
Computers and Structures 88 (2010) 773–784
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc
Boundary-element parallel-computing algorithm for the microstructural analysis
of general composites

F.C. Araújo a,*, E.F. d’Azevedo b, L.J. Gray b

a Dept. Civil Eng., UFOP, 35400-000 Ouro Preto-MG, Brazil
b Computer Science and Math. Div., ORNL, Oak Ridge, P.O. Box 2008, USA

a r t i c l e i n f o
Article history:
Received 1 September 2009
Accepted 8 March 2010
Available online 26 March 2010

Keywords:
3D standard BEM
Parallel computing
CNT-based composites
Thin-walled elements
Subregion-by-subregion technique
0045-7949/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.compstruc.2010.03.001

* Corresponding author. Tel.: +55 31 3559 1468; fa
E-mail addresses: fcelio@pq.cnpq.br (F.C. Araújo

d’Azevedo), graylj1@ornl.gov (L.J. Gray).
a b s t r a c t

A standard continuum-mechanics-based 3D boundary-element (BE) algorithm has been devised to the
microstructural modeling of complex heterogeneous solids such as general composites. In the particular
applications of this paper, the mechanical properties of carbon-nanotube–reinforced composites are esti-
mated from three-dimensional representative volume elements (RVEs). The shell-like thin-walled carbon
nanotubes (CNTs) are also simulated with 3D BE models, and a generic subregion-by-subregion (SBS)
algorithm makes the microstructural description of the CNT–polymer systems possible. In fact, based
on this algorithm, a general scalable BE parallel code is proposed. Square and hexagonal fiber-packing
patterns are considered to simulate the 3D composite microstructures.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

With the increasing capability of digital computers, nowadays
reaching the exascale era, more accurate descriptions of engineer-
ing systems are feasible. For example, if three decades ago a simple
3D continuum finite-element (FE) modeling was unrealistic for
practical design purposes in structural engineering, today, one
has even talked about atomic-level simulations of matter [1]. Par-
ticularly important in this context has been the development of the
microstructural mechanics [2,3], which, starting from the micro-
structural conception of materials, allies continuum-mechanics
(CM) principles and computational methods to assess their
response to given input functions. In fact, an approach able to cap-
ture three-dimensional deformation mechanisms at the constitu-
ent level in a composite, generally having a complex phase
morphology, is the only reliable way to measure their effective
physical properties [4,5]. Homogenization strategies for estimating
them or calculating their bounds are limited to composites having
non-complex microstructure and not involving highly-contrasting
physical properties [6].

Given a realistic microstructural representation of the material, a
boundary-value problem has to be solved. In many works, the finite-
element method (FEM) along with high-performance computing
(HPC) techniques has been applied to deal with the usually huge
resulting models [3,5]. Nevertheless, it has been found out that, in
ll rights reserved.

x: +55 31 3559 1548.
), dazevedoef@ornl.gov (E.F.
general composites, the presence of thin-walled components, such
as fibers or shell-like layers, poses special difficulties to the accurate
prediction of stresses and strains via FEM. In addition to usual
numerical problems connected with plate/shell formulations (e.g.
element-distortion sensitivity and locking phenomena), the simula-
tions can produce incorrect description of the zigzag-like displace-
ment function along the thickness, and the stress continuity
between layers or at matrix–fiber interfaces will not be fulfilled. This
leads to unacceptable stress results in the composite [7–9]. In [10],
an element-layering technique based upon conventional shell finite
elements is proposed to increase global and local response accuracy
at laminated tile–reinforced composites. However, as 2D formula-
tions are adopted, local details of the field variables may not be
reconstituted with high-fidelity in complex cases. On the other hand,
modeling thin domains by using 3D brick finite elements may re-
quire a large prohibitive number of elements to arrive at algebraic
systems with acceptable condition numbers. Moreover, in the case
of composites, mesh generation is also a bottleneck in FE analysis.

To avoid these difficulties, the direct application of 3D standard
boundary-element formulations has been employed to model gen-
eral composites and thin-domain problems [11–13]. Besides
advantages as high accuracy, fulfillment of radiation conditions,
and easier mesh generation, the boundary-element method
(BEM) also presents the following interesting characteristic: it is
derived from the exact integral representation of the problem re-
sponse and does not require any interelement compatibility (in
the FE sense) for assuring solution convergence. This allows more
flexibility for generating boundary-element models as long as the
integrals involved are accurately evaluated. Indeed, this is the basis

http://dx.doi.org/10.1016/j.compstruc.2010.03.001
mailto:fcelio@pq.cnpq.br
mailto:dazevedoef@ornl.gov
mailto:graylj1@ornl.gov
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc

774 F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784
of discontinuous boundary elements, very useful for the BE subre-
gion-by-subregion (BE-SBS) algorithm [12], considered in this
work for the microstructural modeling of composites and develop-
ment of the parallel code.

1.1. Parallel computing

Computing power has grown exponentially over recent decades
[14], and computational methods and techniques have evolved
accordingly to adjust to the computer architectures. Thus, it has
been possible to take into account more and more analysis options
(physical details) in the virtual simulations in engineering and sci-
ence. Among all of the improvements brought about, the paralleliza-
tion of codes has been one of the most important, speeding up and
also extending memory resources for dealing with large-order
problems. Vector computers were first developed, allowing the
automatic processing of data sets as single units (mathematical vec-
tors). Later, SMP (symmetric multiprocessor) and MPP (massively
parallel processors) architectures have been introduced. SMP
machines, usually expensive, possess a shared memory, and codes
for them are developed by adopting multithreading programming
techniques, e.g. based on OpenMP standard [15]. MPP architectures
consist of a series of computing nodes, each one with its own main
memory and one or more processors, interconnected by a network
(distributed memory). To write codes for the latter architectures,
MPI (message passing interface [16,17]), which allows for the inter-
process communication, has been conveniently used. MPP systems
present the following advantages: they are much cheaper than SMP
ones, and, most importantly, they may overcome the inherent hard-
ware limitations of SMP architectures, namely saturation of the bus
when the number of processors increases [17]. However, program-
ming techniques for distributed-memory systems are the most
difficult of all parallel programming techniques, definitely
depending on the program developer for efficiently circumventing
load-balance and communication overhead issues.

