Prevalence of altered total cholesterol and fractions in the Brazilian adult population: National Health Survey

Prevalência de colesterol total e fraçães alterados na população adulta brasileira: Pesquisa Nacional de Saúde

Deborah Carvalho Malta' (D), Celia Landman Szwarcwald" (D), Ísis Eloah Machado"' (D), Cimar Azeredo Pereiralv, André Willian Figueiredo ${ }^{\text {V/ }}$, Ana Carolina Micheletti Gomide Nogueira de Sá"I' (©), Gustavo Velasquez-Melendez' (D) Filipe Malta dos Santos ${ }^{\text {¹ }}$ (D), Paulo Borges de Souza Junior" (©), Sheila Rizzato Stopa ${ }^{\text {VI }}$ (\mathbb{D}, Luiz Gastão Rosenfeld ${ }^{\text {VII* }}$

Abstract

Objective: To analyze the prevalence of altered total cholesterol and fractions levels in the Brazilian population, according to biochemical data from the National Health Survey. Methods: A descriptive study, using data from the National Health Survey, collected between 2014 and 2015. Total cholesterol and fractions were analyzed and population prevalences of altered values according to socio-demographic variables were calculated. The cutoff points considered were: total cholesterol $\geq 200 \mathrm{mg} / \mathrm{dl}$; low-density lipoprotein LDL $\geq 130 \mathrm{mg} / \mathrm{dL}$ and high-density lipoprotein HDL $<40 \mathrm{mg} / \mathrm{dL}$. Results: The prevalence of total cholesterol $\geq 200 \mathrm{mg} / \mathrm{dL}$ in the population was 32.7%, and higher in women (35.1%). The prevalence of altered HDL was $31.8 \%, 22.0 \%$ in females and 42.8% in males. LDL $\geq 130 \mathrm{mg} / \mathrm{dL}$ was found in 18.6% and was higher in women (19.9%). The population aged 45 years old and older and those with low levels of education presented a higher prevalence of altered cholesterol. Conclusion: Altered values of total cholesterol and fractions were frequent in the Brazilian population, especially among women, the elderly and people with low levels of education. These results may guide control and preventative actions such as healthy eating, physical activity and treatment, all of which aim to prevent coronary diseases.

Keywords: Cholesterol. Cholesterol, HDL. Cholesterol, LDL. Cardiovascular diseases. Health surveys. Laboratory test.

[^0]
Abstract

RESUMO: Objetivo: Analisar as prevalências dos níveis de colesterol total e frações alterados na população brasileira, segundo dados bioquímicos da Pesquisa Nacional de Saúde. Métodos: Estudo descritivo, utilizando dados laboratoriais da Pesquisa Nacional de Saúde coletados entre os anos de 2014 e 2015. Foram analisados exames de colesterol total e frações e calculadas prevalências populacionais de valores alterados segundo variáveis sociodemográficas. Consideraram-se os seguintes pontos de corte: colesterol total $\geq 200 \mathrm{mg} / \mathrm{dL}$; lipoproteínas de baixa densidade (LDL) $\geq 130 \mathrm{mg} / \mathrm{dL}$ e lipoproteínas de alta densidade (HDL) $<40 \mathrm{mg} / \mathrm{dL}$. Resultados: A prevalência de colesterol total \geq $200 \mathrm{mg} / \mathrm{dL}$ na população foi de $32,7 \%$, mais elevada em mulheres ($35,1 \%$). A prevalência de HDL alterado foi de $31,8 \%$, sendo de $42,8 \%$ no sexo masculino e $22,0 \%$ no feminino. LDL $\geq 130 \mathrm{mg} / \mathrm{dL}$ foi observado em $18,6 \%$, com prevalência mais elevada em mulheres ($19,9 \%$). População com idade de 45 anos ou mais e com baixa escolaridade apresentou maiores prevalências de colesterol com alterações. Conclusão: Valores de colesterol total e frações alterados foram frequentes na população brasileira, especialmente entre mulheres, idosos e pessoas de baixa escolaridade. Esses resultados poderão orientar as ações de controle e prevenção, como alimentação saudável, atividade física e tratamento, visando à prevenção de doenças coronarianas.

Palavras-chave: Colesterol. HDL-colesterol. LDL-colesterol. Doenças cardiovasculares. Inquéritos epidemiológicos. Testes laboratoriais.

INTRODUCTION

Noncommunicable chronic diseases (NCDs) are the leading causes of morbidity and mortality worldwide. Among these diseases, cardiovascular diseases (CVD) stand out for their magnitude, and their association with disability and premature death ${ }^{1}$. In Brazil, about one third of deaths are due to CVD, and they are also the most significant cause of healthcare spending ${ }^{2}$.

Cholesterol is one of the most biologically important lipids. It is a precursor to steroid hormones, bile acids and vitamin D. As a component of cell membranes, cholesterol acts on its fluidity and metabolic regulation ${ }^{3}$. Lipoproteins allow for lipid transport in the aqueous plasma and can be classified according to their density as a low-density lipoprotein (LDL) and a high-density lipoprotein (HDL) ${ }^{3}$.

