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Abstract

Featherweight Java is one of the most popular calculi which specify object-oriented pro-
gramming features. It has been used as the basis for investigating novel language func-
tionalities, as well as to specify and understand the formal properties of existing features
for languages in this paradigm. However, when considering mechanized formalization,
it is hard to find an implementation for languages with complex structures and bind-
ing mechanisms as Featherweight Java. In this paper we formalize Featherweight Java,
implementing the static and dynamic semantics in Agda, and proving the main safety
properties for this calculus.
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1 Introduction

Currently, Java is one of the most popular programming languages [1]. It is a general-purpose, concurrent,
strongly typed, class-based object-oriented language. Since its release in 1995 by Sun Microsystems, and
later acquisition by Oracle, Java has been evolving over time, adding features and programming facilities in
its new versions. For example, in a recent major release of Java, new features such as lambda expressions,
method references, and functional interfaces, were added to the core language, offering a programming model
that fuses the object-oriented and functional styles [2].

Since a programming language evolves, it is important to have mechanisms to ensure that certain be-
haviors and desired properties are maintained after changing the language’s structure and the compiler or
interpreter implementation. One way to do that is to formalize the language (or subset of it) in a proof assis-
tant, such as Agda, Coq, or Isabelle, providing formal proofs of the desired properties. Although mechanized
proof assistants are powerful tools, proof development can be difficult and time-consuming [3].

In this context, this paper discusses the steps to formalize Featherweight Java (FJ) [4] in Agda, a
dependently-typed functional programming language based on Martin-Löf intuitionistic type theory [5]. FJ
is a small core calculus with a rigorous semantic definition of the main core aspects of Java. The motivations
for using the specification of FJ are that it is very compact, and its minimal syntax, typing rules, and
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operational semantics fit well for modeling and proving properties for the compiler and programs. We adopt
the most used method for proving safety of a programming language: the syntactic approach (sometimes
called extrinsic) proposed by Wright and Felleisen [6]. Using this technique, we define first the syntax, and
then relations to express both the typing judgments (static semantics), and the evaluation through reduction
steps (dynamic semantics). We prove the common theorems of progress and preservation to link the static
and dynamic semantics, guaranteeing that a well-typed term will not get stuck, i.e., it should be a value or
be able to take another reduction step, preserving the intended type. As far as we know, this is the first
attempt to formalize an extrinsic version of FJ in Agda. Filling this gap, we provide to the interested reader
the source-code which can be used to better understanding the approach and Agda, as well as to be extended
for future developments.

More concretely, we make the following contributions:

• We specify the static and dynamic semantics of FJ (class table and expressions) in Agda using the
syntactic approach [6].

• We prove that the specification is sound, i.e., we can show that the proposed theorems of progress and
preservation hold.

• We define a function to evaluate well-typed terms, by repeating the application of the progress and
preservation proofs [7].

The remainder of this text is organized as follows: Section 2 summarizes the FJ proposal. Section 3
shows how we represent types, how we model the class table and expressions, and the specification of the
static and dynamic semantics of FJ in Agda. Section 4 discusses the proof steps to guarantee type safety of
the studied calculus. Section 5 presents the steps to define evaluation through repeated applications of the
progress and preservation theorems. Section 6 discusses related work. Finally, we present the final remarks
in Section 7.

All source-code presented in this paper has been formalized in Agda version 2.6.0 using Standard Library
1.0. We present here parts of the Agda code used in our definitions, not necessarily in a strict lexically-
scoped order. Some formal proofs were omitted from the text for space reasons, and also to not distract
the reader from understanding the high-level structure of the formalization. In such situations we give just
proof sketches and point out where all details can be found in the source code. All source code produced,
including the LATEX source of this paper, are available on-line [8].

2 Featherweight Java: a Refresher

Featherweight Java (FJ) [4] is a minimal core calculus for Java, in the sense that as many features of Java as
possible are omitted, while maintaining the essential flavor of the language and its type system. FJ is to Java
what λ-calculus is to Haskell. It offers similar operations, providing classes, methods, attributes, inheritance
and dynamic casts with semantics close to Java’s. The Featherweight Java project favors simplicity over
expressivity and offers only five ways to create terms: object creation, method invocation, attribute access,
casting and variables [4]. This fragment is large enough to include many useful programs.