For BEM, the first works on parallel computing date from the
80s [18,19], with codes for solving potential problems on distrib-
uted array processor (DAP) architectures developed. In 1994, Kane
[20] presented a survey on strategies known at that time for devel-
oping BE parallel codes. Later, a series of papers on the paralleliza-
tion of both assembly and solution of the BE algebraic systems of
equations appeared, mainly focusing distributed-memory comput-
ing platforms. In [21], the 3D Laplace and Helmholtz equations are
treated, and the parallel algorithm proposed basically consists of
the cyclic mapping of the coefficient matrix onto the computing
nodes according to a suitable block partitioning. A problem in this
approach is to define the block size (dependent on the processor-
network architecture) leading to an optimum parallel perfor-
mance. For working with this matrix partitioning/mapping, a LU-
based parallel solver is applied. In [22], the coefficient matrix is
generated in row blocks and cyclically scattered among the nodes.
In addition to a simple Gaussian elimination solver, the CGS meth-
od [23,24] is also applied to solve the row-wise partitioned BE sys-
tem of equations arising from 3D potential problems. In the same
year (1997), following a work by Cwik et al. [25], the CARLOS-3D
code [26] was developed to solve large-order three-dimensional
electromagnetic problems in massively parallel computer systems
via BEM. In this code, the computational load imbalance is mini-
mized by mapping the coefficient matrices onto the nodes through
the torus-wrap decomposition algorithm, and a LU-based parallel
solver with column pivoting was employed. Despite its complexity,
the torus-wrap mapping has shown to be superior to column or
row mappings in terms of communication volume during the LU
decomposition [27]. This mapping has also been adopted by Ingber
and Papathanasiou [28] for developing a BE code for the microme-
chanical analysis of short-fiber–reinforced composites.
In [29], a parallel implementation of a multiple-reciprocity-
based BE formulation (MR-BEM) for 2D potential problems is pre-
sented. Again, a block-cyclic distribution among the computing
nodes is effected, and the ScaLAPACK library [30], which contains
highly optimized LU-based parallel factorization routines for dense
matrices, is directly applied to solve the resulting system of equa-
tions. More recently, Cunha et al. [31] also directly used LAPACK
and ScaLAPACK libraries for the parallel solution of BE systems in
shared- and distributed-memory architectures, respectively. The
algebraic systems have been parallelized by assuming that each
pair of rows (for 2D elastostatics) are independent of each other
and can be concurrently generated. This fact has also been used
for defining the matrix blocks adopted by the ScaLAPACK library
(instead of 2D block-cyclic distribution) in their code version for
distributed-memory architectures.

Papers exploiting parallelism in fast BE methods, which bases
upon matrix-compression techniques as the fast multipole method
(FMM) or precorrected-FFT, have also been recently published [32–
34]. The main idea of these methods is to replace the matrix–vector
products involved in the iterative solver by accurately reasonable
and computationally efficient approximations. The source-point-
related near-field contributions are evaluated in conventional
way while the far-field contributions are approximated (e.g. by
using series expansion). This procedure significantly reduces mem-
ory and operation requirements; ans O(nlogn) or even an O(n) algo-
rithm may be attained, where n is the number of degrees of
freedom of the model. In [32], a multithreading technique is con-
sidered to parallelize a precorrected-FFT-based BE code for 3D
electrostatics and elastostatics at shared-memory architectures,
while in [34], a FMM-based BE formulation for distributed-mem-
ory architecture is developed. In the latter paper, 3D fiber–rein-
forced composites have been analyzed. In [33], vectorization,
multithreading, and multiprocessing approaches for a FMM-accel-
erated BE formulation are discussed. Applications to electrostatic
problems are discussed. In all fast BE implementations cited above,
the GMRES [23] solver has been applied.

In fact, in all of the works mentioned above, concerning either
SMP or MPP architectures, the parallelism was exploited based
on different ways to generate and to scatter the global BE system
of equations onto the available processors. Its solution, in most
cases carried out by applying available high-performance packages
as LAPACK or ScaLAPACK, benefited then from the special data
structures adopted in each particular implementation. Unlike these
works, Kamiya et al. [35,36] used a non-overlapping Schwarz do-
main decomposition method (DDM), also termed substructuring
method, for solving 2D potential problems. This work directly scat-
tered the subdomain systems onto the processors and obtained the
solution from the independent solution of each subdomain. Itera-
tive schemes were used to introduce the coupling conditions. An
issue in their formulation is how to specify the corresponding iter-
ation parameters so as to assure convergence of the process. In
[37], a DDM-based strategy is also considered to solve 2D elasticity
problems with cracks. This procedure allows the independent
assembling of the subdomain matrices, and is based on the con-
densation of the problem response to the interface tractions.
Schur-like complements must be calculated, and this can be
time-consuming for 3D problems with complex morphology.
Moreover, the generalization of the procedure for a generic num-
ber of subregions seems to be cumbersome, requiring memory
space beyond that necessary for the subregion matrices.

1.2. Present work

In this paper, the parallel version of the BE subregion-by-subre-
gion (BE-SBS) algorithm [38,13], a generic non-overlapping domain
decomposition method, is presented. Substructuring techniques

F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784 775
are a natural way to develop parallel codes, irrespective of the
computer architecture. However, as opposed to displacement-
based FE formulations, wherein traction discontinuity at the ele-
ment corners or edges is not a concern, BE formulations are mixed
and require dealing with traction discontinuity at the subdomain
boundaries. In the case of solids with complex internal geometries,
subregion modeling is therefore a ‘‘tedious” task (quoting Lou et al.
[39]). This was demonstrated in Araújo et al. [40], where continu-
ous boundary elements are used to model 3D frequency-depen-
dent elastodynamic problems. Discontinuous boundary elements
avoid this issue, but require special integration algorithms for the
quasi-singular integrals [38,12,41]. This approach has been
adopted herein. In this algorithm, coupled nodes across interfaces
boundaries are automatically identified, and the corresponding
coupling conditions directly imposed.

The other crucial issue related to BE-subdomain algorithms (in
parallel or serial versions) is how to optimally deal with the highly
sparse resulting matrices. Kamiya et al. [35,36] proposed iterative
coupling procedures that perfectly treat the matrix sparsity but
are not reliable concerning convergence. In [37], the coupling con-
ditions are directly introduced, but condensing the system un-
knowns to the interface tractions is awkward, requires additional
memory beyond that necessary for allocating the isolated subsys-
tems, and may be time-consuming for complex models. A likely
better way to proceed is find a way to optimize the memory
requirements as a function of the position of the nonzero blocks
in the global matrix, as is classically done for FE models. A parallel
strategy along these lines was used by Kane about 15 years ago
[20]; to exploit the matrix sparsity, iterative solvers, which do
not transform the coefficient matrix, were applied.