In the 1960s, studies in the Framingham Heart cohort showed evidence that elevated serum cholesterol values would increase the risk of myocardial infarction in subsequent years of the study ${ }^{4}$. Later, other research confirmed associations between high cholesterol levels and increased risk for heart disease and stroke ${ }^{5,6}$.

The World Health Organization estimates point out that elevated serum cholesterol causes about 2.6 million deaths and 29.7 million years of life lost due to premature death and disability ${ }^{5}$.

Clinical trials, meta-analyzes and clinical consensus demonstrate that dyslipidemia control is associated with important benefits in reducing cardiovascular events and mortality. The most well-known, the Adult Treatment Panel III (ATP III), in 2001, has guided countries in setting cutoff points and therapeutic targets for cholesterol levels depending on the risk of having a cardiovascular incident ${ }^{7}$.

Subsequent studies from different countries have developed guidelines that associate elevated cholesterol levels with higher risk not only of acute myocardial infarction, but also of peripheral arterial disease and stroke ${ }^{8}$ and point out that the best predictor of cardiac risk is the LDL ${ }^{8}$.

Investigations indicate that there is a reduction in the CVD rate when plasma cholesterol is decreased, particularly LDL-cholesterol levels ${ }^{3}$. Clinical trials with statins have shown that the greater the absolute reduction in LDL, the greater the reduction in CVD. However, there is still no consensus in the literature on the best LDL serum level needed to obtain the benefit ${ }^{8,9}$.

Despite the established evidence in the scientific literature regarding the association between cholesterol and coronary artery disease, population surveys that monitor the prevalence of cholesterol in Brazil are still scarce and mostly use self-reported data ${ }^{10,11}$. The results of the Brazilian Longitudinal Study of Adult Health (Estudo Longitudinal de Saúde do Adulto - ELSA Brazil), conducted among employees of federal universities around the country, showed a higher prevalence of altered LDL in men, black people, the elderly and people with low levels of education ${ }^{12}$.

In 2014 and 2015, the National Health Survey (Pesquisa Nacional de Saúde - PNS) collected biological material that included measurements of cholesterol and fractions ${ }^{13,14}$, enabling, for the first time, national analyzes on the distribution of altered cholesterol in the Brazilian population. Therefore, the aim of this study was to analyze the prevalence of altered total cholesterol levels and fractions in the Brazilian population, according to PNS biochemical data.

METHODS

The present study was a descriptive, epidemiological survey, and used data from PNS laboratory exams from 2014 to 2015. PNS is a national and home-based survey conducted by the Brazilian Institute of Geography and Statistics, in partnership with the Ministry of Health. It uses three-stage probabilistic samples, and interview records were obtained from 64,348 households. More methodological details can be read in other publications ${ }^{13,14}$.

The laboratory subsample consisted of 8,952 people, and 418 samples were excluded due to having enough material, hemolysis, sample loss and other reasons. Thus, there was a total of 8,534 exams for the current analysis. The study adopted post-stratification weights according to gender, age, education and region, aiming to establish estimates for the Brazilian adult population ${ }^{14}$.

The research participants signed an informed consent form, and then peripheral blood was collected at any time of the day. It is also worth noting that the study followed the protocol that dispenses fasting for cholesterol measurement ${ }^{3}$.

Total cholesterol (TC), LDL and HDL were collected in gel tubes. The next steps included waiting for 30 minutes for clot retraction and then centrifuging and forwarding
the samples, which were refrigerated at 2 to $8^{\circ} \mathrm{C}$. The temperature was controlled during each of the steps. These parameters were measured by an automated enzymatic/colorimetric method.

The prevalences for each category of TC levels and fractions were described by the following intervals:

- TC: $<160 \mathrm{mg} / \mathrm{dL} ; \geq 160$ to $<200 \mathrm{mg} / \mathrm{dL} ; \geq 200$ to $<220 \mathrm{mg} / \mathrm{dL} ; \geq 220$ to $<280 \mathrm{mg} /$ dL ; and $\geq 280 \mathrm{mg} / \mathrm{dL}$.
- LDL cholesterol: $<100 \mathrm{mg} / \mathrm{dL} ; \geq 100$ to $<130 \mathrm{mg} / \mathrm{dL} ; \geq 130$ to $<160 \mathrm{mg} / \mathrm{dL} ; \geq 160$ to $<190 \mathrm{mg} / \mathrm{dL}$; and $\geq 190 \mathrm{mg} / \mathrm{dL}$.
- HDL cholesterol: $<25 \mathrm{mg} / \mathrm{dL} ; \geq 25$ to $<30 \mathrm{mg} / \mathrm{dL} ; \geq 30$ to $<40 \mathrm{mg} / \mathrm{dL} ; \geq 40$ to $<50 \mathrm{mg} / \mathrm{dL}$; $>50 \mathrm{mg} / \mathrm{dL}$.
- TC/HDL ratio: <4.0.

The average of cholesterol levels and the TC/HDL ratio were calculated for the general population and according to age groups (18 to 29 years; 30 to 44 years; 45 to 59 years; 60 years or older).

