
Compiling General Recursive Functions into Finite

Depth Pattern Matching

by

Maycon José Jorge Amaro

Departamento de Computação

Universidade Federal de Ouro Preto

Ouro Preto, Brazil

Compiling General Recursive Functions into Finite

Depth Pattern Matching

by

Maycon José Jorge Amaro

A Dissertation submitted for the degree of Master in Computer Science.

Departamento de Computação

Universidade Federal de Ouro Preto

Ouro Preto, Brazil

February, 2023

Amaro, Maycon Jose Jorge.
AmaCompiling General Recursive Functions into Finite Depth Pattern
Matching. [manuscrito] / Maycon Jose Jorge Amaro. - 2023.
Ama37 f.: il.: tab.. + Código de Linguagem de Programação.

AmaOrientador: Prof. Dr. Rodrigo Geraldo Ribeiro.
AmaDissertação (Mestrado Acadêmico). Universidade Federal de Ouro
Preto. Departamento de Computação. Programa de Pós-Graduação em
Ciência da Computação.
AmaÁrea de Concentração: Ciência da Computação.

Ama1. Recursion. 2. Program transformation. 3. Lambda calculus. I.
Ribeiro, Rodrigo Geraldo. II. Universidade Federal de Ouro Preto. III.
Título.

Bibliotecário(a) Responsável: Luciana De Oliveira - SIAPE: 1.937.800

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

A485c

CDU 004

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE OURO PRETO

REITORIA
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS

DEPARTAMENTO DE COMPUTACAO
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA

COMPUTACAO

FOLHA DE APROVAÇÃO

Maycon José Jorge Amaro

Compiling general recursive func�ons into finite depth pa�ern matching

Dissertação apresentada ao Programa de Pós-Graduação em Ciência da Computação da Universidade Federal

de Ouro Preto como requisito parcial para obtenção do �tulo de Mestre em Ciência da Computação

Aprovada em 17 de fevereiro de 2023

Membros da banca

Prof. Dr. Rodrigo Geraldo Ribeiro - Orientador - Universidade Federal de Ouro Preto

Prof. Dr. Bruno Lopes Vieira - Universidade Federal Fluminense

Prof. Dr. Leonardo Vieira dos Santos Reis - Universidade Federal de Juiz de Fora

Prof. Dr. Rodrigo Geraldo Ribeiro, orientador do trabalho, aprovou a versão final e autorizou seu depósito

no Repositório Ins�tucional da UFOP em 28/03/2023

Documento assinado eletronicamente por Rodrigo Geraldo Ribeiro, PROFESSOR 3 GRAU, em

03/03/2023, às 13:58, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do

Decreto nº 8.539, de 8 de outubro de 2015.

A auten�cidade deste documento pode ser conferida no site h�p://sei.ufop.br

/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0 , informando

o código verificador 0483606 e o código CRC 6F0A2412.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.002529/2023-50 SEI nº 0483606

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163

Telefone: (31)3559-1641 - www.ufop.br

Abstract

Programming languages are popular and diverse, and the convenience of extending or
changing the behavior of complex systems is attractive even for the systems with stringent
security requirements, which often impose restrictions on the programs. A very common
restriction is that the program must terminate, which is very hard to check in general
because the Halting Problem is undecidable. In this work, we proposed a technique to
unroll recursive programs in functional languages to create terminating versions of them.
We prove that our strategy is total and we also formalize term generation and run property-
based tests to build confidence that the semantics is preserved through the transformation.
This strategy can be used to compile general purpose functional languages to targets
such as the eBPF and smart contracts for blockchain networks.

Keywords: recursion, program transformation, lambda calculus.

5

Resumo

Linguagens de programação são populares e diversas, e a conveniência de estender
o comportamento de sistemas complexos é atrativo mesmo para aqueles com ŕıgidos
requisitos de segurança, que frequentemente impõem restrições aos programas. Uma
restrição comum é a de que o programa deve terminar, o que é imposśıvel de se verificar no
caso geral, devido à indecidibilidade do Problema da Parada. Neste trabalho, é proposto
uma técnica para desenrolar funções recursivas em linguagens funcionais para criar
versões terminantes delas. É provado que essa estratégia é total e é formalizada a geração
de termos aleatórios, que possibilitam a execução de testes baseados em propriedades
para construir confiança de que a semântica é preservada na transformação das funções.
A técnica proposta pode ser usada para compilar linguagens funcionais de propósito
geral para eBPF, contratos inteligentes de redes de blockchain e outros alvos igualmente
restritivos.

Palavras-chave: recursão, transformação de programas, cálculo lambda.

6

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor, teacher, and friend
Rodrigo Ribeiro, for his patience, motivation, knowledge, and empathy. The completion
of this work was only possible because of him. To my mother and sister for their support
in my academic journey. To my friends, who helped me endure the last two years. To
my colleagues, for the great moments in the classes. To Lucilia Figueiredo and Dayanne
Coelho, who welcomed and guided me during my graduation. To the dogs and cats that
brought joy to my days. Finally, I am grateful to the Department of Computing of the
Federal University of Ouro Preto, for the opportunity to engage in this graduate program;
and to CAPES for the financial support.

7

Contents

Page

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 3
1.3 Published Material . 3
1.4 Dissertation Structure . 3

2 Background 4
2.1 Type Systems . 4
2.2 Formal Semantics . 6

2.2.1 Operational Semantics . 6
2.2.2 Denotational Semantics . 8
2.2.3 A Look Around . 9

2.3 Property Based Testing . 10
2.4 Agda . 11
2.5 Lambda Calculus . 13
2.6 Related Work . 15

3 Syntax 17
3.1 System R . 17
3.2 Unrolling . 18

3.2.1 Embeddings . 19
3.2.2 Substitutions . 20
3.2.3 Inlining and Expansion . 21

3.3 System L . 22

4 Semantics 25
4.1 System R . 25
4.2 System L . 26
4.3 Term Generation . 27
4.4 QuickChecking Properties . 31

5 Conclusion 34

Bibliography 35

i

List of Grammars

2.1 Syntax of A language for arithmetic expressions 4
2.2 Syntax of untyped λ-calculus . 13
2.3 Syntax of simply typed λ-calculus . 14

3.1 Syntax of System R . 17
3.2 Syntax of System L . 22

ii

List of Tables

2.1 Type System for A . 5
2.2 Natural Semantics for A . 6
2.3 Structural Operational Semantics for A 7
2.4 Denotational Semantics of A . 8
2.5 Call-by-value, small step semantics for untyped λ-calculus 13
2.6 Type System of simply typed λ-calculus 14

3.1 Type System for System R . 18
3.2 Type System for System L . 23

4.1 Call-by-value, small step semantics of Wadler’s STLC 25
4.2 Call-by-value, small step semantics of System L 27
4.3 Generation rules for zeros and variables 28
4.4 Generation rule for sucessors . 28
4.5 Generation rule for abstractions . 29
4.6 Operator Θ and generation rule for applications 29
4.7 Generation rule for pattern matchings . 30
4.8 Generation rules for recursive definitions and standardization function . . 31
4.9 Generation rules for applications of recursive definitions 32
4.10 Term generation rules for System R . 32
4.11 Code coverage reported by QuickCheck 33

iii

List of Examples

2.1 Typing derivation for if true then suc zero else zero 5
2.2 Big-step evaluation of if true then pred suc pred zero else zero . 7
2.3 Small-step evaluation of if true then pred suc pred zero else zero 7
2.4 Denotation of if true then pred suc pred zero else zero 9

4.1 Program that sums 3 and 4. 26

iv

“Our histories never unfold in isolation. We cannot truly
tell what we consider to be our own histories without
knowing the other stories. And often we discover that
those other stories are actually our own stories.”

Angela Davis

v

1 Introduction

Since the creation of personal computers, Computer Science has evolved a lot. Computer
scientists developed more efficient data structures and algorithms, more complex Operat-
ing Systems and solutions to several security issues. Also, programming has become quite
popular with a small group of languages always hitting the charts1. Unfortunately, one of
the most basic features of programming languages is often seen as a prominent cause of
trouble: loops. Either in form of recursion or iterative statements, non-termination is at
best a necessary tool to keep a web-server or OS running, and at worst a serious security
or logical concern. It is the reason why some languages and technologies try to avoid it at
all costs, being very restricted due to the undecidability of the Halting Problem [39]. Some
examples include dependently-typed languages that are used as proof assistants, such as
Coq and Agda; smart contract languages for blockchain systems and the technology to
run sandboxed programs into the Linux Kernel—the eBPF2.

Dependently-typed languages usually have a termination checker enabled by default,
making sure that only terminating programs are accepted. From a logical point of view,
an infinite loop can be used to prove anything, turning the whole system unsound. Apart
from logical predicates, these proof assistants can also be used to guarantee that your
particular implementation of some algorithm halts for all valid inputs. Then, it is easy
to see that translating this implementation into a general purpose language will keep its
halting property. In fact, both Coq and Agda offer Haskell as a target for compiling their
programs. Compiling from a more restricted scenario to a less restricted one is quite
trivial, but the converse is not true.

Some tasks, specially involving networks, are better made by modifying some behavior in
the system’s kernel. Waiting for this change to come up eventually or even writing and
maintaining a kernel module is burdensome. For this reason, people find it useful to be
able to programmatically change the behavior of some subsystem in the kernel. The eBPF
allows the execution of programs in the kernel. But the kernel is an extremely sensitive
place. One mistake could be enough to put the entire system at risk. A non-terminating
program is out of question, it could crash the system or be used to perform a Denial
of Service (DoS) attack. A similar situation happens on smart contracts for blockchain
systems: a non-terminating code could collapse the whole system and a lot of strategies
are implemented to avoid it [22]. These two environments actually have an intersection.

1See statisticsanddata.org/data/the-most-popular-programming-languages-1965-2021 for a
brief history on popularity of programming languages.

2extended Berkeley Packet Filter

1

https://statisticsanddata.org/data/the-most-popular-programming-languages-1965-2021/

1 Introduction

For instance, the blockchain Solana implements a Virtual Machine and a just-in-time
compiler for eBPF programs as a Rust crate3.