In the BE-SBS algorithm [38,13] adopted in this work, ideas
originated in FE formulations are also exploited, specifically the
element-by-element (EBE) technique [42]. Observing that a bound-
ary-element subregion is comparable to a single finite element,
and employing an iterative solver, a solution strategy for general
coupled problems is derived. A global matrix is not explicitly
assembled, only memory space for the subregion subsystems is
needed, and the coupling conditions are directly (not iteratively)
enforced. In this work, a simple diagonal-preconditioned Bi-CG sol-
ver is applied, although superior Krylov subspace solvers and
preconditioners are known [43]. To make the BE-SBS algorithm still
more efficient, structured matrix–vector product (SMVP) and
matrix–copy options have been implemented. The former option
reduces the solver CPU time per iteration while the latter one
speeds up the matrix assembly in case of (many) identical subre-
gions (e.g. identical fibers in a composite) [41].
1

3

CNT-based fiber

matrix

2

(a) Square-packed array

Fig. 1. Single-cell RVE
Carbon-nanotube–reinforced composites (CNT composites)
have been examined using the parallel BE-SBS algorithm. Consider-
ing the dimensions of the physical systems, the length scale being
the nanoscale, molecular dynamics (MD) formulations should be
applied. However, as MD-based analyses are limited to very small
specimens, over very short analysis times, continuum-mechanics
(CM) formulations are very useful. Numerical and physical experi-
ments have shown that CM-based modeling can provide a satisfac-
tory description of responses at nanotubes/solids [44–49]. Chen
and Liu [50] have applied CM-based formulations to study CNT–
reinforced composites, employing 2D and 3D FE models to extract
engineering material parameters from representative volume ele-
ments (RVEs) for different fiber-packing patterns.

To verify the parallel performance of the BE-SBS algorithm pro-
posed in this paper, 3D simulations of CNT composites based on
square-packed and hexagonal-packed fiber arrays have been suc-
cessfully carried out.
2. 3D RVEs for fiber–reinforced composites

In general, for predicting engineering properties of fiber–rein-
forced composite materials on the microstructural level, specified
fiber-packing patterns for idealizing the fiber smearing inside the
matrix material are adopted. To be more realistic, random fiber dis-
tribution should be taken into account. In the particular applica-
tions of this study, however, all RVEs base on square-packed or
hexagonal-packed arrays (see Fig. 1) containing long or short fi-
bers, a single or several cells. By evaluating displacements and
tractions on the surfaces of the specimens for specific loadings,
the effective engineering properties of composites can then be pre-
dicted. Below, the corresponding numerical experiments involved
are described.
2.1. Predicting E1,t12 and t13

For predicting these properties, the specimen is stretched (or
shortened) in the 1 direction (fiber direction) while, on the lateral
surfaces perpendicular to the 2 and 3 directions, the surrounding
medium (in-situ boundary conditions) is simulated by allowing
them to move freely and to change length as long as they remain
straight and free of any net force [51]. Here the following strategy
is adopted to enforce these boundary conditions. First, the trans-
verse displacements, dð1Þ2 and dð1Þ3 , happening as a function of a pre-
scribed axial displacement dð1Þ1 ¼ 1, are calculated. Then, a second
analysis for the prescribed displacements dð1Þ1 ¼ 1 and
1

2

3 matrix

CNT-based fiber

(b) Hexagonal-packed array

s with long fiber.

1

1l

2l

2

traction-free
lateral
boundary

(1)

(1)

(1)

(1)

1δ
CNT

1

2l

2

prescribed
lateral
displacements

1δ

tδtδ

CNT

(a) 1st analysis (b) 2nd analysis

Fig. 2. Strain state 1.

2l

2

traction-free
boundary

3

3l
CNT

)2(
2δ

2l

2

prescribed
displacements

3

CNT

)2(
3δ

)2(
2δ

)2(
3δ

(a) 1st analysis (b) 2nd analysis

Fig. 3. Strain state 2.

776 F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784
dð1Þ2 ¼ dð1Þ3 ¼ dð1Þt ; dð1Þt being a mean lateral displacement value (see
Fig. 2), is carried out. In fact, considering dð1Þ2 ¼ dð1Þ3 ¼ dð1Þt is conve-
nient as transverse isotropy applies to the fiber-packed arrays at
hand, and the minimum and maximum transverse displacements
values at the lateral surfaces of the RVE are about the same. In this
way, a zero-force condition is reasonably enforced. The super-
scripts indicate strain state 1, from which the material parameters
E1, t12 and t13 are determined. The following expressions, derived
from basic strain–stress relationships, are employed for this pur-
pose [41]:

E1 ¼ ðrð1Þ1 � t12rð1Þ2 � t13rð1Þ3 Þ
l1

dð1Þ1

 !
; ð1Þ

m12 ¼ m13 ¼ �
dð1Þ2

l2

 !
l1

dð1Þ1

 !
; ð2Þ

where rð1Þi denotes the average stress over the RVE area perpendic-
ular to the i direction, i = 1, 2, 3. As dð1Þ2 and dð1Þ3 are mean displace-
ment values, the net forces on the lateral surfaces are not exactly
zero; thus rð1Þ2 and rð1Þ3 are retained in Eq. (1).

2.2. Predicting E2, t23 and t21

The strain state 2 shown in Fig. 3, in which rð2Þ1 ¼ 0, is consid-
ered for evaluating these constants. Herein, the minimum and
maximum displacement values at the 3 direction of the specimen,
dð2Þ3 , may be substantially different. Thus, for finding the dð2Þ3 value
corresponding to f ð2Þ3 ¼ 0 (in-situ boundary conditions), the follow-
ing strategy is adopted. First, dð2Þ2 ¼ 1 is imposed, and dð2Þ3 is deter-
mined. If assumed that f ð2Þ3 is a linear function of edð2Þ3 , prescribed
displacement values at the 3 direction of the RVE, then dð2Þ3 for
which f ð2Þ3 ¼ 0 is determined by (see Fig. 4)

dð2Þ3 ¼ ðbÞedð2Þ3 �
ðbÞedð2Þ3 � ðaÞedð2Þ3
ðbÞf ð2Þ3 � ðaÞf ð2Þ3

 !
ðbÞf ð2Þ3 : ð3Þ

Previous numerical experiments [41] have shown that, as de-
sired for the in-situ RVE boundary conditions, traction resultants
f ð2Þ3 approximately zero are obtained for prescribed dð2Þ3 determined
by relation Eq. (3). This fact hints then that an assumption of line-
arity between f ð2Þ3 and edð2Þ3 is appropriate.