Dichotomous analysis was performed (having altered cholesterol or not), and the population prevalence of altered TC and fractions were calculated, considering the following cutoff points: TC $\geq 200 \mathrm{mg} / \mathrm{dL}$; LDL $\geq 130 \mathrm{mg} / \mathrm{dL}$ and HDL levels $<40 \mathrm{mg} / \mathrm{dL}$, in accordance with the clinical treatment parameters recommended by the ATPIII ${ }^{7}$. Prevalence was stratified by gender, age group (18-29 years; 30-44 years; $45-59$ years; 60 years or older), education (0 to 8 ; 9 to 11, 12 years of schooling or more), race / color (white, dark-skinned black, light-skinned black and others) and regions of the country (North, Northeast, South, Southeast and Midwest).

To estimate differences between strata, Pearson's χ^{2} test was used. The data were analyzed using the Data Analysis and Statistical Software (Stata), version 14, based on the set of commands for analyzing data from surveys with a complex sample (survey).

The PNS was approved by the National Research Ethics Commission (Comissão Nacional de Ética em Pesquisa - CONEP) of the National Health Council (Conselho Nacional de Saúde - CNS), of the Ministry of Health. Adult participation in the research was voluntary and confidentiality of their information was guaranteed. Subjects selected for the research provided informed consent for all of the research procedures, including interviewing and blood and urine collection.

RESULTS

The mean TC in the population was $185 \mathrm{mg} / \mathrm{dL}$. It was $181.7 \mathrm{mg} / \mathrm{dL}$ in males and $198.7 \mathrm{mg} / \mathrm{dL}$ in females. The average was higher with the increase in age - in the age group 18 to 29 years, for example, it was $169.4 \mathrm{mg} / \mathrm{dL}$ reaching higher averages between 45 and 59 years of age.

Regarding HDL, the population average was $46.5 \mathrm{mg} / \mathrm{dL}-43 \mathrm{mg} / \mathrm{dL}$ for males and $49.6 \mathrm{mg} / \mathrm{dL}$ for females. In general, in all age groups, the HDL values were similar, around $46.5 \mathrm{mg} / \mathrm{dL}$.

Regarding LDL, the population average was $104.7 \mathrm{mg} / \mathrm{dL}-102.9 \mathrm{mg} / \mathrm{dL}$ in males and $106.2 \mathrm{mg} / \mathrm{dL}$ in females. In the age group of $18-29$ years, the average LDL was $93.1 \mathrm{mg} / \mathrm{dL}$. Higher values were observed between 40 and 59 years old ($112.2 \mathrm{mg} / \mathrm{dL}$).

The TC/HDL ratio was high in the total population (4.3) in both men (4.6) and women (4.0). It was less than 4 only for the total population aged 18 to 29 years and women between 18 and 44 years old (Table 1).

TC values for the total population were: $<160 \mathrm{mg} / \mathrm{dL}(26.3 \%), \geq 160$ to $<200 \mathrm{mg} / \mathrm{dL}$ (41%) , ≥ 200 to $<220 \mathrm{mg} / \mathrm{dL}(15.4 \%), \geq 220$ to $<280 \mathrm{mg} / \mathrm{dL}(15.8 \%)$ and $\geq 280 \mathrm{mg} / \mathrm{dL}(1.5 \%)$. For HDL, the values were: $<25 \mathrm{mg} / \mathrm{dL}(2 \%), \geq 25$ to $<30 \mathrm{mg} / \mathrm{dL}(4.8 \%), \geq 30$ to $<40 \mathrm{mg} / \mathrm{dL}$ $(25 \%), \geq 40$ to $<50 \mathrm{mg} / \mathrm{dL}(33.2 \%)$ and $\geq 50 \mathrm{mg} / \mathrm{dL}(35.1 \%)$. LDL values were: $<100 \mathrm{mg} / \mathrm{dL}$ $(45.7 \%), \geq 100$ to $<130 \mathrm{mg} / \mathrm{dL}(35.7 \%), \geq 130$ to $<160 \mathrm{mg} / \mathrm{dL}(14.1 \%), \geq 160$ to $<190 \mathrm{mg} / \mathrm{dL}$

Table 1. Population average of total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and TC/HDL ratio by gender and age group. Brazil, National Health Survey (Pesquisa Nacional de Saúde - PNS), 2014-2015.

