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We present a theoretical analysis of  soliton excitations in an easy-plane 
classical one-dimensional antiferromagnet in the presence of  a stag- 
gered magnetic field transverse to the chain direction. The out-of-plane 
soliton solution is found to have an instability similar to the one found 
before by Magyar i -Thomas-Kumar  for the easy-plane ferromagnetic 
chain in an external magnetic field. 

INVESTIGATIONS of nonlinear excitations in 
Heisenberg antiferromagnetic chain have in the later 
years received much attention. The properties of  the 
classical one-dimensional anisotropic antiferromagnet 
in an external magnetic field have been treated exten- 
sively [1]. However, little attention has been paid to 
the case of  a staggered magnetic field [2, 3]. The study 
of  this case is important not only for academic rea- 
sons, but also because it has some physical interest. 
For instance, below the critical temperature of  an 
anisotropic quasi-one-dimensional antiferromagnet 
there is a long range magnetic order in the system of 
weakly interacting chains, such that the value of  the 
staggered spontaneous magnetization does not equal 
to zero. One approach to study this model is to 
approximate the quasi-one-dimensional system by a 
single chain in the presence of  the interchain staggered 
mean field [3]. 

In this paper we will be concerned with the one- 
dimensional antiferromagnetic system with single-ion 
anisotropy A(S~) ~ in external, ordinary and staggered, 
magnetic fields as described by the Hamiltonian, 

= J y S .  S.+, + A Z( sz )  -gmI4 Es . 
n n n 

-- g#nH s Y" ( -  1)"S, ~. (1) 
n 

Here J > 0 and A > 0, an easy-plane anisotropy. 
The case A < 0, easy-axis (Ising-like) anisotropy 
together with a staggered field in the z-direction has 
been studied by Mikeska [2]. The classical ground 
state configuration of  equation (1) is Ising-like, 
S = ( + S, 0, 0). For small ordinary magnetic fields H e 
we expect that two neighbouring spins are almost 

anti-parallel to each other at low temperatures, so that 
it is convenient to use the parametrization introduced 
by Mikeska [2]. 

S. = ( -  1)"S{sin (0. + ( -  1)"v.) cos (4). + ( -  1)"~o.), 

sin (0. + ( -  1)"v"), sin (~b. + ( -  1)"q~.), 

cos (0. + ( -  1)"v.). (2) 

0 and ~b are angles giving the sublattice magneti- 
zation, whereas v and q~ describe the deviations from 
perfect anti-alignment, and can be assumed to be 
small at low temperatures. Substituting equation (2) 
into the Hamiltonian (1) we can keep only the terms 
up to the second order in the small quantities v, ~o and 
the spatial variations of  0 and ~b. We obtain in the 
continuum approximation 

f. 4v 2 + 

+ s i n 2 0 [ 4 q ~ z + ( O ~ b )  z] 
/ 

+ K[cos20 + vZ(l - 2 cos20)] 

- 2hy(~o sin 0 cos ~b + v cos 0 sin q~) 

- 2hs sin 0 cos ~b~, (3) 
) 

where 

K = 
2A gl~nH~ 
7 '  = - - - ) T - '  = y' s), 

and z is the coordinate along the chain. 
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The equations of  mot ion  can be obtained either 
directly by applying the cont inuum approximat ion to 
the equations o f  mot ion  on the discrete lattice or f rom 
the Hamii tonian (3). We obtain 

1 00 
- 4~0 sin 0 - (hy - hsq~) cos q~, (4) 

JS  Ot 

1 aq~ 4v 

JS  dt sin 0 
Kv sin 0 

+ (hv - hsq~) cot 0 sin ~b - h~v cos q~ 
" sin 2 0 '  

1 av 00 04~ 
JS  at 4v~o cos 0 - 2 cos 0 0z 00 

(5) 

0:4, 
- s in  0 ~ + (h, + h,,~o) s in q~, (6)  

1 0~0 _ 4v 2 cos [ (0 y1 
JS  dt si-'~-0 cos 0 4~02 + \ 0z ] J 

1 020 
+ sin----0 &2 + K cos 0 

sin q~ 
+ (h~ - h,q~) cot 0 cos ~b - h.,v sin2 0. 