Programs in eBPF are usually written indirectly, using tools that create the code from
some definitions the users provide in their interface. But many programs have to be
written directly, be it in eBPF’s bytecode or using some compiler. BCC4 is a well-
known tool that uses LLVM5 backend to compile pseudo-C code into eBPF. To ensure
termination for such programs, eBPF forbids any kind of back edge in the programs’
control flow graph, which include recursive functions. Prior to version 5.3 of the Linux
Kernel, not even bounded loops were allowed, forcing users of BCC to explicitly ask
clang to unroll their loops via pragma. This situation imposes a barrier for creating
compilers from general purpose languages to eBPF.

One of the main aspects involved in Turing-completeness—a property shared by most
famous programming languages—is the ability to run general recursive functions. While
imperative languages have additional constructs for repetition, functional languages like
Haskell and Elixir can only count with recursion for repeating computations. Using
these languages to write programs for eBPF requires caution and strategies to ensure
termination when using recursion.

In this work, we formalize, using the dependently-typed language Agda, an algorithm to
unroll and transform recursive functions of functional languages into finite depth pattern
matching. The resulting function is equivalent to the original, in the sense that both
functions yield the same results when given the same inputs, but only if the original
function halts and the non-recursive function has enough nested pattern matchings to
produce a value. This flexibility of equivalency is necessary because a non-terminating
program cannot formally have the same semantics of a function that always halts. By
using this strategy, compilers from functional languages can be written targeting eBPF
and others targets that restrict loops and recursion.

1.1 Objectives

The main objective of this work is the definition and verification of a technique for
unrolling general recursion into an equivalent terminating pattern matching. More
specifically, we intend to:

• Present a core language with recursion and its unrolling algorithm in Agda.

• Present a core language with no recursion and the translation algorithm, in Agda.

3Crates are the name for Rust’s published packages. Solana’s module for eBPF can be found in
docs.rs/solana_rbpf/0.2.11/solana_rbpf

4BPF Compiler Collection
5This name used to be an acronym for Low Level Virtual Machine. Today, the LLVM Developer Group

claims that LLVM is the full name of the project, rather than an acronym. This information can be
checked at their official website https://llvm.org/.

2

https://docs.rs/solana_rbpf/0.2.11/solana_rbpf/index.html
https://llvm.org/

1 Introduction

• Describe an algorithm to generate random well-typed terminating programs.

• Build confidence of the correctness of the strategy, formally proving some proper-
ties regarding the presented algorithms, such as soundness and termination, and
applying property-based tests otherwise.

1.2 Contributions

Our contributions are:

• An algorithm to unroll general recursive functions and transform them into finite
nesting of pattern matchings.

• A mechanized proof that the algorithm always terminates (Corollary 1).

• A mechanized proof that every output function always terminates (Theorem 7).

• An experiment supporting that, when the original and resulting functions produce
some value, it will always be the same.

• Ringell, a proof-of-concept interpreter using this technique.

1.3 Published Material

This dissertation is built upon a paper published in a peer-reviewed conference. “A Sound
Strategy to Compile General Recursive Functions into Finite Depth Pattern Matching”
is described in our SBMF 2022 paper [6].

1.4 Dissertation Structure

The remaining content of this dissertation is structured as follows: Chapter 2 covers the
background knowledge used in this work, Chapter 3 presents the content concerning
the syntactic transformation, Chapter 4 discusses semantic properties, and Chapter 5
concludes everything. The Agda code is found in https://github.com/lives-group/

terminating-expansion.

3

https://github.com/lives-group/terminating-expansion
https://github.com/lives-group/terminating-expansion

2 Background

This chapter presents the key concepts necessary to the development of this work.
The examples in these sections will make use of a language of arithmetics expressions,
called A, which abstract syntax is pictured in Grammar 2.1. It features numbers,
booleans, a test and a conditional expression. This language is largely inspired by
Pierce’s BN [32].

Grammar 2.1: Syntax of A language for arithmetic expressions

〈e〉 ::= zero | true | false | suc 〈e〉 | pred 〈e〉
| iszero 〈e〉 | if 〈e〉 then 〈e〉 else 〈e〉

2.1 Type Systems

Although some languages implement meaning to expressions like 2+‘v’, it has no
apparent meaning on its own, because adding is supposed to be an operation over
numbers. Classifying data according to the operations they are compatible with is one of
most praised features of programming languages. This classification is what we call types.
A Type System is a set of rules of how the syntactical constructions of a language
should be typed [32]. Typechecking a program means verifying if the syntax has a
valid derivation of the type system.

One main property we often use to categorize programming languages is with respect to
whether or not we need to annotate types, and whether these types are checked during
compilation-time (static), runtime (dynamic) or a mix of both. Annotating types of
function parameters helps the compiler catch, before the program is even executed, errors
that would lead to undefined behavior. Also, previously knowing the structure offers the
compiler great opportunities for optimizations. Siek & Taha’s work [36] has an interesting
discussion about pros and cons of static and dynamic type systems.

We can easily define a Type System for A, classifying zero and suc as constructions for
natural numbers, true and false as constructions for booleans and typing the other
constructions according to how they are supposed to behave. Rules for a Type System
are usually represented in Gentzen’s natural deduction style, in which the premisses are
on top of a line above the conclusion. Table 2.1 pictures such representation for A’s type

4

2 Background

system. Judgment e : τ means expressions e has type τ . Since we did not define a syntax
for types, we’ll be using B to denote the type of booleans, and N to denote the type of
natural numbers. Although we do not annotate types, this type system can be used in a
static analysis, because the language is simple enough for us to infer the correct types
for every valid expression. It can also happen with languages in which the inversion of
the type system remains deterministic.

Table 2.1: Type System for A

zero : N
e : N

suc e : N true : B

false : B
e : N

iszero e : B
e : N

pred e : N

e1 : B e2 : τ e3 : τ
if e1 then e2 else e3 : τ

Consider the expression if true then (suc zero) else zero. It has a valid type
derivation from the rules defined, shown in Example 2.1, and so we say it is well typed.
Regardless of its meaning, we know that it will produce a value. No invalid expression
such as suc false will have a typing derivation, but some expressions that would produce
a value can be ruled out by the type system. If we define if construction to become its
second argument when the first is true, then the expression if true then zero else

suc false would always produce a value, but the Type System will not allow its second
and third argument to be of different types, nor it will allow any of them to be of an
undefined type.

Example 2.1: Typing derivation for if true then suc zero else zero

true : B
zero : N

suc zero : N zero : N
if true then (suc zero) else zero : N

Type Systems are useful to avoid several kinds of errors, but it is inevitable to reject
some programs that would run without problems. A Type System that rejects all
incorrect programs—and only them—would solve the Halting Problem, thus its existence
is impossible. Type Theory research includes balancing restrictiveness and flexibility.
More deep content about Type Systems is found in [32].

5

2 Background

2.2 Formal Semantics

In a broad sense, semantics is the meaning of symbols and sentences. In Computer
Science, Formal Semantics is the rigorous specification of the meaning or behavior of
programs [27]. The use of formal methods when defining semantics of programming
languages can reveal ambiguities in informal specifications and serve as the basis for
implementation or proof of correctness. Semantics are defined for syntactically valid
and well-typed programs alone, because invalid programs are not supposed to have
meaning. There are three main approaches to formal semantics, known as Operational,
Denotational and Axiomatic. The Axiomatic approach involves defining a logical system
for partial correctness in the language, and then prove properties in form of assertions.
Due to its specificity, we do not get in details about it. Operational and Denotational
approaches are explained in the following sections.

2.2.1 Operational Semantics

The Operational approach focuses on defining how the computations are done, regarding
some abstract machine, and with that defining what they mean. With an operational
semantics, it is straightforward to implement an interpreter for the language. It is subdi-
vided in Natural Semantics and Structural Operational Semantics.

Natural Semantics [20], also known as big-step semantics, describes how the overall
results are obtained [27], relating the constructions of the language with the final value
or effect they produce. Table 2.2 presents a natural semantics for A. The judgment e ⇓ v
means expression e evaluates to final value v. Values are true, false, zero or the suc

of a value. The first rule, indicating the reflexivity of ⇓, is useful for proving premises
in derivations. Example 2.2 represents a derivation of the natural semantics proving
that the expression if true then (pred (suc (pred zero))) else zero evaluates
to zero.

Table 2.2: Natural Semantics for A

v ⇓ v
e ⇓ v

suc e ⇓ suc v

e ⇓ suc v

pred e ⇓ v

e ⇓ zero

pred e ⇓ zero

e ⇓ zero

iszero e ⇓ true

e ⇓ suc v

iszero e ⇓ false

e1 ⇓ true e2 ⇓ v
if e1 then e2 else e3 ⇓ v

e1 ⇓ false e3 ⇓ v
if e1 then e2 else e3 ⇓ v

6

2 Background

Example 2.2: Big-step evaluation of if true then pred suc pred zero else zero

true ⇓ true

zero ⇓ zero

pred zero ⇓ zero

suc (pred zero) ⇓ suc zero

pred (suc (pred zero)) ⇓ zero

if true then (pred (suc (pred zero))) else zero ⇓ zero

Structural Operational Semantics [34], also known as small-step semantics, describes how
the individual steps are performed, with details on how each construction achieves its final
value or effect. Table 2.3 shows the small-step semantics for A. Judgment e −→ e′ means
expression e reduces to e′ in one step, and −→∗ represents the reflexive and transitive
closure of −→. Example 2.3 describes the computation steps that reduce expression if

true then (pred (suc (pred zero))) else zero to zero.

Table 2.3: Structural Operational Semantics for A

pred (suc v) −→ v iszero zero −→ true
e −→ e′

iszero e −→ iszero e′

iszero (suc v) −→ false if true then v else e −→ v if false then e else v −→ v

pred zero −→ zero
e1 −→ e′1

if e1 then e2 else e3 −→ if e′1 then e2 else e3

e −→ e′

suc e −→ suc e′
e2 −→ e′2

if true then e2 else e3 −→ if true then e′2 else e3

e −→ e′

pred e −→ pred e′
e3 −→ e′3

if false then e2 else e3 −→ if false then e2 else e′3

Example 2.3: Small-step evaluation of if true then pred suc pred zero else zero

if true then pred (suc (pred zero)) else zero
−→∗ if true then (pred (suc zero)) else zero 〈 pred zero −→ zero 〉
−→∗ if true then zero else zero 〈 pred suc v −→ v 〉
−→∗ zero

If done carefully, it is possible to define a big-step and a small-step semantics for one
language and then prove both semantics equivalent, in the sense that every program
that terminates with a value in one will necessarily terminate with the same value in the

7

2 Background

other. However, there are some essential differences between them. For example, big-step
semantics cannot distinguish between non-termination and abnormal termination, unless
the abnormal termination is modelled as a value or a termination state; while small-step
semantics will derive an infinite sequence of steps for non-terminating programs and get
stuck for abnormal states. Some other examples include the inability of small-step to
suppress loops in non-determinism and the inability to express interleaving of parallel
computations in big-step semantics. The details about this information can be found
in [27, 32].