Gender	Age range (years)	TC		HDL		LDL		TC/HDL	
		Average	95\%CI	Average	95\%CI	Average at	95\%CI	Average	95\%Cl
	18-29	169.4	166.9-171.9	46.9	46.0-47.9	93.1	91.3-94.8	3.9	3.8-4.0
	30-44	185.1	183.2-186.9	46.2	45.6-46.9	105.2	103.8-106.6	4.3	4.2-4.4
	45-59	195.8	193.9-197.7	46.4	45.7-47.2	112.2	110.6-113.8	4.6	4.5-4.6
	≥ 60	192.0	189.7-194.3	46.3	45.5-47.1	109.8	108.0-111.6	4.4	4.3-4.5
	Total	185.0	183.9-186.1	46.5	46.1-46.9	104.7	103.8-105.5	4.3	4.2-4.3
	18-29	164.9	160.7-169.0	43.2	41.9-44.5	90.1	87.7-92.5	4.1	3.9-4.3
	30-44	187.5	184.5-190.5	43.1	42.2-44.0	107.0	104.7-109.3	4.7	4.5-4.8
	45-59	191.7	189.0-194.4	43.3	42.1-44.4	109.6	107.3-111.8	4.8	4.7-4.9
	≥ 60	183.4	180.1-186.7	42.0	41.0-43.0	106.0	103.4-108.6	4.6	4.5-4.8
	Total	181.7	179.9-183.5	43.0	42.4-43.5	102.9	101.6-104.2	4.6	4.5-4.6
	18-29	173.9	171.1-176.7	50.6	49.3-51.8	96.0	93.6-98.3	3.6	3.6-3.7
	30-44	182.9	180.7-185.2	49.0	48.2-49.8	103.6	101.9-105.4	3.9	3.9-4.0
	45-59	199.6	196.9-202.2	49.3	48.3-50.3	114.6	112.4-116.8	4.3	4.2-4.4
	≥ 60	198.6	195.7-201.7	49.6	48.5-50.8	112.8	110.3-115.2	4.3	4.2-4.4
	Total	198.7	186.6-189.3	49.6	49.1-50.1	106.3	105.2-107.4	4.0	4.0-4.1

95\%CI: 95\% confidence interval.
(3.8%) and $\geq 190 \mathrm{mg} / \mathrm{dL}(0.7 \%)$. The TC/HDL ratio >4 was found in 50% of the total population (Table 2).

The prevalence in the adult population of $\mathrm{TC} \geq 200 \mathrm{mg} / \mathrm{dL}$ was 32.7%, and was higher in women (35.1%). The prevalence of high cholesterol was higher among those aged over 45 years and lower among those with higher levels of education ($\mathrm{p}<0.001$) (Table 3).

The prevalence of HDL lower than $40 \mathrm{mg} / \mathrm{dL}$ in the adult population was 31.8%, and was approximately twice as high in males (42.8%) compared to females (22%). Altered HDL values were lower in the population with higher levels of education. Regarding the regions,

Table 2. Distribution of total cholesterol (TC), high-density lipoprotein cholesterol (HDL) and lowdensity lipoprotein cholesterol (LDL) levels according to different cutoff points. Brazil, National Health Survey 2014-2015.

Categories	Total		Male		Female	
	$\%$	$95 \% \mathrm{Cl}$	$\%$	$95 \% \mathrm{Cl}$	$\%$	$95 \% \mathrm{Cl}$

Total Cholesterol

<160	26.3	25.0	27.6	29.7	27.6	31.8	23.2	21.7	24.8
≥ 160 and <200	41.0	39.6	42.4	40.2	38.1	42.4	41.7	39.9	43.5
≥ 200 and <220	15.4	14.5	16.5	14.9	13.5	16.5	15.9	14.6	17.2
≥ 220 and <280	15.8	14.8	16.8	13.9	12.5	15.4	17.4	16.1	18.8
≥ 280	1.5	1.2	1.9	1.2	0.9	1.8	1.8	1.4	2.3
HDL									
<25	2.0	1.6	2.4	3.2	2.6	4.1	0.8	0.6	1.2
≥ 25 and <30	4.8	4.2	5.5	7.2	6.1	8.5	2.7	2.2	3.2
≥ 30 and <40	25.0	23.8	26.3	32.4	30.3	34.5	18.5	17.2	20.0
≥ 40 and <50	33.2	31.8	34.5	33.1	31.0	35.2	33.3	31.6	35.0
≥ 50	35.1	33.7	36.4	24.1	22.3	26.1	44.8	42.9	46.6

LDL

<100	45.7	44.3	47.2	48.0	45.7	50.2	43.8	42.0	45.6
≥ 100 and <130	35.7	34.3	37.1	34.9	32.8	37.1	36.4	34.6	38.2
≥ 130 and <160	14.1	13.2	15.1	13.7	12.3	15.2	14.5	13.3	15.8
≥ 160 and <190	3.8	3.3	4.4	3.0	2.3	3.8	4.5	3.8	5.3
≥ 190	0.7	0.5	0.9	0.5	0.3	0.8	0.9	0.6	1.3

TC/HDL									
≥ 4	50.0	48.6	51.5	58.3	56.1	60.6	42.7	40.9	44.5

95% CI: 95% confidence interval.
altered HDL was less frequent in the Southern Region for the general population and in both genders (Table 4).

The prevalence of $\mathrm{LDL} \geq 130 \mathrm{mg} / \mathrm{dL}$ was 18.6%, higher in women (19.9%) and among participants aged 45 and over $(\mathrm{p}<0.001)$. Regarding education levels, it was more frequent in the range of zero to eight years of education for the total population (21.5%) and among women (24.9\%) (p <0.001) (Table 5).