A program in FJ consists of the declaration of a set of classes and an expression to be evaluated, which
corresponds to Java’s main method. The following example shows how classes can be modeled in FJ. There
are three classes, A, B, and Pair, with constructor and method declarations.

class A extends Object {
A () {super (); }
}
class B extends Object {

B () {super (); }
}
class Pair extends Object {

Object fst;
Object snd;
Pair (Object fst, Object snd) {

super ();
this.fst = fst;
this.snd = snd;
}
Pair setfst (Object newfst) {
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return new Pair (newfst, this.snd);
}
}

In the following example we can see two different kinds of expressions: new A(), new B(), and new Pair(...)
are object constructors, and .setfst(...) refers to a method invocation:

new Pair (new A () , new B ()) ◦ setfst (new B ());

FJ semantics provides a purely functional view without side effects. In other words, attributes in memory
are not affected by object operations [9]. Furthermore, interfaces, overloading, call to base class methods,
null pointers, base types, abstract methods, statements, access control, and exceptions are not present in the
language [4]. As the language does not allow side effects, it is possible to formalize the evaluation directly
on FJ terms, without the need for auxiliary mechanisms to model the heap [9].

2.1 Syntax and Auxiliary Functions

The abstract syntax of FJ is given in Figure 1, where L represents classes, K defines constructors, M stands
for methods, and e refers to the possible expressions. The metavariables A, B, C, D, and E can be used to
represent class names, f and g range over field names, m ranges over method names, x and y range over
variables, d and e range over expressions. Throughout this paper, we write C as shorthand for a possibly
empty sequence C1, ..., Cn (similarly for f , x, etc.). An empty sequence is denoted by •, and the length of
a sequence x̄ is written #x̄. We use Γ to represent an environment, which is a finite mapping from variables
to types, written x : T , and we let Γ(x) denote the type C such that x: C ∈ Γ. We slightly abuse notation
by using set operators on sequences. Their meaning is as usual.

Syntax

L ::= class declarations
class C extends {C f ;K M}

K ::= constructor declarations
C(C f) {super(f); this.f = f ; }

M ::= method declarations
C m(C x) { return e; }

e ::= expressions
x variable
e.f field access
e.m(e) method invocation
new C(e) object creation
(C) e cast

Figure 1: Syntactic definitions for FJ.

A class table CT is a mapping from class names, to class declarations L, and it should satisfy some
conditions, such as each class C should be in CT, except Object, which is a special class; and there are no
cycles in the subtyping relation. Thereby, a program is a pair (CT, e) of a class table and an expression.

Figure 2 shows the rules for subtyping, where we write C <: D when C is a subtype of D.

C <: C

C <: D D <: E
C <: E

CT(C) = class C extends D { ... }
C <: D

Figure 2: Subtyping relation between classes.

The authors in [4] also proposed some auxiliary definitions for working in the typing and reduction rules.
These definition are given in Figure 3. The rules for field lookup demonstrate how to obtain the fields of a

3



CLEI ELECTRONIC JOURNAL, VOLUME 24, ISSUE 3, PAPER 3, DECEMBER 2020

given class. If the class is Object, an empty list is returned. Otherwise, it returns a sequence C f pairing
the type of each field with its name, for all fields declared in the given class and all of its superclasses. The
rules for method type lookup (mtype) show how the type of method m in class C can be obtained. The first
rule of mtype returns a pair, written B → B, of a sequence of argument types B and a result type B, when
the method m is contained in C. Otherwise, it returns the result of a call to mtype with the superclass. A
similar approach is used in the rules for method body lookup, where mbody(m, C) returns a pair (x, e), of a
sequence of parameters x and an expression e. Both mtype and mbody are partial functions.

Field lookup
fields(Object) = •

CT (C) = class C extends D {C f ; K M}
fields(D) = D g

fields(C) = D g, C f

Method type lookup

CT (C) = class C extends D {C f ; K M}
B m(B x) { return e; } ∈ M

mtype(m, C) = B → B

CT (C) = class C extends D {C f ; K M} m /∈ M
mtype(m, C) = mtype(m, D)

Method body lookup

CT (C) = class C extends D {C f ; K M}
B m(B x) { return e; } ∈ M

mbody(m, C) = (x, e)

CT (C) = class C extends D {C f ; K M} m /∈ M
mbody(m, C) = mbody(m, D)

Figure 3: Auxiliary definitions.