2.2.2 Denotational Semantics

The Denotational approach concerns only the effect of executing a program, completely
abstracting how it is obtained. This is made by mapping the syntactical constructions
of the language to mathematical objects [27]. In this way, reasoning about a program
is just reasoning about these mathematical objects, and their known properties are
immediately applicable. Let D be the domain of A’s syntax and let N be the set of
natural numbers. We can define a semantic function S : D→ N to act as the denotation.
Table 2.4 describes S. One remarkable characteristic of denotational semantics is that it is
compositional: every basic construction has a denotation and every composite construction
has a denotation that makes use of its immediate constituents’ denotation. In other words,
semantic functions for denotational semantics are often recursive.

Table 2.4: Denotational Semantics of A
SJzeroK = 0

SJsuc eK = SJeK + 1

SJpred eK = max(0,SJeK− 1)

SJtrueK = 1

SJfalseK = 0

SJiszero eK =

{
1, if SJeK = 0

0, otherwise

SJif e1 then e2 else e3K =

{
SJe2K, if SJe1K = 1

SJe3K, otherwise

Using the same example of operational semantics, we show in Example 2.4, through math-
ematical reasoning, that SJ if true then (pred (suc (pred zero))) else zero K
equals 0. Notice that this definition only applies to expressions with no syntactical or
typing errors. If this denotation is applied to an expression with type error, it could
actually answer with a number, though it would not correspond to the expression’s
meaning.

8

2 Background

A powerful concept relating denotational and operational semantics is full abstraction.
A fully abstracted semantics constitutes a denotational and an operational semantics that
are equivalent, in the sense that the denotation of the values computed by the operational
semantics is exactly the denotation of the expression itself. In this way, we can implement
and reason about the language using the formalizations interchangeably. More information
on denotational semantics and full abstraction can be found in [27].

Example 2.4: Denotation of if true then pred suc pred zero else zero

SJif true then (pred (suc (pred zero))) else zeroK
= SJpred (suc (pred zero))K, because SJtrueK = 1

= max(0,SJsuc (pred zero)K− 1)

= max(0,SJpred zeroK + 1− 1)

= max(0,max(0,SJzeroK− 1) + 1− 1)

= max(0,max(0, 0− 1) + 1− 1)

= max(0, 0 + 1− 1)

= 0

2.2.3 A Look Around

Curiously, while Standard ML does have a complete formal semantics defined [26], most
programming languages actually do not. As said Appel [8]:

ML has a formally defined semantics that is complete in the sense that
each legal program has a deterministic result, and all illegal programs are
recognizable as such by a compiler. This is in contrast to Ada, for which
formal semantics have been written but are not complete, in the sense that
some “erroneous” programs must be accepted by compilers; Pascal, which is
recognized to have certain “ambiguities and insecurities”; and C, in which it is
very easy for programmers to trash arbitrary parts of the runtime environment
by careless use of pointers. Lisp and Scheme are not too bad in this respect;
in principle, “erroneous” programs are detected either at compile time or at
runtime, though certain things (such as order of evaluation of arguments) are
left unspecified.

A notable case is that of JavaScript, with several attempts to give it a formal operational
semantics in literature. We highlight that of Park et al. [31], that presents a complete
operational semantics for JavaScript, admitting “JavaScript is an unusual language, full
of tricky corner cases” and that “seemingly nonsensical programs work by design.” Their
formalization passed all ECMAScript 5.1 conformance tests, something achieved only
by Chrome’s V8. The authors report that those conformance tests fail to cover several

9

2 Background

semantic rules, and that they found several bugs in all major JavaScript engines. At
least four new versions of the language were released since then.

2.3 Property Based Testing

By using formal reasoning, with the proper tools, one can effectively prove properties of
programs such as correctness and complexity. But sometimes it can be quite hard or
expensive, creating an appealing situation to weaken the claim or the method. Testing
is largely used in Software Engineering, and although they cannot prove the absence
of errors [32], they are a good tool to assure some quality and can be used to build
confidence before actually trying to prove some property. An interesting form of testing
is known as Property Based Testing [29], where the developer writes the properties
and then some automatic checker generates the cases and test them. Such generator
must be good at checking corner cases, doing massive unit tests if asked and shrinking
the counterexamples to a minimum version. QuickCheck is a famous property-based
testing library, and it’s available for several languages, including Haskell [29]. Successfully
passing the tests with QuickCheck and ensuring that all lines of code got covered is a
good evidence that the algorithm is correct, but it is still no proof. Property based testing
is still testing, and therefore cannot prove the absence of errors.

“Real World Haskell” book [29] provides good basic examples and tutorials on QuickCheck,
and we reproduce one below. It is a sorting function, called qsort and a property stating
idempotency1.

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs

where lhs = filter (< x) xs

rhs = filter (>= x) xs

prop_idempotent xs = qsort (qsort xs) == qsort xs

When asking QuickCheck to verify the property, it will generate random lists and
check if prop_idempotent is true for each one of them. In negative case, it will reduce
the counterexample size as much as possible before reporting. The default number
of generations is 100, but can easily be changed through withMaxSuccess parameter.
QuickCheck has default generators implemented for numbers, lists and tuples. Custom
datatypes require that the developer writes the generator using QuickCheck’s API2. The
official QuickCheck manual is hosted at professor John Hughes’ webpage3 from Chalmers
University.

1A property where the function can be applied several times without changing the result beyond the
initial application

2Application Programming Interface
3Available in http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

10

http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

2 Background

2.4 Agda

A dependently-typed language has a type system expressive enough so types can depend on
terms. Due to the Curry-Howard Isomorphism [40], that establishes the correspondence
between type systems and logical systems, types in such languages can be saw as
propositions of second order logic, and programs as their proofs. Typechecking the
program means verifying if the proof is sound. However, an infinite loop can be used
to prove anything, and thus a dependently-typed language can only be used as a proof
assistant if the compiler rejects everything that it cannot guarantee termination. Also,
all functions must be defined for every possible case, i.e., incomplete patterns are usually
not allowed.

Agda is a dependently-typed functional language created by Norell [28], and since it
features an enabled-by-default termination checker, it is also a proof assistant. Agda’s
syntax is quite similar to Haskell’s. To prevent a paradox, Agda has an infinite hierarchy
of types, in which basic types are of type Set or Set0, which in turn is of type Set1
and so forth. Below is a basic type declaration of natural numbers in Peano notation
and its correspondent adding operation. Notice Agda has a great support for unicode
symbols.

data N : Set where

zero : N
suc : N → N

+ : N → N → N
zero + m = m

(suc n) + m = suc (n + m)

The cliché example to demonstrate the use of dependent types is the Vec datatype, a
list that contains its size on its type. Below is the definition of Vec and a function head

that returns its first element. Since the size of the list is on its type, we can define head

so it will only accept non-empty lists as input, and this constraint is verified during
typechecking. Without dependent types, it would be harder or even impossible to let the
compiler know that empty lists shouldn’t be allowed, forcing the developer to check it at
runtime.

data Vec (A : Set) : N → Set where

[] : Vec A zero

:: : ∀{n : N} → A → Vec A n → Vec A (suc n)

head : ∀{A : Set}{n : N} → Vec A (suc n) → A

head (x :: xs) = x

Finally, a proof is just a function as any other, with the proposition being the stated
type. Before we show a proof, consider the following example with the definition of a

11

2 Background

traditional list type, a concatenation operation and the length function that computes
the size of a list.

data List (A : Set) : Set where

[] : List A

:: : A → List A → List A

++ : ∀{A : Set} → List A → List A → List A

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

length : ∀{A : Set} → List A → N
length [] = zero

length (x :: xs) = suc (length xs)

The proof that the concatenation of two lists with sizes n and m produces a list with size
n+m is presented next. The proof proceeds by induction on the first list. The proof cases
are pattern matching equations, and the inductive step is represented by the recursive
call under a rewrite clause. This clause tells the typechecker to use an equivalency to
substitute terms and normalize them again. By using the induction hypothesis as this
equivalency, the proof goal becomes easier or even trivial to achieve.

++-length : ∀{A : Set}(xs ys : List A)

→ length (xs ++ ys) ≡ length xs + length ys

++-length [] ys = refl

++-length (x :: xs) ys

rewrite ++-length xs ys = refl

With the use of dependent types we can even define an operation that is correct by
construction, in which the desired property is part of the definition and we don’t need
to prove it separately. Below, the same concatenation operation for Vec’s. Since the type
of the operation states that it produces a Vec with the sum of the sizes, this property is
guaranteed to hold as long as the compiler accepts the definition. Correct by construction
definitions are often easier and shorter.

++ : ∀{A : Set}{n m : N}
→ Vec A n → Vec A m → Vec A (n + m)

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

A Standard Library for Agda is publicly available in the official site4, although it does not
come in the installation. The Standard Library features definitions for naturals, equality,
foundations for relations, algebra definitions and a lot more. On using Agda as both
programming language and proof assistant, see [41, 38].

4Available in https://agda.readthedocs.io/en/v2.6.2.1/getting-started/installation.html

12

https://agda.readthedocs.io/en/v2.6.2.1/getting-started/installation.html

2 Background

2.5 Lambda Calculus

In 1928, David Hilbert and Wilhem Ackermann posed a challenge to the mathemat-
ics community, that became known as the Entscheidungsproblem: find an algorithm
that could answer if a given statement of first order logic is universally valid. To
complete the challenge, it was necessary to precisely define algorithms, which was
achieved by two main works: Turing’s abstract machines [39] and Church’s untyped
λ-calculus [12], both answering that no general solution to the Entscheidungsproblem is
possible.

The lambda calculus is the underlying core theory of many programming languages we
use today, specially functional languages. The untyped version consists of a language with
only three constructions: variables, abstractions (function definitions) and applications;
and the usual syntax is shown in Grammar 2.2. The identity function λx.x is an
example.