Table 3. Population prevalence of total cholesterol $\geq 200 \mathrm{mg} / \mathrm{dL}$ according to gender, age, education level, skin color and region. Brazil, National Health Survey 2014 - 2015.

	Total			Male			Female		
	\%	95\%Cl	P	\%	95\%CI	p	\%	95\%CI	p
Total	32.7	31.5-34.1		30.1	28.2-32.1		35.1	33.4-36.8	<0.001
Age range									
18 to 29	17.9	15.7-20.4	< 0.001	13.9	11.2-17.4	< 0.001	21.9	18.7-25.5	< 0.001
30 to 44	31.0	28.7-33.4		34.9	31.2-38.8		27.6	24.9-30.5	
45 to 59	43.4	40.8-46.0		39.4	35.7-43.4		47.0	43.5-50.5	
≥ 60	41.9	39.1-44.8		33.5	29.5-37.9		48.4	44.7-52.2	
Education level (years)									
0 to 8	37.1	35.2-39.1	< 0.001	31.6	28.9-34.5	0.237	42.2	39.6-44.8	< 0.001
9 to 11	28.6	25.5-32.0		26.6	22.2-31.6		30.6	26.4-35.2	
≥ 12	30.4	28.4-32.5		30.0	26.9-33.3		30.8	28.3-33.4	
Skin color									
White	33.9	$31.9-36.0$	0.146	30.8	27.8-33.9	0.669	36.6	33.9-39.4	0.196
Dark-skinned black	33.2	29.0-37.6		30.0	23.9-37.0		36.0	30.5-41.8	
Light-skinned black	31.5	29.8-33.3		29.5	26.9-32.4		33.4	31.1-35.7	
Other	23.3	14.8-34.6		19.6	$9.7-35.4$		25.8	14.2-42.2	

Region

North	32.5	$30.4-34.6$		31.0	$27.9-34.3$		33.9	$31.2-36.7$	
	34.0	$32.3-35.8$		30.2	$27.7-33.0$		37.4	$35.1-39.8$	
Northeast	31.5	$29.1-34.1$	0.195	28.7	$25.1-32.6$	0.376	34.1	$30.9-37.4$	0.291
Southeast	34.7	$31.7-37.8$		33.4	$28.9-38.3$		35.8	$32.0-39.8$	
South	31.7	$28.7-34.8$		30.1	$25.7-34.9$		33.0	$29.1-37.2$	
Midwest									

95% CI: 95% confidence interval.

DISCUSSION

The collection of biological material performed in the PNS and the inclusion of cholesterol and fractions represent a major advance for Brazil. For the first time, this study traces the biochemical profile of clinical or preclinical conditions of TC, LDL, HDL and TC/HDL levels in the Brazilian population. Thus, PNS laboratory data may support the identification of cardiovascular risk in the population'.

Table 4. Population prevalence of high-density lipoprotein cholesterol (HDL) < $40 \mathrm{mg} / \mathrm{dL}$ according to gender, age, education level, skin color and region. Brazil, National Health Survey 2014-2015.

Region									
North	36.6	34.4-38.8	< 0.001	47.2	43.7-50.7	0.036	26.7	24.2-29.4	<0.001
Northeast	34.8	33.0-36.6		44.3	41.4-47.2		26.4	24.3-28.6	
Southeast	30.8	28.3-33.4		43.1	38.9-47.3		20.0	17.4-22.9	
South	26.1	23.3-29.0		36.3	31.6-41.2		16.8	14.1-20.0	
Midwest	34.3	31.1-37.6		45.0	39.8-50.3		24.7	21.2-28.6	

95% CI: 95% confidence interval.

According to the results, over one third of the adult population had a high TC (above $200 \mathrm{mg} / \mathrm{dL}$). It was higher in women than in men, higher in the older population and lower in the population that had higher levels of education. HDL less than $40 \mathrm{mg} / \mathrm{dL}$ affected one third of adults. The TC/HDL ratio ≥ 4 was also present in half of the Brazilian population. LDL above $130 \mathrm{mg} / \mathrm{dL}$ reached one fifth of the adult population.

As in Brazil, population-based studies conducted in some countries have shown a high prevalence of dyslipidemia. In China, research with cut-off points based on Chinese guidelines

Table 5. Population prevalence of low-density lipoprotein cholesterol (LDL) $\geq 130 \mathrm{mg} / \mathrm{dL}$ according to gender, age, education level, skin color and region. Brazil, National Health Survey 2014-2015.

Region										
North	16.2	$14.7-17.9$		15.5	$13.2-18.1$			17.0	$14.9-19.2$	
Northeast	19.8	$18.4-21.3$		17.5	$15.5-19.8$		21.9	$19.9-23.9$		
Southeast	17.9	$16.0-19.9$	0.136	16.1	$13.4-19.3$	0.355	19.4	$16.8-22.2$	0.195	
South	20.0	$17.6-22.6$		19.8	$16.2-24.0$		20.1	$17.1-23.5$		
Midwest	17.8	$15.4-20.4$		17.8	$14.3-21.9$		17.8	$14.8-21.3$		

95\%CI: 95\% confidence interval.
considering LDL levels $\geq 130 \mathrm{mg} / \mathrm{dL}$ and similar HDL levels for men and women found $33.5 \% \mathrm{TC}, 0.6 \% \mathrm{LDL}$ and 8.8% for altered HDL^{15}. In Turkey, using the ATP III^{7} cutoff points, 43% of people had TC $>200 \mathrm{mg} / \mathrm{dL}$. The prevalence of elevated TC, LDL-cholesterol and triglyceride (TG) levels increased with age ${ }^{16}$.

