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Abstract

In this paper, a generic BE/BE coupling algorithm based on iterative solvers is applied to solve 3D time-dependent acoustic problems. As

regards the treatment of the time-dependence, a direct time-marching scheme is considered. Several types of boundary elements and cells are

available in the code for the spatial description of the involved variables. Concerning the BE/BE coupling technique, its chief idea is to

completely avoid storing and manipulating the zero blocks appearing in the coupled system by the use of iterative solvers. The global system

matrix is not explicitly assembled; instead the algebraic subsystems (associated with the substructures of the model) are manipulated as they

were independent of each other. An insight into the coupling strategy and the used iterative solver (Jacobi-preconditioned bi-conjugate

gradient method) is given. Analyses of sound barriers are carried out for verifying the performance of the respective computational code

modules.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Sound waves take place when pressure disturbances

propagate through a compressible fluid. Their investi-

gation is necessary in a great many technical problems

as, e.g. in the noise reduction near highways and in

airports, prediction of sound fields in auditoria, noise

control in industrial installations, design of vehicles, and

several other situations associated with the comfort of

human beings [1].

Important works concerning transient analyses in 2D

acoustics by boundary element models were presented by

Mansur and Brebbia [2,3] and Mansur [4]. After these

first works, Dohner et al. [5], Meise [6], Antes [7], and

Araújo et al. [8] published more advanced works related

to 3D BE acoustic analyses in the time-domain. More

recently, Antes and Baaran [9] applied the direct BEM to

analyze 3D noise radiation caused by independently

moving surfaces. In this case, a time-domain BE

formulation is indeed necessary. To describe the

convective effects associated with the moving boundaries,

they used the approach proposed by Gennaretti and

Morino [10].

In this paper, the coupling strategy previously

presented by Araújo et al. [11], which proved to be

efficient for non-homogeneous frequency-dependent pro-

blems, is applied to solve general 3D transient

acoustic problems. As a boundary element formulation

is involved, the procedure is quite suitable for

analyzing exterior domain problems (infinite domains).

On the other hand, the substructuring option (BE/BE

coupling) is necessary for modeling thin elements, as,

e.g. sound barriers, by means of direct standard BEM

formulations.

To treat two-dimensional time-harmonic acoustic

problems defined in unbounded different media, Cremers

et al. [12] developed a special multi-domain BEM, in

which infinite boundary elements are used to model

boundaries and interfaces of infinite extent. Though not
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necessary [13], this approach describes open domains

more correctly. Other characteristic of the formulation

presented by Cremers et al. [12] is that as a consequence

of the chain assembly of the subdomains, i.e. subdomain j

is coupled only with subdomains j 2 1 and j þ 1; the

global non-symmetric matrix is banded. It is unfortunately

not always possible to work with chain subdomain

models, and, as a matter of fact, for modeling more

general regions with use of substructures, more compli-

cated sparse matrices are obtained as well. Optimized

algorithms as, for instance, skyline and frontal ones are

then necessary for solving efficiently the coupled system

[14]. In this paper, the general and ideally optimized BE/

BE algorithm proposed in Ref. [11] is applied to solve

time-domain acoustic problems.

As in the case of the design of sound barriers both

thin elements and open domains are present, the

algorithm proposed in this paper may be a very

promising one. There are nowadays boundary element

formulations based on the hypersingular integral

equation, the so-called dual boundary element method,

that has been successfully applied to simulate non-

thickness bodies, as for instance sound barriers [15–18].

As a Cauchy principal value and a Hadamard finite part

are present in the traction integral equation, special

algorithms for their efficient evaluation [19,20] must be

taken into account. An advantage of dual boundary

element formulations is that no additional interfaces for

modeling non-thickness barriers are necessary; this

improves the precision of the results.

As regards the modeling of open domain with flat

ground, efficient boundary element formulations based on

the use of half-space Green’s functions [16,21,22] may also

be derived; in this way one avoids discretizing the ground.

In Ref. [23], Green’s functions that simulate the presence of

tall buildings in the vicinity of sound barriers are also

presented.

However, even in the cases above, in which dual BE

formulations or Green’s functions for flat half-spaces are

used, BE/BE coupling strategies may be inevitable; for

instance, when non-homogeneous regions or large models

have to be analyzed. In the latter case, substructuring

techniques may be very useful for carrying out parallelized

analyses.