Grammar 2.2: Syntax of untyped λ-calculus

〈e〉 ::= v | λv.〈e〉 | 〈e〉 〈e〉

We say that an abstraction binds a variable, and a variable with no binding lambda
is called free. Bound variables can be renamed without changing the meaning of the
expression, which is known as α-equivalency. When the left expression of an application
is an abstraction, it is called a bf redex and we can substitute the free ocurrences of the
bound variable by the right expression, which is known as β-reduction. This substitution
must avoid capturing names that are already used, so α-equivalency must applied
to rename variables sometimes. For example, the right expression in the application
(λx.λy.y x) y is a free variable, which is bound in the left. So, we first use α-equivalency
to get (λx.λz.z x) y and then reduce it to (λz.z y). The order in which redexes are
evaluated configures an evaluation strategy. The most common strategy is call-by-value,
in which the leftmost-outermost redex is evaluated first, but only after both sides are
already reduced to a normal form. Some expressions like (λx.x x) (λx.x x) can β-reduce
forever, and thus the untyped λ-calculus cannot be used as a logical system. The details
about β-reduction are illustrated in the small step semantics presented in Table 2.5,
following Pierce [32]. Notation [x 7→ v]e means capture avoiding substitution of x by v
in e.

Table 2.5: Call-by-value, small step semantics for untyped λ-calculus

e1 −→ e′1
e1 e2 −→ e′1 e2

e2 −→ e′2
v1 e2 −→ v1 e

′
2

(λx.e1) v2 −→ [x 7→ v2]e1

Capture-avoiding substitution can be hard to implement, which created the need for a
nameless representation of bound variables. De Bruijn indices [15] omit names in the

13

2 Background

abstractions and write natural numbers in the occurrences of the bound variables. The
number represents the distance, in the scope, of the variable and the lambda that bound
it. In this way, (λx.λy.y x) y can be written as (λλ.0 1) y and its β-reduction no longer
needs an α-equivalency to avoid the capture of names.

The simply typed λ-calculus (STLC) [13], shown in Grammar 2.3, adds simple types to
the calculus, and its type system, shown in Table 2.6, rules out expressions that β-reduce
forever. γ is base type constructor. Judgement Γ ` e : τ means expression e has type
τ in context Γ. A context is a list of information about the types of variables in a
expression. The empty context is represented by ∅ and notation Γ, v : τ represents that
context Γ is extended with information that v has type τ . The simply typed λ-calculus is
strongly normalizing, i.e., every expression finitely β-reduces to a normal form [32, 41].
STLC can be used as a logical system, being equivalent to intuitionistic propositional
logic [40].

Grammar 2.3: Syntax of simply typed λ-calculus

〈τ〉 ::= γ | τ → τ

〈e〉 ::= v | λv : τ.〈e〉 | 〈e〉 〈e〉

Table 2.6: Type System of simply typed λ-calculus

v : τ ∈ Γ
Γ ` v : τ

Γ, v : τ1 ` e : τ2
Γ ` λv : τ1.e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

When defining λ-calculi in dependently typed languages, one can go on two approaches:
extrinsic and intrinsic. The extrinsic approach is to define terms and types separately
and then define how to type the terms. The intrinsic approach defines terms intertwined
with their types, so only well-typed terms can even be expressed. The Agda fragments
presented next picture an extrinsic formalization of STLC.

First we define types, following our definition in Grammar 2.3.

data Type : Set where

γ : Type

⇒ : Type → Type → Type

Then we define terms, also based on our grammar.

data Term : Set where

var : Name → Term

abs : Name → Type → Term → Term

app : Term → Term → Term

14

2 Background

Finally, we define how to type terms, strictly following Table 2.6. With this, we can write
a typing derivation and have Agda to typecheck if it is correct.

data ` : : Context → Term → Type → Set where

tvar : ∀{v t Γ}
→ v : t ∈ Γ
→ Γ ` (var v) : t

tabs : ∀{v e t t’ Γ}
→ (Γ , v : t) ` e : t’

→ Γ ` (abs v t e) : (t ⇒ t’)

tapp : ∀{e e’ t t’ Γ}
→ Γ ` e : (t ⇒ t’)

→ Γ ` e’ : t

→ Γ ` (app e e’) : t’

In the intrinsic approach, presented next, the type system practically becomes the
definition of terms. Only well typed terms can be expressed.

data ` : Context → Type → Set where

var : ∀{t Γ}
→ t ∈ Γ
→ Γ ` t

abs : ∀{t t’ Γ}
→ (Γ , t) ` t’

→ Γ ` (t ⇒ t’)

app : ∀{t t’ Γ}
→ Γ ` (t ⇒ t’)

→ Γ ` t

→ Γ ` t’

The intrinsic approach is highly compatible with correct by construction proofs, because
the definitions already contain some of the desired properties. Intrinsic definitions are
often more compact and lead to easier proofs, specially with the use of De Bruijn indices.
Notice that in Agda, the use of dependent types allow us to define that a variable
can only be expressed if we have a proof that it is in the context. It is known as well
scoped De Bruijn indices [14]. More content on λ-calculi can be found in [32], and
some Agda formalizations for them, both extrinsic and intrinsic, can be found in [41].
For a brief history on the Entscheidungsproblem, see [40, 16]. On Turing machines,
see [37].

2.6 Related Work

There are some papers closely related to ensuring termination of functional programs,
although the systems they describe do not focus on syntactically transforming the

15

2 Background

programs. Even with a proof of the program termination, targets such as eBPF will still
reject the program if it contains any loop. Our approach creates non-recursive functions
and thus is more suitable to create compilers for those targets.

Developed by Andreas Abel in 1998, Foetus [1, 2, 3, 4] is a simplification of Munich
Type Theory Implementation (MuTTI), and features a termination checker for simple
functional programs. It builds an hypergraph that represents the transitive closure
of function calls. Functions related to themselves in this hypergraph are considered
recursive and their dependencies are analyzed. It means that foetus tries to find a
lexicographic order in the parameters, accepting the function as terminating if positive.
The identification of dependencies is quite limited, being unable to store dependency
information from let assignments or consider components of tuples in the same way it
considers parameters. To get around the problem, one can define the functions in a
specific way to help foetus identify the dependencies. For example, when defining a
function that only decreases the arguments in a even number of calls, foetus will not
accept the function as terminating, but it is possible to create a copy of the function and
mutual recursion them, creating a more obvious dependency that foetus will identify and
accept.

Type based termination [17, 11] is a strategy in which the type system of the language
ensures termination, being developed for the polymorphic λ-calculus. For this, the types
of the language are modified to contain a size information of the inductive datatypes,
and are used in typechecking to guarantee that recursive calls are always reducing the
size of some argument. The actual types of data are inferred in an independent step.
Despite elegant, this strategy is reasonably complicated. One minor disadvantage is the
forbidding of “left recursion” on types, which is known as negative occurrence. Gilles
Barthe has an excellent tutorial [10] on type based termination.

On syntactic transformations, Rugina & Rinard [35] defines a strategy to unroll recursion
in divide-and-conquer programs of imperative languages. Their intention is to increase
performance, and no contribution towards ensuring termination is made. However, the
key concepts in their work are very useful. Also, LLVM’s Clang [23] offers a macro to
unroll bounded loops in languages of C family, which is largely used when using pseudo-C
code to compile for eBPF. GCC [19] has a command line option to unroll loops in C
programs. The features in both compilers are unable to deal with recursion. At the time
of this paper, Microsoft® Visual Studio C Compiler (MSVC) [25] has no way to directly
instruct the compiler to unroll a loop.

Finally, our generation procedure and test approach are based on the work in [18]. Feitosa
formalizes a type-directed algorithm to generate random programs of Featherweight Java,
which is used to verify several properties using QuickCheck. Pa lka’s thesis [30] also
contains useful concepts on term generation.

16

3 Syntax

In order to transform recursive functions into non-recursive pattern matching, we could
just define an algorithm in which both input and output are expressions of a functional
language. But it is convenient to work with all forms of expressions instead of restricting
ourselves to functions. Also, we are interested in the properties of the expressions
both before and after the transformation, so it is convenient to have two languages
and model the transformation as a transition between them. In this way, we define
System R and System L. The former features general recursion while the latter has
no way of expressing it. The syntactical transformation from System R to System L
is the process of eliminating recursion. This chapter describes the details of both
languages and the transformation procedure. All referenced Agda files are hosted in
https://mayconamaro.github.io/dissertation-agda/. If you’re reading the digital
version, you can also click in the files’ names.

3.1 System R

The letter R stands for recursion. This language is very similar to the language of
Programming Computable Functions, also known as PCF [5, 33], and its syntax is
shown in Grammar 3.1. System R features natural numbers, function definition and
application, pattern matching over naturals and a recursion operator (fixpoint) that can
only appear as the top level expression, or inside a top level function application. Top
level applications can be nested. System R is a statically typed language, with syntax
for type annotations in the abstractions. For convenience, this definition of the language
forces the use of a potentially recursive function and has no way to define mutually
recursive functions.

Grammar 3.1: Syntax of System R

〈τ〉 ::= nat | 〈τ〉 → 〈τ〉
〈p〉 ::= µv.〈e〉 | 〈p〉 〈e〉
〈e〉 ::= v | zero | suc 〈e〉 | λv:〈τ〉.〈e〉 | 〈e〉 〈e〉 | match 〈e〉 〈e〉 (v, 〈e〉)

Table 3.1 presents its type system. Notice that, although the type system does not
enforce it, the grammar still forbids rec’s as subterms, unless it is the left expression of a
top level application. This is a syntactic constraint, not a typing one. Since typechecking

17

https://mayconamaro.github.io/dissertation-agda/

3 Syntax

is only done with syntactically correct expressions, it does not pose a problem. A variable
occurrence (Definition 1) is the expression with the variable.

Definition 1. A variable v occurs in expression e, represented by v ∈v e, if e is the
variable v or if v ∈v e′, where e′ is any of the immediate subterms of e. Otherwise, v
does not occurs in e.