In Brazil, studies conducted in the state of São Paulo followed the ATP III 7 recommendations for defining the reference value the cutoff points for dyslipidemia. It was reported that dyslipidemia affected 61.9% of the population, especially those older than 40 years of age, in the city of Ribeirão Preto ${ }^{17}$. In São Paulo, desirable levels of TC were similar between women (64.7%) and men (64.9%). For LDL, approximately 20% of men and women had levels between 130 and $159 \mathrm{mg} / \mathrm{dL}$. Levels were considered to be high ($\geq 160 \mathrm{mg} / \mathrm{dL}$) in 11.8% of men and 13.6% of women. Desirable levels ($40 \mathrm{mg} / \mathrm{dL}$) of HDL-cholesterol were found in 68% of women and 54.3% of men 18.

The biochemical data of the PNS differ from the self-reported data found in the Survey of Risk Factors and Protection for Chronic Diseases by Telephone Survey (Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico - Vigitel), which identified 22.6% of the adult population in Brazilian capital cities with high cholesterol ${ }^{19}$. In the PNS, using the self-reported questionnaire, the prevalence of high cholesterol was even lower $(12.5 \%)^{11}$. In addition, the PNS also measured the population who said they had never measured their cholesterol or $\mathrm{TG}(14.3 \%)^{11}$. Therefore, the biochemical data described here identified higher prevalences, about one third of the population, which may partly reflect the lack of access to the tests ${ }^{11}$.

Regarding gender, self-reported diagnostic estimates from the PNS coincide with laboratory test data presented in this study. The diagnosis was more frequent in women (15.1\%) than in men $(9.7 \%)^{11}$. Similar results were also found in Vigitel, with higher prevalences among women (25.9%) than among men ($18.8 \%)^{19}$.

The study found a higher prevalence among women, which is well documented in the literature ${ }^{3,20,21}$. The high prevalence of dyslipidemia in women is described during menopause ${ }^{20}$, pregnancy and the use of birth control pills, corticosteroids and anabolic steroids, probably due to the reduction in estrogen ${ }^{21}$. Gestational hypertriglyceridemia occurs in order to meet increased maternal energy demands as a precursor to hormones for the placenta, and to provide cholesterol and fatty acids to the fetus ${ }^{3}$.

The current study shows that TC and LDL are higher as age increases, with a slight decrease in the elderly population over 60 years of age. Lowering cholesterol in the elderly can be explained by loss of weight, improved eating habits, or comorbidities that may worsen food absorption ${ }^{22}$.

The Southern Region presented the lowest proportion of altered HDL, with no difference in relation to the regions for TC and LDL. PNS studies with self-reported data showed a high prevalence among residents of the South and Southeast macro-regions of the country, which could be explained in part by greater access to health services and diagnostic opportunities in these areas ${ }^{11}$.

The study states that altered cholesterol is less frequent in the more educated population, which was also found in research with self-reported measures ${ }^{11}$. Data from Vigitel indicate that the diagnosis of high cholesterol was more frequent in the low-educated population, ranging from 29 (zero to eight years of study) to 19.4% (12 years or more) ${ }^{19}$, which may be explained by the higher access to prevention, promotion and care practices in the population with higher levels of education and income ${ }^{23}$.

It is worth noting that half of the adult population has a TC/HDL ratio greater than 4. Epidemiological studies, including Framingham, show that the TC/HDL ratio is inversely associated with the incidence of coronary atherosclerotic disease ${ }^{24}$, in this regard high prevalence rates of a TC/HDL ratio greater than 4 suggest possible future cardiovascular events ${ }^{24}$. The ratio, in this study, showed a high prevalence and therefore the importance of monitoring TC levels and fractions as a means of preventing cardiovascular disease ${ }^{3}$. The 10% reduction in serum cholesterol in 40 -year-old men was pertinent to a 50% decrease in cardiovascular disease over a five-year period and by 20% in 70 -year-old men ${ }^{25,26}$. Further studies showed a significant decrease in mortality from statin use ${ }^{8}$.

Investigations reveal that, in addition to statin treatments, diet and regular physical activity can also contribute to cholesterol reduction in the elderly, as well as for all age group ${ }^{3,9}$. Physical exercise plays an important role in preventing and controlling cardiovascular disease ${ }^{3,27}$.

The data collected from the PNS also help in defining specific reference values for the Brazilian population and may influence new definitions of cardiovascular risk ${ }^{3,8}$, which should be estimated based on the joint analysis of characteristics that increase the chance of an individual developing the condition, such as age, smoking, high blood pressure, diabetes, previous cardiovascular events, among others. Thus, future PNS studies could define and prioritize populations who are at risk for cardiovascular diseases and help support prevention, monitoring and treatment.