(7) 

After eliminating the small angles v and q~, we 
obtain 

0z 2 C2 Ot 2 - s i n 0 c o s 0  0 z ]  

C2 ~ - K s i n 0 c o s 0  

- h, cos 0 cos ~b - ~- cot 0 cos24~ 

2 hy 0~ 
+ -~ sin 0 cos 0 sin 2 4~ - ~ S in20 sin 4~ -b-7' (8) 

02c~ 1 02~b _ _ 2 c 0 t 0 ( 0 0 0 4 ~  
Oz 2 C 2 at 2 ~z 0z 

1 00 ) sin ~b 04, h~ 
C 2 at -& + -~ (4 + K cos 2 0) sin-------0 

/ 

+ h~ cot 0 sin ~b cos q~ 

h v h~. 00 
+ ~- sin q~ cos q~ + ~ sin q~ -~ ,  (9) 

where C = 2JS. 
One static solution o f  equat ions (8) and (9) can be 

given immediately: Taking 0 =n /2 ,  dq~/dt = 0, we 
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boundary  condit ions ~b(z = _ + m ) =  0, 
(04#0z) (z = +_ m)  = 0 is given by [4] 

~b(z) = _+2 arctan {(1 + ~),/2 

x cosech [(1 + 2)'/2 h~/~z]}, 

where 

~. = h~/4hs. 

(11) 

Equat ion (11) describes an xy  static kink with 
energy 

{ , E°v = 4JSZv/-~ (1 + ~),/2 + 2~ 1/------5 

[(l + z),,2 + 
× In (1 + ~),/2-- ~,/2_]j" (12) 

As we can see, when ). ~ 0  we find 
E°y = 8JSZv/-~ the energy of  the static s ine-Gordon 
soliton [2]. 

Another  solution to equations (8) and (9) is given 
by ~b = 0 and O(z, t) satisfying 

020 1 02 
K sin 0 cos 0 0z 2 C 2 0t 2 - 

- h~ cos 0 - ~- cot 0. (13) 

Taking 0 = qJ + n/2 and neglecting the last term 
on the right hand side of  equat ion (13) (it is second 
order  in the small quanti ty hs) we obtain 

02~0 1 02~ 
- K s i n ¢ c o s ~ + h ~ s i n ~ 0 ,  (14) 

Oz 2 C 2 Ot 2 

the dynamical  D S G  equation. The xz kink is then 
given by 

O(z, t) = + 2 arctan {(1 + 2) '/2 

7~ 
x cosech [Wr~s (1 + 2) I/2 (z - ut)]} + ~,  

(15) 

where 2 = K/h~, y = (1 - u2/c 2) i/2, and u is the kink 
velocity. The static xz  kink energy is 

E~ ° = 4JS2~/-~ f ( l  + 2) 1/2 
M 

1 { ( 1  + 2)';2 + 2'/2"~], 
+ 2 - F  In k ( l  + 2) ' / 2 -  2'/2)J" (16) 

find 

0249 - hs sin q~ + h~2 sin 4~ cos ~b, (10) 
az 2 --£ 

the static double-s ine-Gordon (DSG) equation.  
The solution of  this equat ion which satisfy the 

mod 2It, 
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Depending on the ration r = hy/2K 1/2 the xy kink (21) as 

(r < 1, easy xy plane) or the xz kink (r > 1, easyxz (L + 2)00 = bsech 2X ~tanhX, (23) 
plane) has lower energy. For r = 1 there is one soliton 
with rotational degeneracy, where 

Now we will investigate a time-dependent solution d 2 
for equations (8) and (9) for slowly moving xy  kinks. L - + (1 - 6 sech2x). (24) dx 2 
We make the ansatz, 

It 
Oxy(Z, t) = ~ + Oo(s) + O(u3), 

qb,,(z, t) = 49o(S ) + O(u2), 

where s = z - ut. Inserting equations (17) into equa- 
tions (8) and (9) we find 

- o  
ds 2 Oo + y2Oo(K + hs cos ~b0) 

hr'y2u d$o +~sin~bo d s '  

and for very small external field we can take 

d2~o 
- 72h,, sin ~bo. ds 2 

Now equation (23) is solved by making use of the 
complete orthonormal eigenfunctions qJ,(X) defined by 
L~,, = e,~b,. One has 

eo = - 3, ~ko = x/3/2 sech 2 Z, 
(17) 

el = O, St = ~ s e c h x t a n h x ,  

g, = 1 + k 2, 

~k = [(1 + k 2) (4 + k2)] -'/2 

x eikX(1 + k 2 + 3ik tanh X - 3 tanh2z). 