In this work, the linear function for f ð2Þ3 is constructed by takingedð2Þ3 ¼ dð2Þ3;min and edð2Þ3 ¼ dð2Þ3;max, where dð2Þ3;min and dð2Þ3;max are the mini-
mum and maximum displacements determined from the first anal-
ysis. With dð2Þ2 and dð2Þ3 , an additional analysis is eventually carried
out, from which E2, t23 and t21 are calculated by expressions:

E2 ¼ ðrð2Þ2 � t23rð2Þ3 Þ
dð2Þ2

l2

 !�1

; ð4Þ

m23 ¼ �
dð2Þ3

l3

 !
l2

dð2Þ2

 !
; ð5Þ

m21 ¼ m12
E2

E1

� �
: ð6Þ

)2(
3

~
δ

)2(
3f

)2(
3

)(~
δb

)2(
3

)(~
δa

)2(
3

)(fb

)2(
3

)(fa

)2(
3δ

Fig. 4. Net force variation at the three direction, f ð2Þ3 .

F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784 777
Furthermore, assuming transverse isotropy in the 2–3 plane, the
shear modulus G23 is directly calculated by

G23 ¼
1
2

E2

1þ t23

� �
: ð7Þ
Fig. 5. Flowchart of the BE-S

Fig. 6. Solution phase
Note that, in case of fully orthotropic materials, E3, m31 and m32

can be evaluated from a third strain state similar to strain state
2, but with dð3Þ3 ¼ 1 initially prescribed.
3. BE modeling and the parallel-processing algorithm

In this paper, a parallel version of the BE-SBS algorithm (Araújo
et al. [13,38]) is implemented and applied to analyze the 3D RVEs.
This algorithm is based on a substructuring technique (non-over-
lapping domain decomposition method – DDM), and makes use
of iterative solvers, similarly as done in element-by-element-based
(EBE-based) finite-element formulations [42], to solve the global
BE system of equations without explicitly assembling it.

In general, after the boundary conditions have been introduced
at each subregion separately, a set of ns algebraic systems of equa-
tions given by

Xi�1

j¼1

ðHijuji � GijpijÞ þ Aiixi þ
Xns

j¼iþ1

ðHijuij þ GijpjiÞ ¼ Biiyi;

i ¼ 1;ns; ð8Þ

where ns is the number of subregions, has to be solved by enforcing
continuity and equilibrium conditions at the interfaces. In Eq. (8),
BS-based parallel code.

(Krylov solver).

Fig. 7. Boundary-data transfer between processes.

Fig. 8. Memory-allocation scheme.

Fig. 9. Square-packed long-CNT-based RVEs.

778 F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784

Table 1
Model data for the square-packed long-CNT RVEs.

Model nsuba nelb nnodesc ndofd Sparsity (%)

l � l 2 128 608 1824 29
2 � 2 8 512 2660 7980 81
5 � 5 50 1344 17,456 52,368 97
6 � 6 72 2048 25,268 75,804 98

a No. of subregions.
b No. of elements.
c No. of nodes.
d No. of degrees of freedom.

Table 2
Engineering constants for the square-packed long-CNT RVEs.

Model E1/Em E2/Em, E3/Em v12, v13 v23

l � l 1.3227 0.8302 0.2974 0.3595
2 � 2 1.3228 0.8319 0.2973 0.3600
5 � 5 1.3228 0.8319 0.2972 0.3580
6 � 6 1.3228 0.8319 0.2972 0.3587
Chen and Liu (3D FE) 1.3255 0.8492 0.3000 0.3799
Rule of mixturea 1.3255 – – –

a RVE volume fraction is Vf = 3.617%.
10 20 30 40 50

10 20 30 40 50

number of processors

0

0.2

0.4

0.6

C
PU

 ti
m

e/
ni

te
r (

se
c.

/it
er

.)

measured values
logarithmic fit

CPU-time scaling (strain state 2)

(a)

(b)
number of processors

40

50

60

70

80

90

100

110

120

us
ed

 m
em

or
y

(re
al

-v
al

ue
d

ar
ra

y,
 M

by
te

s)

measured values
logarithmic fit

memory scaling (strain state 2)

Fig. 10. Scalability curves: 6 � 6 square-packed long-CNT model (strain state 2).

F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784 779
Hij and Gij denote the usual BE matrices obtained for source points
pertaining to subregion Xi and associated respectively with the
boundary vectors uij and pij at Cij. Note that if i – j, Cij corresponds
to the interface between Xi and Xj; Cii is the outer boundary of Xi.

The global model is then stored and iteratively solved according
to the data structure shown in Eq. (8). During the solution, wherein
in this particular study the diagonal-preconditioned BiCG solver is
applied, the interface conditions, given by

uij ¼ uji

pij ¼ �pji

(
at Cij; ð9Þ

are directly enforced, iteration by iteration. As in the BE-SBS algo-
rithm there is no overlapping of coefficients belonging to edges or
corners shared by different subregions, as it happens in finite-ele-
ment models, the data structure in Eq. (8) does not need any further
optimization. All zero blocks present in the highly-sparse global
system matrix are perfectly excluded. Besides, the following
techniques/strategies are especially important for increasing the
efficiency of the BE-SBS-based code: discontinuous boundary
elements, structured matrix–vector products (SMVP), special
integration quadratures, and the matrix–copy option. In Refs.
[38,13,12,41], the evolution of the BE-SBS algorithm is documented;
there a detailed description of all strategies mentioned above is
found.

In the flowchart in Fig. 5, the generic structuring of the BE-SBS-
based parallel code is presented. In fact, as in the BE-SBS algorithm
the subdomains are independently treated during the entire anal-
ysis, its implementation for running in a parallel-processing plat-
form is immediate. Assembling the algebraic systems needs no
information from other processes (see Fig. 5). Only during its solu-
tion, communication between the processes is needed for updating
the boundary values in all subregions (Figs. 6 and 7).

In Fig. 8, the generic memory-allocation scheme is sketched.
The system matrices, one by one stored at the work vectors allo-
cated at each processor, will take the largest chunk of the total
memory used per processor. According to the allocation strategy,
Am and Bm, with m 6 k, will be sequentially allocated in the k first
processes. If m > k, Am and Bm will be allocated in the process with
so far least allocated memory. The total storage memory for the
system matrices at each process will then depend upon the corre-
sponding number of substructures allocated at it. An advantage of
this allocation strategy is that it allows larger messages in the com-
munication among the processes, reducing then the communica-
tion overhead. For example, sending Am and Bm from a certain
process to another one will just correspond to sending a single con-
tiguous chunk of the work vector. Herein, notice that communica-
tion efficiency increases with message size.