Among the limitations of the study are laboratory collection losses, however the use of sample weights allowed for adequate population estimates, and data generalization is relatively safe for national and macro-region projections ${ }^{15,16}$. The cutoff points adopted were defined according to protocol ${ }^{3}$ and may vary according to the consensus review.

CONCLUSION

For the first time in Brazil, this study shows the prevalence of of altered serum TC, LDL and HDL levels points out that about one third of adults have cholesterol alterations. These results may guide control and preventative actions, such as healthy eating, physical activity and treatment of coronary diseases, which represent the leading cause of death in Brazil and worldwide. Furthermore, they can guide routine monitoring and pharmacological measures when indicated.

REFERENCES

1. World Health Organization. Global status report on noncommunicable diseases. [Internet]. 2014 [acessado em 5 dez. 2018]. Disponível em: http:/ / apps.who.int/ iris/bitstream/10665/148114/1/9789241564854_eng. pdf?ua=1
2. Malta DC, Bernal RTI, Lima MG, Araújo SSC, Silva MMA, Freitas MIF, et al. Doenças crônicas não transmissíveis e a utilização de serviços de saúde: análise da Pesquisa Nacional de Saúde no Brasil. Rev Saúde Pública 2017; 51(Supl. 1): 1-10. http://dx.doi.org/ 10.1590/s1518-8787.2017051000090
3. Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune Neto A, et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose - 2017. Arq Bras Cardiol 2017; 109(2 Supl. 1): 1-76. http:// dx.doi.org/10.5935/abc. 20170121
4. Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann Intern Med 1979; 90(1): 85-91. http:/ / dx.doi.org/ 10.7326/0003-4819-90-1-85
5. WorldHealth Organization. Global Health Risks: Mortality and burden of disease attributable to selected major risks [Internet]. 2009 [acessado em 5 dez. 2018]. Disponível em: https:/ / www.who.int/ healthinfo/global_burden_ disease/GlobalHealthRisks_report_full.pdf
6. Xavier HT, Izar MC, Faria Neto JR, Assad MH, Rocha VZ, Sposito AC, et al. V Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. Arq Bras Cardiol 2013; 101(4 Supl. 1): 1-20. http:/ / dx.doi. org/10.5935/abc.2013S010
7. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001; 285(19): 2486-97. http:/ / dx.doi.org/10.1001/jama.285.19.2486
8. Nayor M, Vasan RS. Recent Update to the Cholesterol Treatment Guidelines: A Comparison With International Guidelines. Circulation 2016; 133(18): 1795-806. https: / / doi.org/10.1161/CIRCULATIONAHA.116.021407
9. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. American College of Cardiology / American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63(25): 2889-934. https:/ / doi. org/10.1016/j.jacc.2013.11.002
10. Pereira LPP, Sichieri PR, Segri NJ, Silva RMVG, Ferreira MG. Dislipidemia autorreferida na região Centro-Oeste do Brasil: prevalência e fatores associados. Science Collective Health 2015; 20 (6): 1815-24. https://doi. org/10.1590/1413-81232015206.16312014
11. Lotufo PA, Santos RD, Sposito AC, Bertolami M, Rocha-Faria Neto J, Izar MC, et al. Prevalência de Diagnóstico Médico de Colesterol Alto Autorreferido na População Brasileira: Análise da Pesquisa Nacional de Saúde, 2013. Arq Bras Cardiol 2017; 108(5): 411-6. http:/ / dx.doi.org/ 10.5935/abc. 20170055
12. Lotufo PA, Santos RD, Figueiredo RM, Pereira AC, Mill JG, Alvim SM, et al. Prevalence, awareness, treatment and control of high low-density lipoprotein cholesterol in Brazil: Baseline of the Brazilian Longitudinal Study of Adult Health (ELSABrasil). J Clin Lipid 2016; 10(3): 568-76. https:/ / doi.org/10.1016/j.jacl.2015.12.029
13. Souza-Júnior PRB, Freitas MPS, Antonaci GA, Szwarcwald CL. Desenho da amostra da Pesquisa Nacional de Saúde 2013. Epidemiol Serv Saúde 2015; 24(2): 207-16. http://dx.doi.org/10.5123/ S1679-49742015000200003
14. Szwarcwald CL, Malta DC, Azevedo C, Souza Júnior PRB, Rozemberg LG. Exames laboratoriais da pesquisa nacional de saúde: Metodologia de amostragem, coleta, e análise dos dados. Rev Bras Epidemiol 2019. (no prelo).
15. Zhang FL, Xing YQ, Wu YH, Liu HY, Luo Y, Sun MS, et al. The prevalence, awareness, treatment and control of dyslipidemia in northeast China: a population-based cross-sectional survey. Lipids Health Dis 2017; 16(1): 61. http://dx.doi.org/10.1186/ s12944-017-0453-2
16. Bayram F, Kocer D, Gundogan K, Kaya A, Demir O, Coskun R, et al. Prevalence of dyslipidemia and associated risk factores in Turkish adults. J Clin Lipidol. 2014; 8(2): 206-16. http:/ / dx.doi.org/10.1016/j. jacl.2013.12.011
17. De Moraes AS, Checchio MV, De Freitas ICM. Dislipidemia e fatores associados em adultos residentes em Ribeirão Preto, SP. Resultados do Projeto EPIDCV. Arq Bras Endocrinol Metab 2013; 57(9): 691-701. http:// dx.doi.org/10.1590/S0004-27302013000900004
18. De Fornés NS, Martins IS, Velásquez-Meléndez G, Latorre MRDO. Escores de Consumo alimentar e níveis lipêmicos em população de São Paulo, Brasil. Rev Saúde Pública 2002; 36(1): 12-8. http:/ /dx.doi. org/10.1590/S0034-89102002000100003
19. Brasil. Ministério da Saúde. Vigitel Brasil 2016. Vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico [Internet]. Brasília: Ministério da Saúde; 2017 [acessado em 5 dez. 2018]. 160 p. Disponível em: http: / /bvsms.saude.gov.br/bvs/publicacoes/ vigitel_brasil_2016_fatores_risco.pdf
20. Phan BAP, Toth PP. Dyslipidemia in women: etiology and management. Int J Womens Health 2014; 6: 18594. http: / / dx.doi.org/10.2147/IJWH.S38133
21. Edmunds E, Lip GYH. Cardiovascular risk in women: the cardiologist's perspective. Q J Med 2000; 93(3): 135-45. https://doi.org/10.1093/ qjmed/93.3.135
22. Francisco PMSB, Segri NJ, Borim FSA, Malta DC. Prevalência simultânea de hipertensão e diabetes em idosos brasileiros: desigualdades individuais e contextuais. Ciênc Saúde Colet 2018; 23(11): 3829-40. http:/ / dx.doi. org/ 10.1590/1413-812320182311.29662016
23. Stopa SR, Malta DC, Monteiro CN, Szwarcwald CL, Goldbaum M, Cesar CLG. Acesso e uso de serviços de saúde pela população brasileira, Pesquisa Nacional de Saúde 2013. Rev Saúde Pública 2017; 51(Supl. 1): 3s. http: / / dx.doi.org/ 10.1590/ s1518-8787.2017051000074
24. Leança CC, Passarelli M, Nakandakare ER, Quintão ECR. HDL: o yin-yang da doença cardiovascular. Arq