2.2 Typing and Reduction Rules

This section presents how the typing rules of FJ are used to guarantee type soundness, i.e., well-typed terms
do not get stuck, and the reduction rules showing how each step of evaluation should be processed for FJ
syntax. Figure 4 shows in the left side, the typing rules for expressions, and in the right side, it shows first
the rules to check if methods and classes are well-formed, then the reduction rules for this calculus. We omit
here the congruence rules, which can be found in the original paper [4].

The typing judgment for expressions has the form Γ ` e: C, meaning that in the environment Γ,
expression e has type C. The abbreviations when dealing with sequences is similar to the previous section.
The typing rules are syntax directed, with one rule for each form of expression, except that there are three
rules for casts.

The rule T-Var results in the type of a variable x according to the context Γ. If the variable x is not
contained in Γ, the result is undefined. Similarly, the result is undefined when calling the functions fields,
mtype, and mbody in cases when the target class or the methods do not exist in the given class. The rule
T-Field applies the typing judgment on the subexpression e0, which results in the type C0. Then it obtains
the fields of class C0, matching the position of fi in the resultant list, to return the respective type Ci. The
rule T-Invk also applies the typing judgment on the subexpression e0, which results in the type C0, then it
uses mtype to get the formal parameter types D̄ and the return type C. The formal parameter types are used
to check if the actual parameters ē are subtypes of them, and in this case, resulting in the return type C.
The rule T-New checks if the actual parameters are a subtype of the constructor formal parameters, which
are obtained by using the function fields. There are three rules for casts: one for upcasts, where the subject
is a subclass of the target; one for downcasts, where the target is a subclass of the subject; and another for
stupid casts, where the target is unrelated to the subject. Even considering that Java’s compiler rejects as
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Expression typing

Γ ` x: Γ(x)
[T-Var]

Γ ` e0: C0 fields(C0) = C̄ f̄
Γ ` e0.fi: Ci

[T-Field]

mtype(m, C0) = D̄ → C
Γ ` e0 : C0 Γ ` ē : C̄ C̄ <: D̄

Γ ` e0.m(ē) : C
[T-Invk]

fields(C) = D̄ f̄
Γ ` ē : C̄ C̄ <: D̄

Γ ` new C(ē) : C
[T-New]

Γ ` e0 : D D <: C
Γ ` (C) e0 : C

[T-UCast]

Γ ` e0 : D C <: D C 6= D
Γ ` (C) e0 : C

[T-DCast]

Γ ` e0 : D C ≮: D D ≮: C
stupid warning
Γ ` (C) e0 : C

[T-SCast]

Method typing

x̄: C̄, this: C ` e0: E0 E0 <: C0

class C extends D {...}
if mtype(m, D) = D̄ → D0, then C̄ = D̄ and C0 = D0

C0 m(C̄ x̄) { return e0; } OK in C

Class typing

K = C(D̄ ḡ, C̄ f̄) { super(ḡ); this.̄f = f̄; }
fields(D) = D̄ ḡ M̄ OK in C

class C extends D { C̄ f̄; K M̄ } OK

Evaluation

fields(C) = C̄ f̄
(new C (v̄)).fi −→ vi

[R-Field]

mbody(m, C) = (x̄, e0)

(new C (v̄)).m(d̄) −→ [d̄ 7→ x̄, new C(v̄) 7→ this] e0
[R-Invk]

C <: D
(D) (new C(v̄)) −→ new C(v̄)

[R-Cast]

Figure 4: Typing and evaluation rules.

ill-typed an expression containing a stupid cast, the authors found that a rule of this kind is necessary to
formulate type soundness proofs.

The rule for method typing checks if a method declaration M is well-formed when it occurs in a class
C. It uses the expression typing judgment on the body of the method, with the context Γ augmented with
variables from the actual parameters with their declared types, and the special variable this, with type C.
The rule for class typing checks if a class is well-formed, by checking if the constructor applies super to the
fields of the superclass and initializes the fields declared in this class, and that each method declaration in
the class is well-formed.