4. Applications

The performance of the BE-SBS-based parallel code detailed
above has been observed by determining engineering constants
for complex CNT-based composites. To construct the analysis mod-
els (RVEs), long and short CNT fibers arranged according to square

Fig. 11. Hexagonal-packed long-CNT-based RVEs.

Table 3
Model data for the hexagonal-packed long-CNT RVEs.

Model nsuba nelb nnodesc ndofd Sparsity (%)

l � l 6 138 856 2568 72
2 � 2 17 656 3456 10,368 86
3 � 3 34 1464 7800 23,400 93
5 � 5 86 4040 21,720 65,160 97
10 � 10 321 16,080 87,040 261,120 99

a No. of subregions.
b No. of elements.
c No. of functional nodes.
d No. of degrees of freedom.

Table 4
Engineering constants for the hexagonal-packed long-CNT RVEs.

Model E1/Em E2/Em, E3/Em v12, v13 v23

l � l 1.8081 1.0889 0.2943 0.5107
2 � 2 1.8074 1.0839 0.2936 0.5107
3 � 3 1.8074 1.0916 0.2931 0.5185
5 � 5 1.8126 1.0813 0.2927 0.4997
10 � 10 1.8014 1.0805 0.2926 0.5103
Rule of mixturea 1.8131 – – –

a RVE volume fraction is Vf = 9.035%.

780 F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784
and hexagonal packing patterns inside the polymer matrix have
been adopted. Herein, a single or several coupled composite unit
cells have been used.

Concerning the integration quadratures applied, the combined
coordinate-transformation-based procedure, defined in [13] and
[38], and the line-integral procedure, as described in [41], are em-
ployed to evaluate, respectively, the weakly/nearly-weakly-singu-
lar, and the strongly-nearly-singular integrals. In all analyses,
8 � 8 and six integration points are used for all surface and line
quadratures involved, respectively. In all RVEs, the following pure
phase constants, adopted in [50], are considered:

CNT : ECNT ¼ 1000 nN=nm2ðGPaÞ; mCNT ¼ 0:30;

Matrix : Em ¼ 100 nN=nm2ðGPaÞ; mCNT ¼ 0:30:

The long CNT fibers are geometrically defined by cylindrical
tubes having outer radius r0 = 5.0 nm and inner radius ri = 4.6 nm,
and length lf = 10 nm. The short CNTs have cross section and hemi-
spherical caps with same previous outer and inner radius; its
length (including both caps) is lf = 50 nm. In this respect, noticing
that RVEs representing long-fiber composites have their fibers all
the way through their length, then solving long-CNT composites
can be satisfactorily accomplished based on 2D models. Thus, the
fiber lengths in 3D models must not necessarily be long at all. That
is why in the 3D models in this paper (considered to verify the per-
formance of the general 3D BE-SBS-based parallel code), the long
CNTs (lf = 10 nm) are shorter than the short CNTs (lf = 50 nm).

When needed, discontinuous boundary elements are automati-
cally generated by shifting the nodes interior to the elements a dis-
tance of d = 0.10 (measured in the natural coordinate system). The
matrix–copy option is also conveniently considered to replicate
physically and geometrically identical subdomains. The bound-
ary-element adopted is an 8-node quadrilateral one. The tolerance
for the iterative solver (J-BiCG) is taken as f = 10�5. The analyses
were carried out at the ORNL (Oak Ridge National Laboratory)
institutional cluster (OIC), consisting of 80 usable nodes, each
one having Dual Intel 3.4 GHz Xeon EM64T processors, 4 GB of
memory, and dual Gigabit Ethernet Interconnects.

In this paper, the memory-use and CPU-time scalability are
measured, respectively, by the following variables: used memory
and CPU time/niter bounds. The used memory bound is the total
memory allocated for the real-valued array at the processor with
largest amount of allocated memory, and the CPU time/niter bound
is the solver CPU time per iteration at the slowest processor. Thus,
the used memory and CPU time/niter bounds take into account the
worst situations. Particularly concerning the CPU time measure-
ments, notice that dividing it by the total number of iterations

20 30 40 50
number of processors

0.4

0.45

0.5

0.55

0.6
C

PU
 ti

m
e/

ni
ter (

se
c.

/it
er

.)

measured values
logarithmic fit

CPU-time scaling (strain state 1)

(a)

20 30 40 50
number of processors

100

120

140

160

180

200

220

240

us
ed

 m
em

or
y

(re
al

-v
al

ue
d

ar
ra

y,
 M

by
te

s)

measured values
logarithmic fit

Memory scaling (strain state 1)

(b)

Fig. 12. Scalability curves: 10 � 10 hexagonal-packed long-CNT model (strain state
1).

F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784 781
for convergence makes it independent of the number of iterations;
it is then convenient. Moreover, as the assembly CPU time is insig-
nificant compared to the solution CPU time, only the latter one is
considered in the parallel-performance analysis. Because of the
limited space of the paper, only a few curves showing samples of
the parallel-processing performance are presented. Actually, only
the scalability curves for the largest model of each application un-
der either strain state 1 or 2 is shown.

4.1. RVEs with square-packed long CNT fibers

In this application, RVEs based on 1 � 1, 2 � 2, 5 � 5, and 6 � 6
unit cells are employed for modeling long-CNT-based composites
(see Fig. 9). Noting that for long-fiber–reinforced composites, the
response does not vary along the fiber direction (1 direction) of
the specimen, any convenient length l1 (see Figs. 1a and 2a) can
be taken; here, l1 = 10 nm, which allows a single layer of boundary
elements across the RVEs (see Fig. 9), is considered. The other
dimensions of each unit cell (along the 2 and 3 axes; see Fig. 1)
are taken as l2 = l3 = 20 nm. In Table 1, important model data are
given. In Table 2, the engineering parameters obtained from the
analysis, via the present code, of all the RVEs in Fig. 9 are
confronted with results calculated by Liu and Chen [50] via
finite-element analysis, and estimated by the rule of mixture (see
Refs. [41,50,51]).

As seen from Table 2, values estimated by the rule of mixture
and by refined 3D FE models [50] are in very good agreement with
the material parameters calculated with the present method. No
significant change in the values is also observed as a function of
the number of unit cells per RVE. In Table 1, data showing the spar-
sity of the corresponding systems are furnished. They indicate that
the systems become highly sparse when the number of degrees of
freedom (ndof) increases.