In effect, substructuring strategies constitute a very

important and general technique in computer mechanics,

not exclusively restricted to BE formulations, but that

considerably extend their range of applications. In

previous works [14,24,25], either non-condensed or

condensed strategies based on the use of direct solvers

are reported.

To analyze real engineering problems, usually large,

efficient procedures that reduce the storage area to a

minimum and also be fast, must be idealized. In effect,

these two topics are addressed in this paper, then

iterative solvers make it possible to reduce the storage

area to a minimum, as the null coefficients of the sparse

coupled system are not stored, and moreover may be

much faster than the direct ones for large systems.

Indeed, in the 90s, the iterative methods gained more and

more acceptance in real-life industrial applications.

Important recent books covering the use of iterative

solvers in engineering were published by Axelsson [26],

Hack-busch [27], and Saad [28]. In the particular case of

BE systems of equations, successful applications of

iterative methods have already been done by Mansur

et al. [29], Barra et al. [30], Prasad et al. [31], Hribersek

and Skerget [32], Leung and Walker [33], Skerget et al.

[34], and Valente and Pina [35]. In these works, Krylov

subspace methods that apply to general unsymmetric

systems of equations are considered; mainly precondi-

tioned versions of the BiCG, the GMRES, and hybrid

BiCG methods, obtained by combining BiCG methods

with other Krylov iterative methods [36], were incorpor-

ated into BE algorithms. In this paper, the Jacobi-

preconditioned BiCG is the only solver used in the BE/

BE coupling strategy.

As for linear transient analyses the system matrix

remains unchanged during the whole analysis time, one

may think that a LU-based direct solver should be the

most attractive alternative. In fact, the matrix decompo-

sition for a really large problem is a very hard

computational task, so that iterative methods, even for

linear transient problems, may be an interesting option.

In this paper, one adopts as initial guess for calculating

the current system solution that one of the last time

step.

The analysis of sound barriers is considered for verifying

the performance of the respective computer code modules.

Important parameters for estimating the efficiency of the

algorithms, as required CPU times, number of iterations,

memory used, and response accuracy are discussed in the

results of the paper.

2. Time-dependent boundary integral formulation

Small-amplitude sound waves are described by means

of the linearized wave equation

u;ii 2
1

c2

� �
u;tt ¼ 2gðx; tÞ; ð1Þ

where uðx; tÞ can be either the velocity potential or the

acoustic pressure, and gðx; tÞ is a general volume source

of acoustic energy [1,8]. Eq. (1) is to be solved under

certain boundary conditions (prescribed acoustic pressure,

velocity or acoustic impedance), and also under known

initial values.

By using a general weighted residual statement [4] or by

using Laplace transforms [8], Eq. (1), defined in a region V

with boundary G; can be converted into the following
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general boundary integral equation

cðjÞuðj; tÞ þ
ð
G

ðt

0
ppðx; t; j; tÞuðx; tÞdtdGðxÞ

¼
ð
G

ðt

0
upðx; t; j; tÞpðx; tÞdtdGðxÞ

þ
ð
V

ðt

0
upðx; t; j; tÞgðx; tÞdtdVðxÞ

þ c22
ð
V

{v0ðxÞu
pðx; t; j; 0Þ

þ u0ðxÞ_u
pðx; t; j; 0Þ}dVðxÞ; ð2Þ

where up and pp are, respectively, the fundamental solution

and flux, given by

upðx; t; j; 0Þ ¼
1

4pr
d t 2

r

c

� �
; ð3Þ

ppðx; t; j; 0Þ ¼ 2
1

4pr2
d t 2

r

c

� �
þ

r

c
_d t 2

r

c

� �� �
›r

›n
; ð4Þ

and the integral free term cðjÞ is calculated by

cðjÞ ¼ 1 þ lim
1!0

ð
�G1

stppðx; jÞdGðxÞ; ð5Þ

stppðx; jÞ representing the fundamental flux in G for time-

independent potential problems. In Eq. (5), �G1 is a spherical

surface centered at j; introduced for evaluating the improper

integrals [8], and cðjÞ corresponds exactly to the relation-

ship

cðjÞ ¼
Fi

4p
; ð6Þ

where Fi is the inner solid angle at j (Fig. 1).