There are only three computation rules, indicating which expressions can be used in the main program.
The first rule R-Field formalizes how to evaluate an attribute access. Similarly to the typing rule T-Field,
it uses the function fields, and matches the position i of the field fi in the resulting list, returning the value
vi, which refers to the value in the position i of the actual parameter list. The second rule R-Invk shows
the evaluation procedure for a method invocation, where firstly it obtains the method body expression m of
class C through the function mbody, and then performs substitution of the actual parameters and the special
variable this in the body expression, similar to a beta reduction on λ-calculus. The last rule R-Cast refers
to cast processing, where the same subexpression new C(ē) is returned in case the subject class C is subtype
of the target class D. There are also five congruence rules1 (omitted from Figure 4), which are responsible
for the intermediary evaluation steps for the proposed small-step semantics.

The FJ calculus is intended to be a starting point for the study of various operational features of object-
oriented programming in Java-like languages, being compact enough to make rigorous proofs feasible. Besides
the rules for evaluation and type-checking, Igarashi et al. [4] present (paper) proofs of type soundness for
FJ.

3 Mechanization of Featherweight Java

This section presents our formalization of a large subset of FJ (without casts) using the usual syntactic
(extrinsic) approach proposed by Wright and Felleisen [6]. We use Agda, an advanced programming language
based on Type Theory. Agda’s type system is expressive enough to support full functional verification of
programs [10], giving programmers the power to guarantee the absence of bugs, and thus improving the

1The congruence rules omitted from the text can be found in p. 407 of [4].
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quality of software in general. By using such extrinsic approach, we first define a bunch of relations (inductive
data types) to specify the syntax, auxiliary definitions, the behavior (reduction rules), and the type system
of the FJ programming language. Once defined the complete set of rules, we write proofs of properties
about them. The proofs are separate external artifacts, which use structural induction to verify the desired
properties. In this case, we are interested in mechanically proving the properties defined on paper in the
original FJ [4], which include several lemmas, and the properties of progress and preservation, which together
provide guarantees of type safety.

3.1 Syntax

The syntax of FJ includes the definition of a class table (CT), which stores all classes in a source-code
program, and an expression, which replaces the Java’s main method. An expression can refer to information
of two sources: (1) a context to deal with variables, which stores the actual parameters during a method
invocation; (2) the class table, to perform operations involving attributes or methods. Besides, there is a
mutual relation between classes and expressions: an expression can refer to information about classes, and
a class can contain expressions (which represent the method body).

Considering all this, we start our formalization in Agda by defining the syntactic elements regarding FJ.
A Class is represented by a record with four fields. The class name is stored in cname, the base class is in
super, the attributes are in flds, and the methods are in meths. We keep all names abstract, and the only
requirement for them is equality. For simplicity, we define Name = N, a simple type which satisfies this
requirement.

record Class : Set where
field

cname : Name
super : Name
flds : List (Name × Name)
meths : List (Name × Meth)

As we can see, attributes are represented by a List of tuples (Name × Name), encoding the name and the
type for each field. For methods, we have a similar setting, however, we use a List of tuples (Name × Meth),
where the first element is the method name, and the second encodes the method information, containing the
return type ret, the method parameters params, and the method body body, as we can see next.

record Meth : Set where
field

ret : Name
params : List (Name × Name)
body : Expr

As we mentioned before, an expression can appear in two parts of a FJ program. It can appear in a
method body, or it can represent the Java’s main method, acting as a starting point for the program. We
represent it using an inductive definition, considering the following constructors.

data Expr : Set where
Var : Name → Expr
Field : Expr → Name → Expr
Invk : Expr → Name → List Expr → Expr
New : Name → List Expr → Expr

A variable is represented by the constructor Var, which receives a variable name as argument. A field
access is encoded by Field, receiving two arguments. The first is an Expr which represents the instantiated
object, and the second is the attribute name. A method invocation is encoded by Invk and receives three
arguments. The first is similar to Field, the second is the method name, and the third is the formal parameters
on a method invocation. Lastly, an object instantiation is defined by New, receiving two arguments. The
first is the class name being instantiated, and the second is a list of formal parameters for the constructor.
The complete BNF grammar is presented in [4].