In Fig. 10, results for the 6 � 6-unit-cell RVE under strain state 2,
showing how the parallel processing scales, are presented. As one
sees, the scalability of both CPU-time (see Fig. 10a) and memory-
use (see Fig. 10b) is very good. In fact, more interprocessor commu-
nication and less processor load is expected when the number of
processors increases. This should then explain the weakening of
the processing speed-up after 36 processors.

4.2. RVEs with hexagonal-packed long CNT fibers

Here, 1 � 1, 2 � 2, 3 � 3, 5 � 5, and 10 � 10 RVEs are analyzed
(see Fig. 11), each one built with unit cells having dimensions
l1 = 10 nm and l2 = l3 = 20 nm. Model data are given in Table 3,
and the estimated material parameters, in Table 4. As reference va-
lue for comparison purposes, only E1, estimated by the rule of mix-
ture, is considered (see Refs. [41], [51]), and we verify that E1

values estimated by the rule of mixture and calculated with the
present method are about the same magnitude. It is also observed
that increasing the number of unit cells per RVE does not signifi-
cantly change the estimation of the material constants.

In Fig. 12, the parallel-processing performance is shown for the
10 � 10-unit-cell RVE under strain state 1. Again, the scalability of
the memory use is very good, practically following the logarithmic
fit (see Fig. 12b). Concerning the CPU-time scaling, it is observed
the speedup tends to decrease when the number of processors is
incremented (e.g. from 30 to 50 processors; see Fig. 12a), the
explanation for that being a relative increase on the interprocessor
communication compared to the load per processor.

4.3. RVEs with squared-packed short CNT fibers

In this application, the RVEs are constructed smearing 1 � 1,
2 � 2, and 5 � 5 short capsule-like CNTs according to square-pack-
ing patterns (see Fig. 13). A single-cell RVE has outer dimensions
l1 = 100 nm , and l2 = l3 = 20 nm. The geometrical details of the
CNT were furnished above, and important model data are given
in Table 5. Contrasting the results with the present method with
those obtained by Liu and Chen [50], and by the extended rule of
mixture [41], good agreement is found (see Table 6). Again, one
sees that the material constant values do not considerably modify
increasing the number of cells in the RVE.

The parallel-processing performance is shown for the 5 �
5-unit-cell RVE under strain state 1 (see Fig. 14). Comparing the
graphs for the CPU-time scaling obtained here with those for the
previous models (see Figs. 10a and 12a), a somehow better perfor-
mance is observed. It happens because for this model, with more
degrees of freedom per subregion, the relationship between

Table 5
Model data for the square-packed short-CNT RVEs.

Model nsuba nelb nnodesc ndofd Sparsity (%)

l � l 2 352 1064 3192 27
2 � 2 8 1408 5156 15,468 78
5 � 5 50 8800 35,384 106,152 99

a No. of subregions.
b No. of elements.
c No. of functional nodes.
d No. of degrees of freedom.

Table 6
Engineering constants for the square-packed short-CNT RVEs.

Model E1/Em E2/Em, E3/Em v12, v13 v23

l � l 1.0378 0.9366 0.2963 0.3207
2 � 2 1.0379 0.9379 0.2976 0.3217
5 � 5 1.0379 0.9389 0.3000 0.3223
Chen and Liu (3D FE) 1.0391 0.9342 0.3009 0.3217
Rule of mixturea 1.0396 – – –

a The extended rule of mixture is considered.

Fig. 13. Square-packed short-CNT-based RVEs.

782 F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784
communication overhead and processor load is small enough to
compensate the increase in the number of processors (see
Fig. 14a). The scalability of the memory use is again very good
(see Fig. 14b). In this application, the logarithmic fit is closely
followed.

5. Conclusions and prospects

A parallel-processing algorithm based upon a robust BE-SBS
technique has been developed and particularly applied to estimate
effective engineering constants for 3D CNT–reinforced composites.
We first observe that as a consequence of the special quadratures
available in the code, the reliable use of discontinuous boundary
elements is possible, and so traction discontinuity at inner edges
and corners of interfaces are easily simulated. These quadratures
also allow employing disproportionate boundary elements, and
so are very helpful for modeling thin-walled solids, such as CNTs,
with relatively coarse meshes, without sacrificing accuracy (see
RVE models Figs. 9, 11 and 13). In this way, the modeling of com-
plex coupled solids, as composites, is greatly simplified.

In addition, the matrix–copy option, which avoids the repeated
mesh generation and calculation of coefficient matrices for identi-
cal substructures, increases computational efficiency by reducing
the total matrix-assembly CPU time and makes the modeling of
very complex composites (with e.g. hundreds or thousands of fi-
bers smeared in the matrix material) possible. In the particular
case of the applications shown above, no efficiency gain has been
actually observed during the assembly phase as the corresponding
CPU-time measurements were insignificant compared to the solver
CPU time (dominant). However, for large identical subregions, this
option will certainly increase the computational efficiency. The
strategy proposed is believed to be very convenient for analyzing
general composites. Notice as well that the BE-SBS-based algo-
rithm directly furnishes the solution in terms of surface stresses,
which the effective material constants depend upon, so that these
constants can be straightforwardly estimated from the solution
outputted. Moreover, for complex composites, boundary-integral-
based models are simpler to generate than volume-based ones.

Certainly, a contribution of this study is the proposal of a gen-
eral strategy for developing parallel-processing BE codes, noway
restricted to the particular class of elasticity problems treated here,
but readily applicable to any BIE-based methods. It should be par-
ticularly observed that the algorithm proposed, which bases on a
non-overlapping DDM, presents the following interesting general
characteristics: (1) the BE models are independently generated,
stored, and manipulated during the solution of the problem (no ex-
plicit global matrix assembly takes place), (2) no variable condens-
ing is carried out, avoiding then the calculation of Schur
complements, (3) the interface conditions are directly imposed,
avoiding then the use of some iterative strategy, (4) discontinuous
boundary elements are used to make the generation of coupled
models easier, (5) an iterative (Krylov) solver is employed for solv-
ing the global coupled system, (6) the high sparsity of the system is
perfectly exploited. Obviously, as the models are independently
stored, the memory-use scalability of the code is excellent, as seen
from the results in the previous section. On the other hand, if the
number of processors is incremented, the interprocessor commu-
nication will be more intense, decreasing then the processing
speedup after a certain critical number of processors.