Moreover, it should be noticed that the singular boundary

integral in Eq. (2) associated with ppðx; t; j; tÞ exists only in

the sense of the Cauchy principal value. In Araújo et al. [8],

a detailed derivation of the above boundary integral

equation is provided.

In this paper, the description of the acoustic problem

based on the excess acoustic pressure will be considered.

One advantage of such a formulation is that the variables

involved have physical meaning (pressures and particle

velocities). Thus, as in the boundary integral formulation the

function pðx; tÞ corresponds to normal derivatives of the

acoustic pressure, this function does not directly represent

the particle velocities. An additional transformation is

needed to associate the normal derivative at x; pðx; tÞ; with

the respective particle velocity. Namely, the following

relationship, derived from the Euler’s equation [1], must be

considered

pðx; tÞ ¼ 2r0

›vnðx; tÞ

›t
; ð7Þ

where r0 is the equilibrium density of the fluid, and vn

denotes the velocity component of its particles normal to the

boundary G at ðx; tÞ:

3. The time-dependent algebraic system

To derive the system of algebraic equations, the

collocation method is used with respect to the space and

time domains. Boundary elements are employed to

approximate the boundary geometry and values, and

integration cells, for evaluating the contributions of time-

dependent volume sources and initial conditions. The

approximation of the field variables along the time is

carried out with usual time interpolation functions (Fig. 2).

Thus, Eq. (2) can be transformed into a time-dependent

system of algebraic equations, whose solution supplies the

boundary unknowns u and p at the current time. Different

types of boundary elements and integration cells are

available in the computer code; namely, quadrangular and

triangular, linear and quadratic boundary elements, and

parallelepipedic linear and quadratic cells have already been

implemented. Concerning the discretization of time-

domain, a formulation that takes into account interpolation

functions of a generic order (constant, linear, quadratic, etc.)

Fig. 1. Inner solid angle Fi: Fig. 2. Time interpolation functions.
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is provided below; yet the case of constant and linear time

interpolation functions will be particularly emphasized.

To obtain the time-discretized version of Eq. (2), the

initial conditions will be temporarily neglected, then they

are actually not important for deriving the time-marching

scheme. Thus, by generically approximating uðx; tÞ; pðx; tÞ

and gðx; tÞ within the mth time step by

uðmÞðx; tÞ ¼
Xna
a¼1

LðmÞ
a ðtÞuaðmÞðxÞ; ð8Þ

pðmÞðx; tÞ ¼
Xnb
b¼1

MðmÞ
b ðtÞpbðmÞðxÞ; ð9Þ

gðmÞðx; tÞ ¼
Xnz
z¼1

NðmÞ
z ðtÞgzðmÞðxÞ; ð10Þ

the following equation is found

cðjÞuðj; tnÞ þ
X�n
m¼1

Xna
a¼1

ð
G

ðaÞPnmðx; jÞuaðmÞðxÞdGðxÞ

¼
X�n
m¼1

Xnb
b¼1

ð
G

ðbÞUnmðx; jÞpbðmÞðxÞdGðxÞ

þ
X�n
m¼1

Xnz
z¼1

ð
V

ðzÞ �Unmðx; jÞgzðmÞðxÞdVðxÞ ð11Þ

with

ðaÞPnmðx; jÞ ¼
ðtm

tm21

ppðx; tn; j; tÞL
ðmÞ
a ðtÞdt; ð12Þ

ðbÞUnmðx; jÞ ¼
ðtm

tm21

upðx; tn; j; tÞM
ðmÞ
b ðtÞdt; ð13Þ

ðzÞ �Unmðx; jÞ ¼
ðtm

tm21

upðx; tn; j; tÞN
ðmÞ
z ðtÞdt: ð14Þ

In Eqs. (8)–(14), n indicates the current time point, �n is

the current time step, na; nb and nz are the number of

(time) points used for the time interpolation of uðx; tÞ;
pðx; tÞ and gðx; tÞ; respectively, uaðmÞðxÞ; pbðmÞðxÞ and

gzðmÞðxÞ denote the values of the respective functions at

the time points a; b and z of the mth time step, LðmÞ
a ðtÞ;

MðmÞ
b ðtÞ and NðmÞ

z ðtÞ are the adopted time interpolation

functions, and the time integration limits in Eqs. (12)–

(14) are given by

tm ¼
m Dt; if m , �n;

�m Dt; if m ¼ �n;

(
ð15Þ

where

�m ¼

m; if na # 2;

ð�n 2 1Þ þ
ða 2 1Þ

ðna 2 1Þ

� 	
; if na $ 3;

8><
>: ð16Þ

with a ¼ 2;…na; na ¼ maxðna; nbÞ: Note that the par-

ameter a indicates the local order of the discrete time tn;

necessary to make possible the evaluation of the problem

response at all time points of the current time step.