Table 3.1: Type System for System R

Γ ` zero : nat
Γ ` e : nat

Γ ` suc e : nat
v : τ ∈ Γ
Γ ` v : τ

Γ, v : τ ` e : τ ′

Γ ` λv : τ.e : τ → τ ′

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ ` e1 : nat Γ ` e2 : τ Γ ` e3 : τ

Γ ` match e1 e2 (v, e3) : τ

Γ, v : τ1 → τ2 ` e : τ1 → τ2 v ∈v e
Γ ` µv.e : τ1 → τ2

Requiring an occurrence of a variable with the same type as the function is a minimum
requirement we settle for it to be considered recursive. By design, mutual recursion
cannot be expressed. The decision to establish two levels of expressions is to avoid
nested recursive expressions, which would only complicate things for the unrolling
procedure.

In Agda, System R is defined in the intrisically typed approach with well-scoped De
Bruijn indices, and can be found in files R.Syntax and R.Syntax.Base. The definition
of variable occurrence is in file R.Syntax.Properties. Types and Contexts are defined in
Common.Type and Common.Context. Theorem 1 shows that System R is a subset of
STLC with recursion, using STLC definition from Wadler [41].

Theorem 1. If e is an expression in System R, then exists a correspondent expression
in simply typed λ-calculus with natural numbers and recursion.

Proof. By induction on the structure of e. Bottom level terms and fixpoint definitions
(recursive functions) are straightforward. Applications involving recursive functions are
translated into a conventional application.
See function -to-IR in file R.Syntax.IR.Properties.

3.2 Unrolling

For loops in imperative languages, we can put two or more copies of the body in a
row to increase performance, specially in loops with small bodies where most of the

18

https://mayconamaro.github.io/dissertation-agda/R.Syntax.html
https://mayconamaro.github.io/dissertation-agda/R.Syntax.Base.html
https://mayconamaro.github.io/dissertation-agda/R.Syntax.Properties.html
https://mayconamaro.github.io/dissertation-agda/Common.Type.html
https://mayconamaro.github.io/dissertation-agda/Common.Context.html
https://mayconamaro.github.io/dissertation-agda/R.Syntax.IR.Properties.html#2179

3 Syntax

time would otherwise be spent by changing the counter and testing the condition [9].
Performance of recursive functions in imperative languages can also be increased by using
this technique [35]. Our approach is unrolling recursive functions in functional languages,
not to increase performance but to substitute the remaining recursive occurrences with
an error, creating a non-recursive function that still computes something that the original
would. An essential step of unrolling is inlining, which means to replace a function call
(the occurrence of the function’s name) by its body and it is a common procedure in the
implementations of compilers [9]. Implementing inlining for System R requires defining
some concepts first.

3.2.1 Embeddings

An Order Preserving Embedding [21] (Definition 2) is a binary relation between
contexts, where Γ ⊆ ∆ means that every element of Γ is also in ∆, and the elements they
have in common are in the same order. Alternatively, we can say that context Γ can be
obtained from ∆ by dropping zero or more elements. Order preserving embedding is a
preorder relation (Theorem 2). Every context is an order preserving embedding of the
empty context, since you can drop every element until they’re both empty (see ⊆-∅ on file
Common.Context). This relation is sometimes abbreviated as OPE.

Definition 2. Context ∆ is an Order Preserving Embedding of context Γ, represented
by ∆ ⊇ Γ or Γ ⊆ ∆, if:

• Both contexts are empty, i.e., Γ = ∅ and ∆ = ∅.

• Γ = Γ′, t; ∆ = ∆′, t and Γ′ ⊆ ∆′, i.e., both contexts are non-empty, their heads are
equal and their tails are also in a order preserving embedding relation. This case is
called a keep.

• ∆ = ∆′, t and Γ ⊆ ∆′, i.e., ∆ is non-empty and Γ is in an order preserving
embedding relation with ∆’s tail. This case is called a drop.

Theorem 2. Relation ⊆ is reflexive and transitive.

Proof. Reflexivity goes by induction on the structure of the context.
See ⊆-refl on file Common.Context.
Transitivity goes by induction. The base case is when at least the first OPE fits in the
first case of the definition. In the inductive steps, when both fit in the second case, the
conclusion also fits in it. The conclusion fits in the third case otherwise.
See ⊆-trans on file Common.Context

With OPE’s we can define a substitution of contexts, which is essential for inlining
expressions in our intrisically-typed approach.

19

https://mayconamaro.github.io/dissertation-agda/Common.Context.html#866
https://mayconamaro.github.io/dissertation-agda/Common.Context.html#789
https://mayconamaro.github.io/dissertation-agda/Common.Context.html#975

3 Syntax

3.2.2 Substitutions

In typed λ-calculi a substitution usually refers to the capture-avoiding substitution of
terms when performing β-reduction. It could also refer to the substitution lemma [32],
useful as an intermediate result for proving type soundness. But there is another sense of
substitution (Definition 3), in that we can keep an expression and change its context to a
weaker one (with more information), and change its typing derivation1 accordingly. The
OPE relation is the precise definition of a “weaker” context and it makes this substitution
possible (Lemma 1).

Definition 3. A context substitution of a well-typed term Γ ` τ means changing the
context Γ by some Γ′ with at least the same information.

Lemma 1. Given contexts Γ and ∆, and type τ , if Γ ` τ and Γ ⊆ ∆ then ∆ ` τ .

Proof. By induction on the structure of the term Γ ` τ . Variable substitution goes by
induction on the structure of the OPE, incrementing the variable’s De Bruijn index
accordingly. The index increase also happens for abstractions and the third expression of
pattern matchings.
See ⊆-subs at file R.Syntax.Properties and ∈-subs at file Common.Context.

One interesting property of this substitution of contexts is that it preserves variable
occurrences (Lemma 2), and will not insert occurrences of variables that did not occur
with the previous context. This property is useful due to our requirement for recursive
functions to have an occurrence of something of its same type. In this way, substitution
of contexts will not turn recursive functions into non-recursive. We name this operation
as occurrence-preserving substitution. Notice that in an extrinsically-typed approach, it
is trivial that the term would not change, and our interest would be in adjusting the
typing derivation.

Lemma 2. Every variable v that occurs in a term Γ ` τ also occurs in every correspondent
context-substituted term ∆ ` τ .

Proof. By induction on the structure of the variable ocurrence. A keep is made on the
cases that extend the context (abstractions and pattern matchings).
See called-in and call-subs at file R.Syntax.Properties.

1The text presents the language in an extrinsically-typed style, so Γ ` t is a notation for a typing
derivation. The formalization in Agda uses the intrisically-typed approach, so the same notation
represents a term instead. Througout the text, we interchangeably refer to the notation as terms
and typing derivations. In Agda, this substitution operation changes the term.

20

https://mayconamaro.github.io/dissertation-agda/R.Syntax.Properties.html#3103
https://mayconamaro.github.io/dissertation-agda/Common.Context.html#583
https://mayconamaro.github.io/dissertation-agda/R.Syntax.Properties.html#4053

3 Syntax

3.2.3 Inlining and Expansion

Inlining means to substitute a reference to a term or function by its body and it is
largely used by compiler engineers [9]. We want that inlinings have the same occurrence-
preserving property we have for substitutions. Lemma 3 shows that we can inline a term
that is recursive2 with itself and preserve the occurrence of the function’s name. We
name this operation as occurrence-preserving inlining.

Lemma 3. Let Γ and ∆ be contexts, and consider the terms Γ ` t1 : τ1 and ∆ ` t2 : τ2.
If v : τ2 occurs in both t1 and t2 and ∆ ⊆ Γ, then there exists a term Γ ` t3 : τ1, obtained
by inlining t2 into t1 in the place of v, such that v : τ2 occurs in t3.

Proof. By induction on the structure of v ∈v t1. Variable occurrences are preserved
through Lemma 2. A drop is needed for abs and match, since they extend the context.
See inline at file R.Syntax.Unrolling.

Before proving that this method can be repeatedly applied to create a function that
is as expanded as we want, we define the reflexive and transitive closure relation be-
tween expressions and their occurrence-preserving inlined forms in Definition 4 (see
expanded-to-in-steps at file R.Syntax.Unrolling). The inlining is always done with
respect to a specific expression, rather than inlining expressions into themselves. This
decision avoids a super exponential growth of the function’s code, following Rugina and
Rinard [35]. In this way, each expansion step only grows the function by one copy of its
original body.

Definition 4. Expression e2 is the ocurrence-preserving expansion of e1 in n steps with
respect to expression e, represented by e1�e

n e2, if e2 is the result of n inlinings of e in
e1. More specifically:

• e�e
0 e, i.e., every expression expands to itself in zero steps.

• e1�e
1 e2, where e2 is the occurrence-preserving inlining of e in e1. Inlining is one

step of expansion.

• If e1�e
n1
e2 and e2�e

n2
e3, then e1�e

n1+n2
e3.

With all the results so far, we now show in Theorem 3 that every recursive expression of
System R can be finitely expanded in n steps, for every n ∈ N.

Theorem 3. For every n ∈ N and every expression e : τ that contains the occurrence of
some variable v : τ , there exists an expression e′ such that e�e

n e
′.

2From now on we omit the “potentially” for a smoother reading.

21

https://mayconamaro.github.io/dissertation-agda/R.Syntax.Unrolling.html#590
https://mayconamaro.github.io/dissertation-agda/R.Syntax.Unrolling.html#2936

3 Syntax

Proof. By induction on n. There are base cases for n = 0, in which we simply call for
reflexivity, and for n = 1, where one inlining is performed. The inductive step applies
the transitivity property to an inlining step.
See expansion at file R.Syntax.Unrolling.

The expansion of a recursive function is still recursive, because the occurrences of
the function’s name are preserved through all steps of the process. We now need
to eliminate those remaining occurrences in order to create a non-recursive version.
This elimination is made by translating System R terms into the strongly normalizing
System L.

3.3 System L

This language is intended to be exactly like System R minus recursion. But we have no
way to guarantee that any recursive expression of System R will not loop forever. So,
the idea is to include a construction into System L that models a forced termination.
The expansion of System R’s expressions makes use of a natural number that acts as a
factor to guide the amount of expansions. We call this factor a fuel, inspired by Petrol
Semantics [24]. The forced termination of System L is called out of fuel, indicating
the ending of the pattern matchings’ nesting, and is represented in the syntax by error.
Grammar 3.2 presents the complete syntax of System L.