Of course, an important pillar of the whole parallel code is the
Krylov solver, which, based on the current advances achieved in
this area, mainly after the 90s, should actually account for consid-
erable CPU-time saving during the solution phase. Herein, relevant
characteristics of efficient Krylov solvers are: (1) low number of
iterations required for convergence, (2) perfect exploitation of
sparsity, and (3) the suitableness for developing scalable parallel
code. Particularly in this work, indeed focused on the development
of the first parallel version of the BE-SBS algorithm, no special
attention has been properly paid to the solver itself. As noted, just

10 20 30 40
number of processors

number of processors

0.2

0.4

0.6

0.8

1

C
PU

 ti
m

e/
ni

te
r (

se
c.

/it
er

.)

measured values
logarithmic fit

CPU-time scaling (strain state 1)

(a)

10 20 30 40
100

150

200

250

300

350

400

450

500

us
ed

 m
em

or
y

(re
al

-v
al

ue
d

ar
ra

y,
 M

by
te

s)

measured values
logarithmic fit

Memory scaling (strain state 1)

(b)

Fig. 14. Scalability curves: 5 � 5 square-packed short-CNT model (strain state 1).

F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784 783
a plain diagonal-preconditioned BiCG solver has been employed. In
fact, although for the tolerance considered (f = 10�5), the number
of iterations was less than 10% of the system order (ndof) in all
problems analyzed, it is known that this particular solver presents
irregular convergence behavior, sometimes even not converging,
depending on the conditioning of the system. Anyway, considering
all the development brought about on iterative solvers and precon-
ditioning techniques in the last two decades, we do believe that the
BE-SBS algorithm is the optimal way to solve complex coupled BE
models, and a promising alternative to develop general BE parallel
codes, accounting for scalability of memory requirements and pro-
cessing time. In this respect, relevant contributions e.g. by Sleijpen
and Fokkema [52], and by Zhang [53] should be considered in the
next versions of the parallel code. The preconditioning also plays a
fundamental role in the efficiency of iterative solvers and will be
certainly included in the next development steps of the code. Here-
in, it is worthy noting that the way in that the SBS data structure
has been constructed allows easy implementation of ILU precondi-
tioning, e.g. conveniently defined by the inverses of the coefficient
matrices corresponding to the independent subregions. An inter-
esting overview on iterative solvers and preconditioning tech-
niques is given by Barett et al. [54].

On the effective material constants calculated by means of the
present BE-SBS algorithm, we see they are in very good agreement
with results from both FE calculations and estimated by the rules
of mixture. Besides, the strategy adopted for determining the dis-
placement boundary conditions for strain state 2 showed to be
appropriate. The corresponding traction resultant in the 3 direction
is less than 0.001% of that in the 2 direction for all cases analyzed,
i.e. its relative value is approximately zero as it should be [51].

In immediate future steps of this strategy, which may be very
useful for the microstructural analysis of general composites, be-
sides the improvements of the Krylov solver, commented above,
an analysis option to allow nonlinear matrix–fiber contact (delam-
ination) should be considered.
Acknowledgements

This research was sponsored by the Office of Advanced Scien-
tific Computing Research, US Department of Energy under Contract
DE-AC05-00OR22725 with UT-Battelle, LLC, the Brazilian Research
Council (CNPq), and by the Research Foundation for the State of
Minas Gerais (FAPEMIG), Brazil.
References

[1] Ghoniem NM, Cho K. The emerging role of multiscale modeling in nano- and
micro-mechanics of materials. CMES: Comput Mod Eng Sci 2002;3:147–74.

[2] Suquet P. Continuum micromechanics, CISM courses and lectures No.
377. Berlin: Springer; 1997.

[3] Cailletaud G, Forest S, Joplin D, Feyel F, Galliet I, Mounoury V, Quilici S. Some
elements of microstructural mechanics. Comput Mater Sci 2003;27:351–74.

[4] Jeulin D, Ostoja-Starzewski M. Mechanics of random and multiscale
microstructures. Springer; 2001.

[5] Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S. Apparent and
effective physical properties of heterogeneous materials: representativity of
samples of two materials from food industry. Comput. Methods Appl Mech.
Eng. 2006;195(33–36):3960–82.

[6] Torquato S. Random heterogeneous media: microstructure and improved
bounds on effective properties. Appl Mech Rev 1991;44:37–76.

[7] Carrera E, Demasi L. Classical and advanced multilayered plate elements based
upon PDV and RMVT. Part 1: derivation of finite-element matrices. Int J Numer
Methods Eng 2002;55:191–231.

[8] D’Ottavio M, Ballhause D, Wallmersperger T, Kröplin B. Considerations on
high-order finite elements for multilayered plates based on a unified
formulation. Comput Struct 2006;84:1222–35.

[9] Kulilov GM, Plotnikova SV. Geometrically exact assumed stress-strain
multilayered solid-shell elements based on the 3D analytical integration.
Comput Struct 2006;84:1275–87.

[10] Dávila CG, Chen T-K. Advanced modeling strategies for the analysis of tile–
reinforced composite armor. Appl Compos Mater 2000;7:51–68.

[11] Chen XL, Liu YJ. An advanced 3D boundary-element method for
characterization of composite materials. Eng Anal Boundary Elem
2005;29:513–23.

[12] Araújo FC, Gray LJ. Analysis of thin-walled structural elements via 3D standard
BEM with generic substructuring. Comput Mech 2008;41:633–45.

[13] Araújo FC, Silva KI, Telles JCF. Application of a generic domain-decomposition
strategy to solve shell-like problems through 3D BE models. Commun Numer
Methods Eng 2007;23:771–85.

[14] Shonkwiler RW, Lefton L. An introduction to parallel and vector scientific
computing. 1st ed. Cambridge University Press; 2006.

[15] Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R. Parallel
programming in OpenMP. London: Academic Press; 2001.

[16] Aoyama Y, Nakano J. RS/6000 SP: practical MPI programming. IBM
corporation; 1999. <http://www.redbooks.ibm.com>.

[17] Pacheco PS. Parallel programming with MPI. San Francisco: Morgan Kaufman;
1997.

[18] Symm GT. Boundary elements on a distributed array processor. Eng Anal
Boundary Elem 1984;1(3):162–5.

http://www.redbooks.ibm.com

784 F.C. Araújo et al. / Computers and Structures 88 (2010) 773–784
[19] Davies AJ. The boundary-element method on the ICL DAP. Parallel Comput
1988;8:335–43.

[20] Kane JH. Boundary-element analysis on vector and parallel computers.
Comput Syst Eng 1994;5:239–52.

[21] Natarajan R, Krishnaswamy D. A case study in parallel scientific computing:
the boundary-element method on a distributed-memory multicomputer. Eng
Anal Boundary Elem 1996;18:183–93.