After considering the time translation property of the

acoustic fundamental solution [8], the time-integrated

kernels ðaÞPnm; ðbÞUnm; and ðzÞ �Unm in Eqs. (12)–(14) can

be reduced to integrations along the first time step only.

Thus, at each time step, one has to calculate only the

following time integrations

ðaÞPðnÞðx; jÞ ¼
ð �m1 Dt

0
ppðx; tðnÞ; j; tÞLaðtÞdt; ð17Þ

ðbÞUðnÞðx; jÞ ¼
ð �m1 Dt

0
upðx; tðnÞ; j; tÞMbðtÞdt; ð18Þ

ðzÞ �UðnÞðx; jÞ ¼
ð �m1 Dt

0
upðx; tðnÞ; j; tÞNzðtÞdt ð19Þ

with

�m1 ¼

1; if na # 2;

ða 2 1Þ

ðna 2 1Þ
; if na $ 3;

8><
>: ð20Þ

a ¼ 2;…; na; na ¼ maxðna; nbÞ: The time integrations in

Eqs. (17)–(19) are very simple and can be easily calculated

in closed form. In Ref. [8], the results of the integrals in Eqs.

(17)–(19) are furnished.

The above expressions are generic and may be used to

obtain the system of algebraic equations associated with

transient acoustic problems. Here, these expressions are

however, particularized to the following time interpola-

tions functions: the potentials are linearly interpolated

(na ¼ 2 in Eq. (7)), the fluxes, constant- or linearly

(nb ¼ 1 or nb ¼ 2; respectively, in Eq. (8)), and the

volume sources, constantly interpolated (nz ¼ 1 in Eq.

(9)). In this way, after the spatial discretization of the

time-discretized boundary integral equation (11), one

obtains

{C þ ð2ÞHð1Þ}uðnÞ ¼ ð2ÞGð1ÞpðnÞ þ rðnÞ; ð21Þ

where

rðnÞ ¼ð1ÞGðnÞpð0Þ þ
Xn21

m¼ni

{ð1ÞGðn2mÞ þ ð2ÞGðn2mþ1Þ}pðmÞ

2
Xn21

m¼ni

{ð1ÞHðn2mÞ þ ð2ÞHðn2mþ1Þ}uðmÞ

þ
Xn21

m¼ni

�Gðn2mþ1ÞgðmÞ ð22Þ

with

ni ¼ maxð1; n 2 nmax þ 1Þ; nmax ¼
rmax

c Dt
þ 2: ð23Þ

Note that ni in Eq. (23) expresses the truncation of the

time-marching scheme and is determined based on the
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existence interval of the fundamental kernels given by

ðn 2 1Þc Dt , r , nc Dt [8].

In case of existing initial values to be considered, their

contributions will be stored in an additional vector on the

right-hand side of the system of Eq. (21), which will be

dependent on only of the current time step. This vector will

be determined in the most general cases with the use of

integration cells.

4. The time-dependent BE/BE coupling

In order to develop the generic substructuring algor-

ithm, the system of Eq. (21) is written for each subregion

of the coupled system. The following systems are

available

HkuðnÞ;k ¼ GkpðnÞ;k þ rðnÞ;k; k ¼ 1; ns; ð24Þ

where ns is the number of subregions of the model. By

organizing the system of Eq. (24), so that one obtains on

its left-hand side the unknown boundary values and the

unknown interface potentials, and on its right-hand side

the known boundary values and the unknown interface

normal fluxes, it results:

Ak
b Hk

i

h i xðnÞ;k
b

uðnÞ;k
i

8<
:

9=
; ¼ Bk

�b Gk
i

h i yðnÞ;k
�b

pðnÞ;k
i

8<
:

9=
;þ rðnÞ;k; ð25Þ

where

Ak
b ¼ Hk

bðuÞ 2Gk
bðpÞ

h i
; xðnÞ;k

b ¼
uðnÞ;k

b

pðnÞ;k
b

8<
:

9=
;; ð26aÞ

Bk
�b ¼ 2Hk

bð�uÞ Gk
bð�pÞ

h i
; yðnÞ;k

�b
¼

�uðnÞ;k
b

�pðnÞ;k
b

8<
:

9=
;: ð26bÞ

The subscripts above are defined as follows: bðuÞ defines

the boundary part of the kth subregion with unknown

potentials, bðpÞ that one with unknown fluxes, and i that

one corresponding to the interface surfaces. bð�uÞ and bð�pÞ

define, respectively, the boundary part with prescribed

potential and normal flux.

