology is particularly suited for the analysis of structural problems where the number and loca-
tion, but not the length, of the contact and non-contact regions are known a priori. In these cases, it can sub-
stitute large and time-consuming finite element packages usually used in this type of analysis. This simplified
but accurate semi-analytical approach can be efficiently used to perform detailed parametric analyses and thus
contribute to a better understanding of the effects of unilateral constraints in structural analysis. It can also be
used as a benchmark for more general and complex formulations.
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Appendix A

Expression for P2 in terms of the coefficients obtained through the exact integration of the harmonic
functions:
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Appendix B

Expression for P3 in terms of the coefficients obtained through the exact integration of the harmonics
functions:
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ð2iuþ2juþ2iw�3Þph
2c

� ��
dh

a3m
iujuku
¼ EAp

16R2c
ð2ku�1Þ

Z c

�c
cos
ð2iu�2juþ2ku�1Þph

2c

� ��
� cos

ð2iuþ2ju�2ku�1Þph
2c

� �

þ cos
ð2iu�2ju�2kuþ1Þph

2c

� �
� cos

ð2iuþ2juþ2ku�3Þph
2c

� ��
dh
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a3m
iwjwkw

¼ EAp2

32R2c2
ð2jw�1Þð2kw�1Þ

Z c

�c
cos

ð2iw�2jwþ2kw�1Þph
2c

� ��
þ cos

ð2iwþ2jw�2kw�1Þph
2c

� �

� cos
ð2iw�2jw�2kwþ1Þph

2c

� �
� cos

ð2iwþ2jwþ2kw�3Þph
2c

� ��
dh

a3m2
iuiwjw
¼�EAp

8R2c
ð2jw�1Þ

Z c

�c
cos
ð2iuþ2iw�2jw�1Þph

2c

� ��
� cos

ð2iu�2iwþ2jw�1Þph
2c

� �

þ cos
ð2iu�2iw�2jwþ1Þph

2c

� �
� cos

ð2iuþ2iwþ2jw�3Þph
2c

� ��
dh

a3m2
iujuiw
¼EA

8R2

Z c

�c
cos
ð2iu�2ju�2iwþ1Þph

2c

� ��
þ cos

ð2iu�2juþ2iw�1Þph
2c

� �

� cos
ð2iuþ2ju�2iw�1Þph

2c

� �
� cos

ð2iuþ2juþ2iw�3Þph
2c

� ��
dh

a4m
iujukulu

¼ EA

64R3

Z c

�c
cos
ðiu� ju� kuþ luÞph

c

� ��
þ cos

ðiu� juþ ku� luÞph
c

� �

� cos
ðiu� ju� ku� luþ1Þph

c

� �
� cos

ðiu� juþ kuþ lu�1Þph
c

� �

� cos
ðiuþ ju� kuþ lu�1Þph

c

� �
� cos

ðiuþ juþ ku� lu�1Þph
c

� �

þcos
ðiuþ ju� ku� luÞph

c

� �
þ cos

ðiuþ juþ kuþ lu�2Þph
c

� ��
dh

a4m
iuiwjwkw

¼� EAp3

128R3c3
ð2iw�1Þð2jw�1Þð2kw�1Þ

Z c

�c
cos
ðiu� iw� jwþ kwÞph

c

� ��

þ cos
ðiu� iwþ jw� kwÞph

c

� �
� cos

ðiu� iw� jw� kwþ1Þph
c

� �
� cos

ðiu� iwþ jwþ kw�1Þph
c

� �

� cos
ðiuþ iw� jwþ kw�1Þph

c

� �
� cos

ðiuþ iwþ jw� kw�1Þph
c

� �

þcos
ðiuþ iw� jw� kwÞph

c

� �
þ cos

ðiuþ iwþ jwþ kw�2Þph
c

� ��
dh

a4m
iujuiwjw

¼ 3EAp2

128R3c2
ð2iw�1Þð2jw�1Þ

Z c

�c
cos
ðiu� ju� iwþ jwÞph

c

� ��
þ cos

ðiu� juþ iw� jwÞph
c

� �

� cos
ðiu� ju� iw� jwþ1Þph

c

� �
� cos

ðiu� juþ iwþ jw�1Þph
c

� �

� cos
ðiuþ ju� iwþ jw�1Þph

c

� �
� cos

ðiuþ juþ iw� jw�1Þph
c

� �

þcos
ðiuþ ju� iw� jwÞph

c

� �
þ cos

ðiuþ juþ iwþ jw�2Þph
c

� ��
dh

a4m
iujukuiw

¼� EAp

32R3c
ð2iw�1Þ

Z c

�c
cos

ðiu� ju� kuþ iwÞph
c

� ��
þ cos

ðiu� juþ ku� iwÞph
c

� �

� cos
ðiu� ju� ku� iwþ1Þph

c

� �
� cos

ðiu� juþ kuþ iw�1Þph
c

� �

� cos
ðiuþ ju� kuþ iw�1Þph

c

� �
� cos

ðiuþ juþ ku� iw�1Þph
c

� �

þcos
ðiuþ ju� ku� iwÞph

c

� �
þ cos

ðiuþ juþ kuþ iw�2Þph
c

� ��
dh
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a4m
iwjwkwlw

¼ EAp4

1024R3c4
ð2iw�1Þð2jw�1Þð2kw�1Þð2lw�1Þ

Z c

�c
cos
ðiw� jw� kwþ lwÞph

c

� ��
þ cos

ðiw� jwþ kw� lwÞph
c

� �

� cos
ðiw� jw� kw� lwþ1Þph

c

� �
� cos

ðiw� jwþ kwþ lw�1Þph
c

� �

� cos
ðiwþ jw� kwþ lw�1Þph

c

� �
� cos

ðiwþ jwþ kw� lw�1Þph
c

� �

þcos
ðiwþ jw� kw� lwÞph

c

� �
þ cos

ðiwþ jwþ kwþ lw�2Þph
c

� ��
dh

a2f
iwjw
¼KR

4

Z /

�/
cos ðiw� jwÞ

ph
c

� �
þ cos ðiwþ jw�1Þph

c

� �� �
dh; aP

iw
ðh¼ 0Þ¼ 1
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