Grammar 3.2: Syntax of System L

〈τ〉 ::= nat | 〈τ〉 → 〈τ〉
〈e〉 ::= v | error | zero | suc 〈e〉

| λv:〈τ〉.〈e〉 | 〈e〉 〈e〉 | match 〈e〉 〈e〉 (v, 〈e〉)

We can see System L as the simply typed λ-calculus with natural numbers, pattern
matching over numbers, and an additional basic construction whose type can be any type.
The type system is described in Table 3.2.

It is possible to eliminate any variable occurrence from an expression, and the method is
described in Definition 5. This is useful to eliminate the occurrences of the function’s name
and make the expression non-recursive. Lemma 4 shows the correctness of this method,
in the sense the variable does not occur in the resulting expression.

Definition 5. The occurrence elimination of a variable v : τ ′ from a bottom level term
Γ ` τ in System R is the correspondent term in System L where v occurrences are
replaced by error.
See call-elimination at file Transform.Translation.

22

https://mayconamaro.github.io/dissertation-agda/R.Syntax.Unrolling.html#3653
https://mayconamaro.github.io/dissertation-agda/Transform.Translation.html#1384

3 Syntax

Table 3.2: Type System for System L

τ is a type

Γ ` error : τ Γ ` zero : nat
Γ ` e : nat

Γ ` suc e : nat
v : τ ∈ Γ
Γ ` v : τ

Γ, v : τ ` e : τ ′

Γ ` λv : τ.e : τ → τ ′
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ ` e1 : nat Γ ` e2 : τ Γ ` e3 : τ

Γ ` match e1 e2 (v, e3) : τ

Lemma 4. For every t that is a bottom level term in System R, if v : τ is a variable
that occurs in t, then v does not occur in the System L expression that resulted from the
occurrence elimination of v from t.

Proof. By induction on the structure of the variable occurrence. The evidence for
occurrence is transformed into evidence of non-occurrence with the use of the datatypes
called-in and not-called-in. It is straightforward since it is a form of translation.
See no-call-in-elimination at file Transform.Translation.

We can translate closed expressions from System R to System L, preserving the type
of the expression, as shown in Theorem 4. The resulting expression is non-recursive,
since there are no more functions with occurrences of their own names. The composition
of expansion and translation results in the algorithm for compiling general recursive
functions into finite pattern matching, as shown in Corollary 1. It is important to
highlight that, in Agda, the expression inside a rec will not contain an occurrence of
its own name, but this name is still present in the context. Thus, the rec cannot be
mapped to the occurrence-eliminated version of the expression e : τ1 → τ2 it contains,
because their contexts are not the same. The solution is to map it to an application of
an abstraction with body e over a term t of type τ1. For this matter, a trivial term is
used as a value for t, that will simply be discarded due to Lemma 4. Trivial terms are
constructed following Definition 6.

Definition 6. A trivial term of type τ is:

• zero, if τ ≡ nat.

• abs v : τ1.e, if τ ≡ τ1 → τ2, where e is a trivial term of type τ2.

Theorem 4. For every closed term t of System R, there exists a closed term t′ of System
L, such that t and t′ have the same type.

23

https://mayconamaro.github.io/dissertation-agda/Transform.Translation.html#2778

3 Syntax

Proof. By induction on the structure of the term. All terms are translated to their direct
correspondents, with µ (rec in Agda) being translated to an application of an abstraction
of the occurrence-eliminated expression over a trivial term.
See call-elimination, closure and translate at file Transform.Translation.

Corollary 1. For every closed term t of System R and every n ∈ N, there exists a closed
term of System L that corresponds to the expansion of t in n steps.

Proof. Compose unrolling and translation.
See transform at file Transform.Translation.

In this chapter we presented the definitions and intermediate properties that allowed us to
prove our first desired property: our unrolling algorithm is a total function, i.e., it always
terminates and is defined for all well-typed programs of System R. The other properties
are about the preservation of the programs’ behaviour through the transformation process.
In the following chapter, we explore those semantic properties.

24

https://mayconamaro.github.io/dissertation-agda/Transform.Translation.html#4523
https://mayconamaro.github.io/dissertation-agda/Transform.Translation.html#4956

4 Semantics

The syntactical transformations shown in Chapter 3 mean nothing if we have no evidence
that the behavior of the expressions are preserved. One could simply map every expression
of System R to the same expression of System L, and that would still be syntactically
valid and probably maintain several properties. What brings confidence to our method is
the justification that the expressions compute “the same thing” and that the resulting
expression always terminates. For this matter, we present the semantics of both System R
and System L and explore properties about them.

4.1 System R

System R’s syntax is a subset of the STLC as defined by Wadler & Kokke in [41]. The
difference between these two systems is that STLC does not define two levels for syntactic
constructions, thus recursive functions can appear anywhere, including inside another
recursive function. In this way, we elaborate System R into the mentioned STLC. Its
small step semantics, via the evaluation relation −→, is reproduced in Table 4.1. We
define −→∗ to be the reflexive and transitive closure of −→.

Table 4.1: Call-by-value, small step semantics of Wadler’s STLC

e1 −→ e′1
e1 e2 −→ e′1 e2

e2 −→ e′2
v1 e2 −→ v1 e

′
2

e −→ e′

suc e −→ suc e′

(λx : τ.e1) v2 −→ [x 7→ v2]e1 µv.e −→ [v 7→ µv.e]e

match zero e2 (x, e3) −→ e2 match (suc v1) e2 (x, e3) −→ [x 7→ v1]e3

e1 −→ e′1
match e1 e2 (x, e3) −→ match e′1 e2 (x, e3)

Example 4.1 shows a program that is an application of a function that adds up two
natural numbers over the arguments 3 and 4. With an exhausting use of the semantic
rules, we can see that this program is valid and evaluates to suc suc suc suc suc suc

suc zero, i.e., it evaluates to 7.

25

4 Semantics

Example 4.1: Program that sums 3 and 4.

(rec "sum" (abs "x" : nat (abs "y" : nat (

match "x"

"y"

("w", ("sum" "w") (suc "y"))))))

(suc suc suc zero)

(suc suc suc suc zero)

With semantics defined we show in Theorem 5 that progress and preservation holds for
System R. But the only guarantee of termination is due to the fueling of the evaluation
relation (see -eval at file R.Semantics).

Theorem 5. If e : τ is a closed term in System R, then e is a value or there exists a
term e′ : τ such that e −→ e′.

Proof. By induction on the structure of e. This proof relies on the datatypes that model
the semantic relation and its closure. The done construction indicates a normal form
while the step construction with a semantic rule indicates the progress of the evaluation.
The proof is a mapping between the possible states of the evaluation to normal forms or
semantic rules, and it is present in detail in Wadler’s work [41].
See progress at file R.Semantics.

An alternative semantic formalization is by a definitional interpreter [7]. That means
mapping the constructions of the language to the objects of the proof assistant, in a
denotational semantics style. However, to map System R constructions to Agda objects,
the function must be “fueled” since there is no guarantee of termination, and Agda
requires everything to terminate. See ∅-eval at file R.Semantics.Definitional. One main
advantage of this approach is using the capture-avoiding substitution already implemented
in the language rather than writing one from scratch.

4.2 System L

The small step semantics of System L, shown in Table 4.2, is similar to System R’s. The
differences lie in the drop of the rule for recursion and in the inclusion of the rules for
handling error. System L’s semantics satisfies progress and preservation as well, as
shown in Theorem 6. But unlike System R, System L is strongly normalizing (Theorem 7),
that is, every term finitely evaluates to a normal form1.

1In System R, there is no problem in defining all normal forms as values. In System L, the error
construction is a normal form, but the semantic relation −→ becomes non-deterministic if we define
it as a value. The details of this problem can be found in [32].

26

https://mayconamaro.github.io/dissertation-agda/R.Semantics.html#3494
https://mayconamaro.github.io/dissertation-agda/R.Semantics.html#2014
https://mayconamaro.github.io/dissertation-agda/R.Semantics.Definitional.html#2083

4 Semantics

Table 4.2: Call-by-value, small step semantics of System L

e1 −→ e′1
e1 e2 −→ e′1 e2

e2 −→ e′2
v1 e2 −→ v1 e

′
2

e −→ e′

suc e −→ suc e′

(λx : τ.e1) v2 −→ [x 7→ v2]e1
e1 −→ e′1

match e1 e2 (x, e3) −→ match e′1 e2 (x, e3)

match zero e2 (x, e3) −→ e2 match (suc v1) e2 (x, e3) −→ [x 7→ v1]e3

error e −→ error v error −→ error suc error −→ error

match error e2 (x, e3) −→ error

Theorem 6. If e : τ is a closed term in System L, then either e is a normal form or
there exists a term e′ : τ such that e −→ e′.

Proof. By induction on the structure of e. The idea is identical to the proof for System R.
See progress at file L.Semantics.

Theorem 7. If e : τ is a closed term in System L, then exists a normal form e′ : τ , either
value or error, such that e −→∗ e′.

Proof. By definitional interpreter. Types from System L are mapped to a sum type in
Agda. The idea is to include a ⊥ value in every type, to model error. Contexts are
modelled as a list of values, and the interpreter maps System L constructions to Agda
constructions. The evaluation of closed terms is the interpretation of terms starting with
an empty list of values (an empty context).
See ∅-eval at file L.Semantics.Definitional.

Theorem 7 proves our second desired property: translating a program to System L is
a guarantee that the program will halt, even if it has to stop with the out of fuel error.
It only remains to justify that the original program and the output of our algorithm
have the same behavior when the former terminates and enough fuel is provided in the
creation of the latter. To accomplish this, we define random term generation and run
property-based tests, that are descripted in the following sections.

4.3 Term Generation

We define, for our generation procedure, a superset of types, in which our base type N is
indexed by natural numbers. Those indices are related via subtyping, such that Nx <: Ny

whenever x ≤ y. Functions are related in the usual way, being covariant in return type

27

https://mayconamaro.github.io/dissertation-agda/L.Semantics.html#2591
https://mayconamaro.github.io/dissertation-agda/L.Semantics.Definitional.html#1792

4 Semantics

and contravariant in the argument type. Inspired in type-based termination [10], the
role of these indices is to guide the depth of the generation of constants, and to act
as an upper limit to the use of recursion. The motivation is that we wish to generate
terminating programs, avoiding discarded cases by QuickCheck.