As corresponding to the interface nodes of a given

subregion k; both potentials and normal fluxes are

unknowns, an additional number of equations will be

necessary for making it possible to calculate all its

unknown boundary values (including naturally its inter-

face values). These equations are actually available in the

equations of the other subdomains, so that if one

assembles together the subsystems corresponding to all

the substructures of the problem, a unique global system

of equations with enough equations for determining the

response of the problem in each subregion is obtained. In

explicit form, this system is given by

A1
b 0 · · · 0 C1

1 C1
2 · · · C1

s

0 A2
b · · · 0 C2

1 C2
2 · · · C2

s

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 · · · Ans
b Cns

1 Cns
2 · · · Cns

s

2
6666666664

3
7777777775

xðnÞ;1
b

xðnÞ;2
b

..

.

xðnÞ;ns
b

xðnÞ
1

xðnÞ
2

..

.

xðnÞ
s

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

¼

B1
�b

B2
�b

. .
.

B~ns
�b

2
6666666664

3
7777777775

yðnÞ;1
�b

yðnÞ;2
�b

..

.

yðnÞ;ns
�b

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
þ

rðnÞ;1�b

rðnÞ;2�b

..

.

rðnÞ;ns
�b

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; ð27Þ

where n is the current time step, s is the number of

interfaces, Ck
i denotes the coupling submatrix associated

with the interface Gi and the kth subregion (containing

terms of Hk
i and Gk

i ), and xðnÞ;k
i and yðnÞ;k are the vectors

containing the unknown and prescribed values at the nth

time point, respectively. It should be noticed that the

system (27) represents the most general form of a coupled

system. Indeed, for most of the problems, some of the

coupling matrices Ck
i are null; particularly when the

subdomains are coupled in a chain way, like for instance

finite element models for beams, the coupled system (27)

reduces to a banded form [12]. In the algorithm proposed

in this paper, the system (27) is actually not assembled;

instead one works directly with the subsystems (25), as

they were uncoupled. The use of iterative methods makes

it possible to solve the system of Eq. (27) in an implicit

way. To see how to do this, we first give the general

expressions of the bi-conjugate gradient algorithm (BiCG

method) [11].

Iterative formula:

xnþ1 ¼ xn þ lnpn
: ð28Þ

Search directions:

pn ¼
r0
; if n ¼ 0;

rn þ anpn21
; if n $ 1;

(
ð29Þ

ppn ¼

pr0 ¼ r0
; if n ¼ 0;

prn þ an
ppn21

; if n $ 1:

(
ð30Þ
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Residuals:

rn ¼ rn21 2 ln21Apn21
;

prn ¼ prn21 2 ln21ATppn21
:

ð31Þ

Parameters:

ln21 ¼
prn21;Trn21

ppn21;TApn21
; an ¼

prn;Trn

prn21;Trn21
: ð32Þ

Two points are observed in the above iterative formulae: (1)

the only operations necessary are multiplications matrix–

vector and vector–vector; (2) the system matrix is not

transformed during its resolution (as usual in iterative

procedures). So, a special solution procedure can be

developed to solve the system (27) in which the correspond-

ing coupled system is not explicitly assembled. In effect, a

loop over the number of all subregions is carried out and the

contribution of each subregion, independently of each other,

is taken into account in the operation considered (matrix–

vector or vector–vector). Naturally, in suitable points of the

solution algorithm (solver) the data of each subdomain are

updated, so as to satisfy the coupling and, if necessary, also

the flux continuity conditions at the interface nodes. At the

end, the final operation results of the current iteration are

obtained by gathering the corresponding partial ones.