The only possible value in FJ is encoded in the Val definition.

data Val : Expr → Set where
V-New : ∀ {c cp} → All Val cp → Val (New c cp)
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Since Java adopts a call-by-value evaluation strategy, to be a value, we need an object instantiation with
all parameters being values themselves. This was encoded using the Agda’s standard library’s datatype All,
which associates the predicate Val for each element of the given list cp.

3.2 Auxiliary definitions

A FJ expression can refer to information present on the class table, where all classes of a given program
are stored. To reason about information of a given class, we defined two auxiliary definitions. Using the
definition fields one can refer to information about the attributes of a class, including the fields inherited by
its super class.

data fields : Name → List (Name × Name)
→ Set where

obj : fields Obj []
other : ∀ {c cd sf }

→ ∆ 3 c : cd
→ fields (Class.super cd) sf
→ fields c (sf ++ Class.flds cd)

We use an auxiliary definition (_ 3 _ : _)2 which binds a value cd (class definition) from an element c
(class name) in a list of pairs ∆ (class table). In our encoding, we use this definition several times to lookup
information about classes, fields, methods, and variables.

By using the predicate method it is possible to refer information about a specific method in a certain
class.

data method : Name → Name → Meth → Set where
this : ∀ {c cd m mdecl}
→ ∆ 3 c : cd
→ (Class.meths cd) 3 m : mdecl
→ method c m mdecl

Both auxiliary definitions refer to information on a class table ∆, which is defined globally in the working
module.

3.3 Reduction rules

The reduction predicate takes two expressions as arguments. The predicate holds when expression e reduces
to some expression e′. The evaluation relation is defined with the following type.

data _ −→ _ : Expr → Expr → Set

When encoding the reduction relation, we use two important definitions: interl, which is an inductive
definition to interleave the information of a list of pairs (List (Name × A)) with a List B, providing a new list
List (Name × B); and subs, which is responsible to apply the substitution of a parameter list into a method
body. We present only their types next3.

data interl : List (Name × A) → List B
→ List (Name × B) → Set

-- Inductive definition code omitted.
subs : Expr → List (Name × Expr) → Expr
-- Function code omitted.

From now on we explain each constructor of the evaluation relation _ −→ _ separately to make it easier
for the reader.

Constructor R-Field encodes the behavior when accessing a field of a given class. All fields of a class are
obtained using fields C flds. We interleave the definition of fields flds with the list of expressions cp received
as parameters for the object constructor by using interl flds cp fes. With this information, we use fes 3 f : fi
to bind the expression fi related to field f.

R-Field : ∀ {C cp flds f fi fes}
→ fields C flds

2We omit the code of _ 3 _ : _ predicate, but it can be found in our repository [8].
3The details about both definitions can be found online [8].
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→ interl flds cp fes
→ fes 3 f : fi
→ Field (New C cp) f −→ fi

Constructor R-Invk represents the encoding to reduce a method invocation. We use method C m MD to
obtain the information about method m on class C. As in R-Field we interleave the information about the
method parameters Meth.params MD with a list of expressions ap received as the actual parameters on the
current method invocation. Then, we use the function subs to apply substitution of the parameters in the
method body.

R-Invk : ∀ {C cp m MD ap ep}
→ method C m MD
→ interl (Meth.params MD) ap ep
→ Invk (New C cp) m ap −→

subs (Meth.body MD) ep

All the next constructors represent the congruence rules of the FJ calculus. Reduction of the first
expression e is done by RC-Field and RC-InvkRecv, producing an e′.

RC-Field : ∀ {e e′ f }
→ e −→ e′

→ Field e f −→ Field e′ f
RC-InvkRecv : ∀ {e e′ m mp}
→ e −→ e′

→ Invk e m mp −→ Invk e′ m mp

Reduction of arguments when invoking a method or instantiating an object is done by RC-InvkArg and
RC-NewArg.

RC-InvkArg : ∀ {e m mp mp′}
→ mp 7−→ mp′

→ Invk e m mp −→ Invk e m mp′

RC-NewArg : ∀ {C cp cp′}
→ cp 7−→ cp′

→ New C cp −→ New C cp′

We use an extra predicate _ 7−→ _ (note the different arrow) to evaluate a list of expressions recursively.

3.4 Typing rules

The typing rules for FJ are divided in two main parts: there are two predicates to type an expression, and
two predicates to check if classes and methods are well-formed. A FJ program is well-typed if all typing
predicates hold for a given program.