Our generation judgment, represented by the notation Γ; d; r; τ e, means that expres-
sion e of type τ can be generated from context Γ, given nonnegative integer limits d for
expression depth and r for type indices. The relation is annotated with a letter to
distinguish the form of the expressions it generates in each rule. This decision helps to
control which rules can be used in each scenario, which is very useful to guarantee the
termination of the generation procedure. Due to the complexity of the rules, they are
presented separately.

In Table 4.3 we have our first rules: the generation of zero and terms that are variables.
A zero can be generated in every scenario where a N is expected, regardless of the index.
Variables can be picked from a non empty list of candidates. Those candidates are the
variables from the context that are a subtype of the expected type. The notation ξ(xs)
means the selection of a random element from a non-empty list xs.

Table 4.3: Generation rules for zeros and variables

Γ; d; r;Nx z zero
{zero}

cs = {v | v : τ ′ ∈ Γ ∧ τ ′ <: τ} cs 6= ∅
Γ; d; r; τ v ξ(cs)

{var}

The successor construction, shown in Table 4.4, can be also generated in every scenario
where a Nx is expected, as long as index x is not already 0. Its argument can be a
zero, a variable or another successor construction. The index limit is decreased for the
generation of its subterm, and thus we can be sure that it will eventually reach 0 and
terminate. It is useful not to include other rules as possible subterms for this construction,
because we have a constraint at the generation of pattern matchings when inside recursive
definitions. This constraint is that the first branch must be a constant. The notation
ψ, φ, · · · = ξ({a, b, c, d, . . . }) means that rules annotated with ψ, φ, etc., are an alias to
rules annotated with any letter in the list inside ξ, and are meant to be selected randomly
for each letter on the left side.

Table 4.4: Generation rule for sucessors

Γ; d; r;Nx ψ e ψ = ξ({z, v, s})
Γ; d; r + 1;Nx+1 s suc e

{suc}

Abstractions need to generate an expression of the return type before inserting a λ. A
function fresh that generates a variable name that is not present in the given context is
defined. In this way, we can avoid capturing of names when generating function definitions.

28

4 Semantics

Notice that in intrisically-typed implementations, this function is not necessary. The
rule for generating abstractions is in Table 4.5. The operator bτc erases the index from
indexed type τ .

Table 4.5: Generation rule for abstractions

v = fresh(Γ) Γ, v : τ1; d; r; τ2 ψ e ψ = ξ({z, v, s, a})
Γ; d; r; τ1 → τ2 a λv : bτ1c.e

{abs}

Applications of type τ need the generation of an abstraction that results in τ when
applied to a proper argument. This argument needs to be generated as well. The rule
for applications is in Table 4.6. It uses the operator Θ that generates a type given the
limits d and r, and never associates to the left. In this way, we can avoid the generation
of a higher-order function and further complexity of the generation procedure. The
implementation of Θ is the random selection of one out of two more specific versions:
Θ→ that generates only function types and ΘN that generates only indexed N types. It is
important to highlight that if limits d and r are high enough (greater than 1), both base
and functional types can be generated. Otherwise, it will force the generation of a base
type (N is our only base type here). Generating applications will cut the d limit to half
for generating its subterms, thus its termination is certain.

Table 4.6: Operator Θ and generation rule for applications

ΘN(r) = Nξ({1,...,r})

Θ→(0, r) = (ΘN(r))→ (ΘN(r))

Θ→(2d, r) = (ΘN(r))→ (ξ({ΘN(r),Θ→(d, r)}))
Θ(d, r) = ξ({ΘN(r),Θ→(d, r)})

τ ′ = Θ(d, r) Γ; d; r; τ ′ → τ φ e1 Γ; d; r; τ ′ ψ e2 φ, ψ = ξ({z, v, s, a})
Γ; 2d; r; τ a e1 e2

{app}

Match constructions need to generate a term of type N and two terms of the expected
type. The rule is in Table 4.7. For the generation of the third term e3, the limit r is
decreased and a fresh variable is added to context with a decreased index as well. The
operator ↓ decreases the index of the type by 1. If it is a function, only the leftmost atom
is decreased. As in the generation of applications, matches can only be introduced if the
limit d is greater than 1.

The generation of recursive functions and applications involving them require more
caution. Generating a recursive function needs the generation of a proper body, which

29

4 Semantics

Table 4.7: Generation rule for pattern matchings

v = fresh(Γ) Γ; d; r;Nr φ e1
φ, ψ, ρ = ξ({z, v, s, a}) Γ; d; r; τ ψ e2 Γ, v : Nr↓ ; d; r↓; τ ρ e3

Γ; 2d; r; τ a match e1 e2 (v, e3)
{match}

means it has to be well-typed and must terminate. Generating non-terminating terms
would lead to lots of discarded cases when QuickChecking, because those terms would
not satisfy the premise of the property. The simplest way of guaranteeing this is inserting
abstractions until we are left with the generation of a N, and then generate a pattern
matching. This match will generate a constant natural number on its first branch and
it will allow a recursive call (an occurrence of the function’s name) on the second. The
expression being generated for the second branch needs to be modified to make sure
that, if there is a recursive call, then its first argument will be the predecessor of the
matched expression. We call this process standardization. The generation rules and
the standardization are in Table 4.8, where bottom is a function that returns the first
variable name added to the context, i.e., the bottom of the scope stack; and top is a
function that returns the last variable name added to the context, i.e., the top of the
scope stack.

Applications involving recursive definitions are more useful if they yield a number as the
final value, and so we force this to happen. After generating a functional type and a
recursive definition of this type, we generate proper arguments and apply the function
over them. For this, we build a list of arguments and extend the judgment to contain
them. We must build the applications of the outer arguments first, applying the recursive
definition to the first argument as the innermost application. For this, we need to reverse
our list of arguments. This rule is formally described in Table 4.9.

Finally, generating a System R expression means to generate a type and generate a
term accordingly, as described in Table 4.10. If we want only top terms of System
R, then it is enough to use ψ = g and φ = f . But it is interesting to allow the
generation of bottom level terms when testing properties, since recursive functions are
optional in real-life implementations. In that case, we can let ψ = ξ({z, v, s, a, g}) and
φ = ξ({a, f}).

We are aware of the verbosity of the rules for term generation. Although we based our
approach on elegant formalizations in the literature, as the ones seen in [30, 18], our
interest in guaranteeing termination—of both the generation procedure and the generated
term—greatly increases the complexity of the process. A more elegant formalization
should be possible by better exploring the properties of terminating term generation,
which we leave as a possibility for future work.

30

4 Semantics

Table 4.8: Generation rules for recursive definitions and standardization function

std(e1 e2, v1, v2) =

{
e1 v2 e1 ≡ v1

(std(e1, v1, v2)) (std(e2, v1, v2)) otherwise

std(λv : τ.e, v1, v2) = λv : τ.(std(e, v1, v2))

std(match e1 e2 (v, e3), v1, v2) = match (std(e1, v1, v2)) (std(e2, v1, v2))

(v, std(e3, v1, v2))

std(e, ,) = e

stdz(e,Γ) = std(e, bottom(Γ), top(Γ))

v = fresh(Γ) Γ, v : (τ1 → τ2)↓; d; r↓; τ1 → τ2 b e

Γ; 2d; r + 1; τ1 → τ2 f rec v : bτ1 → τ2c.e
{rec}

v = fresh(Γ)
ρ = ξ({z, v, s, a}) Γ; d; r; (Nx)↓ ψ e1 Γ, v : (Nx) ↓; d; r;Nx ρ e

′
3

φ, ψ = ξ({z, v, s}) Γ; d; r;Nx φ e2 e3 = stdz (e′3; Γ, v : (Nx)↓)

Γ; d; r;Nx b match e1 e2 (v, e3)
{buildBody1}

v = fresh(Γ) Γ, v : τ1; d; r; τ2 b e

Γ; d; r; τ1 → τ2 b λv : bτ1c.e
{buildBody2}

4.4 QuickChecking Properties

The property-based tests we apply require essentially two things: the term generation pro-
cedure and the algorithms involved in the properties. The former was defined in the previ-
ous section, and the latter can be achieved by constructing a compiler. Ringell is our proof-
of-concept interpreter2 written in Haskell, featuring the unrolling technique described
in this work. Its source code is available in https://github.com/mayconamaro/ringell,
which contains some example programs as well.

The interpreter has two modes based on the number of arguments passed to it. The
default mode expects a filename containing a System R program, which will be parsed
and interpreted following the defined semantics. The other mode expects a filename
and a natural number, which will be used as the fuel value to unroll the program and
translate it to System L before interpreting it. Given our properties so far, the second

2Compilers are often seen as programs that transform a source code file into executable machine
binaries, while interpreters are seen as programs that execute the instructions as they are parsed.
From our point of view, the syntactic transformations over abstract syntax trees are processes of
compilation, and thus we also refer to Ringell as a compiler.

31

https://github.com/mayconamaro/ringell

4 Semantics

Table 4.9: Generation rules for applications of recursive definitions

τ = Θ→(d, r) Γ; d; r; τ f e
′ Γ; d; r; e′; revargs(τ) c e

Γ; 2d; r;Nx g e
{apprec}

args(Nx) = []

args(Nx → τ2) = Nx :: (args(τ2))

revargs = reverse ◦ args

ψ = ξ({z, v, s, a})
Γ; d; r;Nx ψ e′

Γ; d; r; e; [Nx] c e e
′ {bdA1}

ψ = ξ({z, v, s, a})
Γ; d; r; e; ts c e1 Γ; d; r;Nx ψ e2

Γ; d; r; e;Nx :: ts c e1 e2
{bdA2}

Table 4.10: Term generation rules for System R

Γ; d; r;Nx ψ e

Γ; d; r;Nx e

Γ; d; r; τ1 → τ2 φ e

Γ; d; r; τ1 → τ2 e

mode is guaranteed to terminate, while the default mode might eventually interpret a
program with an infinite loop.

Building confidence around our tests with Ringell require at least two things: a good
code coverage and wide variety of case tests. Since we are using property-based testing,
the latter is handled by QuickCheck. We set the maximum number of successful test
cases as 1000, opposing the default 100. To avoid losing code coverage because of
other parts of the interpreter, such as lexical and syntactical analysis, a minimal and
test-purpose only version of Ringell was used for tests, and its source code is available
at https://github.com/mayconamaro/ringell-properties. The following properties were
tested and successfully accepted by QuickCheck:

• Property 1: All generated System R programs are well typed

• Property 2: All generated System R programs terminate

• Property 3: For every generated System R term e of type N, if e terminates with
value v doing at most f recursive calls, then transform(e, f) yields v.