At nodes pertaining to interfaces between subregions i

and j; i.e. if x [ Gij; the coupling conditions are given by

uiðx; tÞ ¼ ujðx; tÞ

piðx; tÞ ¼ 2pjðx; tÞ
; if niðxÞ ¼ 2njðxÞ;

(
ð33Þ

and the continuity ones, by

uiðx; tÞ ¼ ujðx; tÞ

piðx; tÞ ¼ pjðx; tÞ
; if niðxÞ ¼ njðxÞ:

(
ð34Þ

In Fig. 3, pairs of interface nodes are shown in which the

coupling and continuity conditions should be considered.

In the computer code, a research is carried out in order to

identify the interfaces (through their nodes) and then to

introduce automatically the coupling and, if necessary,

continuity conditions.

The interfaces between the subregions are defined by sets

of coupled nodes, which are in turn defined based on the

following criterion: coupled nodes pertain to two different

domains, have the same co-ordinates, and opposite unit

normal outward vectors. Associated with coupled nodes that

have not the same geometrical position as those of other

interfaces, that is, for non-common interface nodes (Fig. 4),

the respective number of equations is always enough,

without any additional consideration on the interface

variables, to calculate the potential and normal flux at

them. In this case one will obtain, for each node, two

equations for determining one potential and one flux. In case

of common interface nodes (Fig. 4), that is, if the coupled

node is common to two or more interfaces, some additional

considerations on the interface variables must be introduced

in order to reduce the number of the corresponding

unknowns; namely, flux continuity conditions must be

taken into account (see Eq. (34) and Fig. 3).

Fig. 3. Coupling and continuity conditions.

Fig. 4. Coupled subdomains and interface nodes (common and non-common ones).
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5. Applications

In order to observe the performance of the algorithm, the

sound pressure distribution caused by an acoustic energy

source, in the absence and presence of an infinite non-

thickness barrier of height hb ¼ 4:0 m; is analyzed (Fig. 5).

The acoustic waves are radiated by a pulsating surface

located at height hs ¼ 1:5 m; and at distance d ¼ 5:0 m from

the barrier. The temporal variation of the normal component

of the particle velocity is given by following pulses:

5.1. Sinusoidal pulse

In this case, the particle velocities are given by

vnðx; tÞ ¼ v0 sinðvtÞ: ð35Þ

The corresponding normal fluxes are

pðx; tÞ ¼ 2r0v0v cosðvtÞ: ð36Þ

For the analysis one considered v0 ¼ 5:00 m=s and an

excitation frequency corresponding to the octave-band

center frequency f ¼ 63 Hz:

5.2. Ricker’s pulse

Here, the speed of the particles and corresponding flux

are expressed by (Fig. 6)

vnðx; tÞ ¼ v0ð1 2 2t2Þe2t2

; ð37Þ

Fig. 5. Infinite sound barrier.

Fig. 6. Ricker’s pulse.

Fig. 7. Mesh of boundary and enclosing elements.
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pðx; tÞ ¼ 2
r0v0

t0
ð4t3 2 6tÞe2t2

; ð38Þ

where t ¼ ðt 2 ts=t0Þ; t represents the time, ts is the time

point corresponding to the pulse amplitude, and pt0; the

dominant wavelet period [23]. A velocity amplitude of v0 ¼

5:00 m=s; and a dominant period of pt0 ¼ ð1=63Þ s were

considered.

The source was tridimensionally simulated as a sphere of

radius a ¼ 0:05 m: As the dimensions of the source are

much smaller than the length of the acoustic wave generated

ðl ¼ 5:397 mÞ; the details of the pulsating surface will not

indeed affect the sound being radiated.

Fig. 8. Time-domain response (sinusoidal pulse).
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The boundary element mesh (Fig. 7) is generated so

that the element sides be approximately 1=4 of the

wavelength. Eight-noded (parabolic) boundary elements

are adopted, and two subregions are considered to model

the barrier. Additionally a mesh of enclosing elements is

used to make it possible to implicitly evaluate the

principal values in the open subdomains. The BE mesh

for subregion I has 1060 nodes and 320 elements, and

for subregion II, 962 nodes and 288 elements. The

respective EE meshes (of enclosing elements) for both

Fig. 9. Time-domain response (Ricker’s pulse).
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subdomains have 421 nodes and 130 elements. The

source (spherical shell of radius a ¼ 0:05 m) is modeled

with 32 boundary elements; it is located in the subregion

1 and is not visible in Fig. 7. The physical constants of

the considered medium (air) are:

c ¼ 340:00 m=s ðsound speedÞ;

r0 ¼ 1:21 kg=m3 ðequilibrium densityÞ:

The adopted time step, Dt; is determined by observing

the wave period T and the b coefficient, the latter being

defined through

b ¼
c Dt

d
; ð39Þ

where d is the minimal diagonal of all elements of the

BE mesh. The following criterion is adopted to choose

the time step: it should not be too long compared with

the wave period T ; and the corresponding b coefficient,

not so different from the unity. For the analyses here,

Dt ¼ 1:5 £ 1023 s was chosen, which corresponds

approximately to one-tenth of the wave period and to a

b ¼ 0:27:

The results in terms of sound pressure level (SPL) are

shown, for certain time points, in Figs. 8 and 9 for the

sinusoidal pulse and the Ricker’s pulse, respectively. The

sequence of snapshots in these figures displays the acoustic

wave propagation in the presence of the barrier. The

snapshots obtained in the absence of the barrier are not

displayed.

The response in terms of insertion loss (IL) for both

pulses is shown in Fig. 10. The receiver points, at which the

IL is calculated, are located behind the barrier at height

hr ¼ 1:5 m above the ground (Fig. 5), and the following

expression is used to evaluate the insertion loss (in dB)

ILðdBÞ ¼ 220log
ub

uf

; ð40Þ

where ub and uf are the acoustic pressures in the presence

and absence of the barrier, respectively.

For the analyses carried out in this paper, the BE/BE

coupling strategy based on the Jacobi-preconditioned

biconjugate gradient solver was used [11]. To give an idea

of the performance of this coupling strategy, the CPU times

attained in the analysis are plotted against the sequence of

time steps (Figs. 11 and 12). The direct solver considered for

comparison is based on the non-symmetric LU decompo-

sition and is non-optimized as regards the treatment of the

matrix sparsity, which for the analyses here corresponds to

approximately 26 and 32%, without and with barrier,

respectively.

Fig. 10. Insertion loss curve.

Fig. 11. CPU time curve (without barrier).

Fig. 12. CPU time curve (with barrier).
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The iterative scheme was stopped whenever krnþ1k #
tol; rnþ1 is the norm of the residual vector at the current

iteration and tol ¼ 1025; the adopted tolerance.

The computer used for carrying out the analyses had an

AMD ATHLON processor with 1.2 GHz and 768 Mbytes

random access memory. The code was developed in

FORTRAN and ran in a LINUX environment.

6. Conclusions

With the aid of the graphics in Figs. 8 and 9, which show

the response in terms of SPL for both pulses considered, in

the presence of an infinite barrier, the effectiveness attained

by the barrier in reducing the noise in the acoustic shadow

area ðx1 . 0:00 mÞ is visualized. Details of the time

evolution of the wave propagation phenomenon, including

superposition of incident and scattered waves, can also be

observed.

More information on the barrier effectiveness can be

taken from the insertion loss curves given in Fig. 10. As one

can see, the barrier is more effective for those points closer

to it. The position of the receivers at which maximum

efficiency is found can also be directly determined from the

IL curves for both pulses.

The information related to the computational effec-

tiveness of the algorithm is presented in Figs. 11 and 12,

which show the CPU time values against the time steps.

As expected, for the first time steps, the coupling

strategy based on the iterative solver is much more

effective than the LU-based one because the J-Bi-CG

scheme is much faster than the LU-based solver.

However, as a time-dependent linear problem is treated,

the latter coupling algorithm begins to be more effective

than the former when the number of time steps increases

(after the 60th time step, see Figs. 11 and 12). Despite

this (expected) fact, it should be noticed that the

coupling strategy presented in this paper, which works

directly with the subsystems and does not assemble the

global matrix, may be a very interesting analysis tool for

large industrial applications, mainly 3D ones. In such

cases a LU decomposition may be a very hard

computational task.

The frequency of the acoustic source studied is

actually low; for higher frequencies the meshes must

be suitably refined. Thus, the numerical effort for

carrying out the time-domain analysis may increase

considerably. Nevertheless, the strategy is general, and

may be applied to any complex time-dependent problems

described by the acoustic theory considered in his paper.

Furthermore, the strategy is very suitable for developing

parallelized computer codes. On the other hand, for non-

linear time-dependent problems, the presented strategy is,

for sure, quite convenient.
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