(25) 
Expanding 0o as 

00(Z) = C¢o~bo + ~,~, + f dkotk~bk, (26) (18) 

and evaluating integrals to obtain the coefficients ~. 
we find 

bIt 
Oo(X) = ~]~ ~ sech X tanh X + F(X, 2), (27) 

(19) 

where 

F(X, 2) - 
ibIt ~ dqeiqxq2(1 + q2 + 3iq tanh X - 3 tanh2x)cosech (Itq/2) 

(28) 
8 J~ (1 + 2 + q2)(1 + q2) 

After some lengthy algebra, the expression for the 
energy of the slowly moving kink takes the form 

E~, = ~JS2x/-~ 8 + 1 -- --~ + - - ~  ] 2 

22u2 i } It hy dqq4 c°sech2(Itq/2)(24 + 15q2 + 6q4) 0(02). (29) 
+ 120 C 2_~ (1 + 2 + q2)(1 + q2) 

Equation (19) has solution 

~b0(s) = 4 arctan [exp (+  7x/~s)]. (20) 

Inserting equation (20) into equation (18) we obtain 

d200 
dx 2 - 00(2 + 1 - 6 s e c h 2 x ) -  bsech2z tanhx ,  

(21) 

where 

Z = ~/~ss, b - 4hy~u 
v/-h7 C (22) 

Following Mikeska and Osano [5] we write equation 

Now to study the stability of the kink solution 
(27) we will consider the behaviour of the small oscil- 
lations in the presence of a single static kink, i.e. 

q~(x, t) = t#0(Z) + q(x)e  ~w,, 
It 

O(z, t) = ~ + Oo(X) + p (x )e  iw,. (30) 

Substitution of equations (30) into equations (8) 
and (9), linearization in P(X), q(z) and Oo(Z) leads to 
the following eigenvalue equations 

d2p(Z) ( 1 + 2  w2 ) 
dz 2 - hs C 2 6 sech 2 Z P(X) 

2iwhy sech X tanh xq(x), (31) 
hsC 
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( w2 ) 
d2q(z) = 1 2 sech 2• q(z) 

dz 2 h s C 2 

2iwh~, 
+ ~ sech Z tanh )fp(g). 

For h, >> hy we can neglect the last terms on the 
right hand side of equation (31) and (32). Equation 

= (';~ hsC )P(Z)" 

(33) 

(31) becomes 

d2p(z) 
dz 2 (1 - 6 sechZz)p(z) 

This equation possesses two bound-states solu- 
tions with energies [6] 

W~l = 2hs C2 and w22 = ( 2 - 3 ) h s C  2, (34) 

and continuum states 

1 + k 2 "-t- 3ik tanh :~ - 3 tanh 2 X)e ikx 
? k ( z )  = 

[(1 + k2)(4 + I,:2)] '/2 
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For  equation (33) we write 

dZq(g) (1 - 2 sechZ~)q(z) - w22 
(32) dz2 hsC 2 q(z). (37) 

This equation has a bound-state with energy 
w2~ = 0, related to translational invariance, and con- 
tinuum states 

(k + i tanh z) eikx 
qk(z) = (1 + k2) 1/2 ' (38) 

• with energy 

w~k = (1 + k2)hsC. (39) 

We have found that the nonlinear dynamics of  the 
easy-plane antiferromagnetic chain in a staggered 
field, presents an instability similar to what happens to 
the easy-plane ferromagnetic chain in an external 
magnetic field. Possibly more detailed studies would 
lead to conclusions similar to the ones obtained in [5]. 
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with energy 

w~ k = (1 + 2 + k2)hsC 2. (36) 

As we can see from equation (34), for 2 < 3 the 
static kink becomes unstable to out-of-plane motion. 
This instability is related to a diverging out-of-plane 
spin component owing to the motion of  the soliton. Of 
course equations (34) to (36) are exact in the case 
hy = 0, when we have an easy-plane antiferromagnet 
in an external staggered field and its behaviour is 
similar to what happens in the easy-plane ferromag- 
netic chain in an external uniform field [5, 7, 8]. For  
2 < 3 the kink can lower its energy if it moves with an 
arbitrary small velocity u. 
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