[22] Song SW, Baddour RE. Parallel processing for boundary-element computations
on distributed systems. Eng Anal Boundary Elem 1997;19:73–84.

[23] van der Vorst HA. Iterative Krylov methods for large linear systems. Cambridge
University Press; 2003.

[24] Saad Y. Iterative methods for sparse linear systems. Philadelphia: Society for
Industrial and Applied Mathematics (SIAM); 2003.

[25] Cwik T, van de Geijn R, Patterson J. Application of massively parallel
computation to integral equation models of electromagnetic scattering. J Opt
Soc Am 1994;11(4):1538–45.

[26] Putnam JM, Car DD, Kotulski JD. Parallel CARLOS-3D an electromagnetic
boundary integral method for parallel platforms. Eng Anal Boundary Elem
1997;19:49–55.

[27] Hendrickson B, Womble D. The torus-wrap mapping for dense matrix
calculations on massively parallel computers. SIAM J Sci Comput
1994;15(5):1201–26.

[28] Ingber MS, Papathanasiou TD. A parallel-supercomputing investigation of the
stiffness of aligned, short-fiber reinforced composites using the boundary-
element method. Int J Numer Methods Eng 1997;40:3477–91.

[29] Lobry J, Manneback P. Parallel MR-BEM using ScaLAPACK. Eng Anal Boundary
Elem 1997;19:41–8.

[30] Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, et al.
ScaLAPACK users guide. Philadelphia: SIAM; 1987.

[31] Cunha MTF, Telles JCF, Coutinho ALGA. A portable parallel implementation of a
boundary-element elastostatic code for shared and distributed memory
systems. Adv Eng Software 2004;35:453–60.

[32] Masters N, Ye W. Fast BEM solution for coupled 3D electrostatic and linear
elastic problems. Eng Anal Boundary Elem 2004;28:1175–86.

[33] Buchau A, Hafla W, Groh F, Rucker WM. Parallelized computation of
compressed BEM matrices on multiprocessor computer clusters. COMPEL:
Int J Comput Math Electr Electron Eng 2005;24(2):468–79.

[34] Lei T, Yao Z, Wang H, Wang P. A parallel fast multipole BEM and its
applications to large-scale analysis of 3D fiber–reinforced composites. Acta
Mech Sin 2006;22:225–32.

[35] Kamiya N, Lwase H, Kita E. Parallel implementation of boundary element
method with domain decomposition. Eng Anal Boundary Elem
1996;18:209–16.

[36] Kamiya N, Lwase H, Kita E. Performance evaluation of parallel boundary-
element analysis by domain decomposition method. Eng Anal Boundary Elem
1996;18:217–22.
[37] Lu X, Wu W-L. A new subregion boundary-element technique based on the
domain decomposition method. Eng Anal Boundary Elem 2005;29:944–52.

[38] Araújo FC, Silva KI, Telles JCF. Generic domain decomposition and iterative
solvers for 3D BEM problems. Int J Numer Methods Eng 2006;68:448–72.

[39] Lou G, Wu TW, Zhang P, Cheng CYR. Vector and multithread computation of
silencer performance prediction on a dual-processor PC workstation. Eng Anal
Boundary Elem 2002;26:61–70.

[40] Araújo FC, Dors C, Martins CJ, Mansur WJ. New developments on BE/BE multi-
zone algorithms based on Krylov solvers – applications to 3D frequency-
dependent problems. J Braz Soc Mech Sci Eng 2004;26(2):231–48.

[41] Araújo FC, Gray LJ. Evaluation of effective material parameters of CNT–
reinforced composites via 3D BEM. Comp Mod Eng Sci 2008;24(2):103–21.

[42] Hughes TJR, Levit I, Winget L. An element-by-element solution algorithm for
problems of structural and solid mechanics. Comput Methods Appl Mech Eng
1983;36(2):241–54.

[43] Balay S, Buschelman K, Eijkhout V, Gropp W, Kaushik D, Knepley M, et al.
PETSc users manual. Math Comp Sci Div, Argonne National Laboratory; 2007.
<http://www.mcs.anl.gov/petsc>.

[44] Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes:
instabilities beyond linear response. Phys Rev Lett 1996;76:2511–4.

[45] He XQ, Kitipornchai S, Liew KM. Buckling analysis of multi-walled carbon
nanotubes: a continuum model accounting for van der Waals interaction. J
Mech Phys Solids 2005;53:303–26.

[46] Pantano A, Parks DM, Boyce MC. Mechanics of deformation of single and
multiwall carbon nanotubes. J Mech Phys Solids 2004;52:789–821.

[47] Wang CM, Ma YQ, Zhang YY, Ang KK. Buckling of double-walled carbon
nanotubes modeled by solid shell elements. J Appl Phys 2006;99:114317.

[48] Chen Y, Dorgan Jr BL, McIlroy DN, Aston DE. On the importance of boundary
conditions on nanomechanical bending behavior and elastic modulus
determination of silver nanowires. J Appl Phys 2006;100:104301.

[49] Lau K-T, Chiparab M, Linga H-Y, Hui D. On the effective elastic moduli of
carbon nanotubes for nanocomposite structures. Compos: Part B
2004;35:95–101.

[50] Chen XL, Liu YJ. Square representative volume elements for evaluating the
effective material properties of carbon nanotube-based composites. Comput
Mater Sci 2004;29:1–11.

[51] Hyer MW. Stress analysis of fiber–reinforced composite materials. 1st
ed. Boston: McGraw-Hill; 1998.

[52] Sleijpen GLG, Fokkema DR. BICGSTAB(L) for linear equations involving
unsymmetric matrices with complex spectrum. Electron Trans Numer
Methods Anal 1993;1:11–32.

[53] Zhang S-L. A class of product-type Krylov-subspace methods for solving
nonsymmetric linear systems. J Comput Appl Math 2002;149:297–305.

[54] Barett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, et al. Templates for
the solution of linear systems: building blocks for iterative methods. 2nd
ed. Philadelphia: SIAM; 1994.

http://www.mcs.anl.gov/petsc

	Boundary-element parallel-computing algorithm for the microstructural analysis of general composites
	Introduction
	Parallel computing
	Present work

	3D RVEs for fiber–reinforced composites
	Predicting E1,υ12 and υ13
	Predicting E2, υ23 and υ21

	BE modeling and the parallel-processing algorithm
	Applications
	RVEs with square-packed long CNT fibers
	RVEs with hexagonal-packed long CNT fibers
	RVEs with squared-packed short CNT fibers

	Conclusions and prospects
	Acknowledgements
	References