• Property 4: For every generated System R term e of type N and some fuel f , if
transform(e, f) yields a value v, then e terminates resulting in v.

Property 2 is only true because of our generation procedure—it is obviously not a property
of System R. Properties 3 and 4 are our desired semantic properties for the transformation

32

https://github.com/mayconamaro/ringell-properties

4 Semantics

technique: the output function results in the same value of the original if enough fuel is
provided, and the output function producing a value implies that the original function
terminates with the same value. Both properties concern only programs of the base
type N, because there are two syntatic constructors for programs of functional type in
System R (abstractions and recursive definitions) and only one in System L (abstractions).
We prefer using propositional equality instead of creating a more complex equivalence
relation for this purpose.

The code coverage is shown in Table 4.11. The parts with no full coverage are mostly
arguments that were not used in trivial cases (because Haskell uses lazy evaluation). For
example, the evaluation of zero has no need for the context information, but it is available
as it is in all other cases. The ExpR and ExpL modules contain the abstract syntax tree
data structure for the respective languages, as well as their interpreters largely based
on [32]. The module Unroll, which practically got full coverage, contains the unrolling,
translation and transformation algorithms.

Table 4.11: Code coverage reported by QuickCheck

Module Top Level Definitions Alternatives Expressions
ExpL 100% 88% 86%
ExpR 88% 94% 89%
Unroll 100% 100% 89%
Total 93% 94% 88%

Our strategy to transform recursive functions into finite depth pattern matching, and the
proofs and tests we show, are a powerful toolset for creating compilers to targets that
will reject programs with recursion. The only downside is forcing the programmer to
inform the maximum recursion depth. From our point of view, this is equivalent to the
restriction of the bounded loops available today, and thus our strategy does not insert
more difficulties than necessary.

33

5 Conclusion

It is very useful to allow the dynamic change of behavior in computing systems. This
level of adaptation is essential to complete several tasks with efficiency. For this matter,
programming languages became popular and diverse, being attractive even for systems
with stringent security requirements, such as the Linux kernel. In these scenarios, the
risk to allow unrestricted programs is too high, so they impose some restrictions on
what kinds of programs are accepted. A very common restriction is that the program
must terminate, because infinite loops can be used as a tool for denial of service attacks.
However, checking for infinite loops in a general manner is impossible, because of the
undecidability of the Halting Problem. In this work, we proposed a technique to unroll
recursive programs in functional languages. For this task, we defined two core languages:
System R and System L. System R is a lambda calculus with naturals, pattern matching
and recursion; and System L is the same calculus with no recursion and an additional
construction to model forced termination. We defined unrolling for System R and proved
that the translation from System R to System L is guaranteed to terminate, and also
proved that the execution of System L programs will always terminate as well. We run
tests to justify that the programs preserve their behavior through the transformation
into System L, unless they originally do not terminate, or if the fuel provided to the
unrolling process is too low. Our work can be straightforwardly used to create compilers
from general purpose functional languages to restricted scenarios such as eBPF or smart
contract languages for blockchain networks. Our proof-of-concept interpreter, Ringell, is
available to public access. The following resources contain the artifacts produced in this
dissertation:

• See https://github.com/lives-group/terminating-expansion/ for download-
able Agda code of the formalizations.

• See https://mayconamaro.github.io/dissertation-agda/ for the interactive
web version of the Agda formalizations.

• See https://github.com/mayconamaro/ringell for the source code of the inter-
preter, including examples.

• See https://github.com/mayconamaro/ringell-properties for the source code
of the tests.

34

https://github.com/lives-group/terminating-expansion/
https://mayconamaro.github.io/dissertation-agda/
https://github.com/mayconamaro/ringell
https://github.com/mayconamaro/ringell-properties

Bibliography

[1] Andreas Abel. foetus — termination checker for simple functional programs. Techni-
cal report, Ludwigs-Maximilians-University, Munich, 1998.

[2] Andreas Abel. Specification and verification of a formal system for structurally
recursive functions. In International Workshop on Types for Proofs and Programs,
pages 1–20, Berlin, 1999. Springer.

[3] Andreas Abel and Thorsten Altenkirch. A semantical analysis of structural recursion.
In Fourth International Workshop on Termination WST, pages 24–25, 1999.

[4] Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion.
Journal of Functional Programming, 12(1):1–41, 2002.

[5] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for
PCF. Information and computation, 163(2):409–470, 2000.

[6] Maycon J. J. Amaro, Samuel S. Feitosa, and Rodrigo G. Ribeiro. A sound strategy
to compile general recursion into finite depth pattern matching. In Lucas Lima
and Vince Molnár, editors, Formal Methods: Foundations and Applications, volume
13768 of Lecture Notes in Computer Science, pages 39–54, Cham, 2022. Springer
International Publishing.

[7] Nada Amin and Tiark Rompf. Type soundness proofs with definitional interpreters.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 666–679, 2017.

[8] Andrew Appel. Compiling with Continuations. Cambridge University Press, 1992.

[9] Andrew Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 2004.

[10] Gilles Barthe, Benjamin Grégoire, and Colin Riba. A tutorial on type-based
termination. In International LerNet ALFA Summer School on Language Engineering
and Rigorous Software Development, pages 100–52, 2008.

[11] Gilles Barthe, Benjamin Grégoire, and Colin Riba. Type-based termination with
sized products. In International Workshop on Computer Science Logic, pages
493–507, Berlin, 2008. Springer.

[12] Alonzo Church. An unsolvable problem of elementary number theory. In American
Journal of Mathematics, pages 345–363, 1936.

35

Bibliography

[13] Alonzo Church. A formulation of the simple theory of types. The journal of symbolic
logic, 5(2):56–68, 1940.

[14] Jesper Cocx. 1001 representations with binding. https://jesper.sikanda.be/

posts/1001-syntax-representations.html, 2021.

[15] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the church-rosser
theorem. In Indagationes Mathematicae (Proceedings). Elsevier, 1972.

[16] Apostolos Doxiadis and Christos Papadimitriou. LOGICOMIX: an epic search for
truth. Bloomsbury Publishing USA, 2015.

[17] Gilles Barthe et al. Type-based termination of recursive definitions. Mathematical
structures in computer science, 14(1):97–141, 2004.

[18] Samuel Feitosa, Rodrigo Ribeiro, and Andre Du Bois. A type-directed algorithm to
generate random well-typed Java 8 programs. Science of Computer Programming,
196:102494, 2020.

[19] GNU. GCC, the GNU Compiler Collection. https://gcc.gnu.org/, 2022.

[20] Gilles Kahn. Natural semantics. In Annual symposium on theoretical aspects of
computer science, pages 22–39. Springer, 1987.

[21] András Kovács. A machine-checked correctness proof of normalization by evalua-
tion for simply typed lambda calculus. Master’s thesis, Eötvös Loránd University,
Budapest, 2017.

[22] Ton Chanh Le, Lei Xu, Lin Chen, and Weidong Shi. Proving conditional termination
for smart contracts. In Proceedings of the 2nd ACM Workshop on Blockchains,
Cryptocurrencies, and Contracts, BCC ’18, page 57–59, New York, NY, USA, 2018.
Association for Computing Machinery.

[23] LLVM Project. Clang C Language Family Frontend for LLVM. https://clang.

llvm.org/, 2022.

[24] Conor McBride. Turing-completeness totally free. In International Conference on
Mathematics of Program Construction, pages 257–275. Springer, 2015.

[25] Microsoft. Visual Studio Compiler for Windows. https://visualstudio.microsoft.
com/cplusplus/, 2022.

[26] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, Cambridge, MA, 1989.

[27] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An
Appetizer. Springer, 2007.

36

https://jesper.sikanda.be/posts/1001-syntax-representations.html
https://jesper.sikanda.be/posts/1001-syntax-representations.html
https://gcc.gnu.org/
https://clang.llvm.org/
https://clang.llvm.org/
https://visualstudio.microsoft.com/cplusplus/
https://visualstudio.microsoft.com/cplusplus/

Bibliography

[28] Ulf Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers Univeristy of Technology and Göteborg University, Sweden,
2007.

[29] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell. O’Reilly,
Sebastopol, 2008.

[30] Micha l Pa lka. Testing an Optimising Compiler by Generating Random Lambda
Terms. Licenciate thesis, Chalmers University of Technology and Göteborg University,
Göteborg, Sweden, 2012.

[31] Daejun Park, Andrei Stefănescu, and Grigore Roşu. KJS: A complete formal
semantics of JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 346–356, 2015.

[32] Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.

[33] Gordon Plotkin. LCF considered as a programming language. Theoretical computer
science, 5(3):223–255, 1977.

[34] Gordon Plotkin. A structural approach to operational semantics. Aarhus University,
1981.

[35] Radu Rugina and Martin Rinard. Recursion unrolling for divide and conquer
programs. In International Workshop on Languages and Compilers for Parallel
Computing, pages 34–48. Springer, 2000.

[36] Jeremy Siek and Walid Taha. Gradual typing for functional languages. In Proceedings
of the 2006 Scheme and Functional Programming Workshop, 2006.

[37] Michael Sipser. Introduction to the Theory of Computation, 3rd edition. Cengage
Learning, 2012.

[38] Aaron Stump. Verified functional programming in Agda. Morgan & Claypool, 2016.

[39] Alan Turing. On computable numbers, with an application to the entscheidungsprob-
lem. In Proceedings of the London Mathematical Society, pages 230–265, 1936.

[40] Philip Wadler. Propositions as types. Communications of the ACM, 58(12):75–84,
2015.

[41] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming language foundations
in Agda. http://plfa.inf.ed.ac.uk/20.07/, July 2020.

37

http://plfa.inf.ed.ac.uk/20.07/

	Introduction
	Objectives
	Contributions
	Published Material
	Dissertation Structure

	Background
	Type Systems
	Formal Semantics
	Operational Semantics
	Denotational Semantics
	A Look Around

	Property Based Testing
	Agda
	Lambda Calculus
	Related Work

	Syntax
	System R
	Unrolling
	Embeddings
	Substitutions
	Inlining and Expansion

	System L

	Semantics
	System R
	System L
	Term Generation
	QuickChecking Properties

	Conclusion
	Bibliography