Bras Endocrinol Metab 2010; 54(9): 777-84. http:/ / dx.doi.org/10.1590/S0004-27302010000900002
25. Kuwabara M, Motoki Y, Ichiura K, Fujii M, Inomata C, Sato H, et al. Association between toothbrushing and risk factors for cardiovascular disease: a large-scale, cross-sectional Japanese study. BMJ Open 2016; 6(1): e009870. http:/ / doi.org/ 10.1136/bmjopen-2015-009870
26. Law MR, Wald NJ, Thompson SG. By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ 1994; 308(6925): 367-72. https:/ /dx.doi. org/ 10.1136\%2Fbmj.308.6925.367
27. Silva RC, Diniz MFHS, Alvim S, Vidigal PG, Fedeli LMG, Barreto SM. Atividade Física e Perfil Lipídico no Estudo Longitudinal de Saúde do Adulto (ELSABrasil). Arq Bras Cardiol 2016; 107(1): 10-9. http:/ / dx.doi.org/10.5935/abc. 20160091

Received on: 12/18/2018
Final version presented on: $01 / 28 / 2019$
Approved on: 02/19/2019

Author's contributions: All of the authors participated in the conception and planning of the work, the interpretation of the data, and the writing and review of the preliminary and final versions.

[^0]: 'Department of Maternal-Child Nursing and Public Health, School of Nursing, Universidade Federal de Minas Gerais Belo Horizonte (MG), Brazil.
 "Center for Scientific and Technological Information in Health, Oswaldo Cruz Foundation - Rio de Janeiro (RJ), Brazil.
 "'Graduate Program in Nursing, School of Nursing, Universidade Federal de Minas Gerais - Belo Horizonte (MG), Brazil.
 ${ }^{\text {"VResearch Directorate, Brazilian Institute of Geography and Statistics - Rio de Janeiro (RJ), Brazil. }}$
 vMunicipal Health Secretariat of Belo Horizonte - Belo Horizonte (MG), Brazil.
 virectorate of Noncommunicable Diseases and Health Promotion, Ministry of Health - Brasilia (DF), Brazil.
 viHematology Center of São Paulo - São Paulo (SP), Brazil.
 *in memoriam.
 Corresponding author:Deborah Carvalho Malta. Avenida Professor Alfredo Balena, 190, Santa Efigênia, CEP: 30130-100, Belo Horizonte, MG, Brasil. E-mail: dcmalta@uol.com.br
 Conflict of interests: nothing to declare - Financial support: Health Surveillance Secretariat, Ministry of Health (TED 147/2018).