To type an expression, we have the typing judgment predicate _ ` _ : _ which encodes the typing rules of
FJ, and the predicate _ |= _ : _ responsible to apply the typing judgment _ ` _ : _ to a list of expressions
recursively. Their type definitions are shown below.

data _ ` _ : _ : Ctx → Expr → Name → Set
data _ |= _ : _ : Ctx → List Expr → List Name → Set

Both definitions are similar, receiving three parameters each. The first parameter is a type context
Ctx, defined as a list of pairs List (Name × Name), aiming to store the types for variables. The second is
represented by an Expr for the typing judgment, and a List Expr for the recursive case, both representing the
expressions being typed. The last argument is a Name (or List Name) representing the types for the given
expressions. Next we present each constructor for the _ ` _ : _ predicate.

The constructor T-Var uses the auxiliary definition _ 3 _ : _ to lookup the context, binding the type C
for a variable x in a context Γ.

T-Var : ∀ {Γ x C}
→ Γ 3 x : C
→ Γ ` (Var x) : C

8
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Constructor T-Field is more elaborated. First, we use the typing judgment to obtain the type of the
sub-expression e. Then, we use the auxiliary definition fields which gives us the attributes flds of a class C.
Like variables, the type of f is obtained by the information stored in flds.

T-Field : ∀ {Γ C Ci e f flds}
→ Γ ` e : C
→ fields C flds
→ flds 3 f : Ci
→ Γ ` (Field e f) : Ci

Constructor T-Invk also uses the typing judgment to obtain the type for the sub-expression e. After
that, we use our auxiliary predicate method to obtain the definition of method m in class C. It is used
to type-check the method parameters mp4. Considering that all the premises hold, the type of a method
invocation is given by Meth.ret MD.

T-Invk : ∀ {Γ C e m MD mp}
→ Γ ` e : C
→ method C m MD
→ Γ |= mp : proj2 (unzip (Meth.params MD))
→ Γ ` (Invk e m mp) : (Meth.ret MD)

Similarly to T-Invk, in the definition T-New we also use the predicate to type a list of expressions. In this
case, the premises will hold if the actual parameters cp of the class constructor are respecting the expected
types for the fields of a given class C.

T-New : ∀ {Γ C cp flds}
→ fields C flds
→ Γ |= cp : proj2 (unzip flds)
→ Γ ` (New C cp) : C

A class is well-formed if it respects the ClassOk predicate. In our definition, we use the All datatype to
check if all methods are correctly typed.

data ClassOk : Class → Set where
T-Class : ∀ {CD}
→ All (MethodOk CD) (proj2 (unzip (Class.meths CD)))
→ ClassOk CD

Similarly, a method is well-formed in a class if it respects the MethodOk predicate. We use the expres-
sion typing judgment as a premise to type-check the expression body using the formal parameters as the
environment Γ, expecting the type defined as the return type of the given method.

data MethodOk : Class → Method → Set where
T-Method : ∀ {CD MD}
→ Meth.params MD ` Meth.body MD : Meth.ret MD
→ MethodOk CD MD

4 Proving Safety Properties

We proved type soundness through the standard theorems of preservation and progress for our formalization
of FJ. This section presents only the main proofs, which use several lemmas to fulfill the proof requirements.
The interested reader can refer to our source-code repository to see the intricacies of the whole proofs.

The function preservation is the Agda encoding for the theorem with the same name, stating that if we
have a well-typed expression, it preserves type after taking a reduction step. The proof proceeds by induction
on the typing derivation of the first expression.

preservation : ∀ {e e′ τ } → [] ` e : τ → e −→ e′

→ [] ` e′ : τ
preservation (T-Var x) ()

4We use proj2 to get the second argument of a tuple, and unzip to split a list of tuples.
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preservation (T-Field tp fls bnd) (RC-Field ev) =
T-Field (preservation tp ev) fls bnd

preservation (T-Field (T-New fs1 tps) fs2 bnd)
(R-Field fs3 zp bnde) rewrite ≡-fields fs1 fs2 |
≡-fields fs2 fs3 = `-interl zp tps bnd bnde

preservation (T-Invk tp tmt tpl) (RC-InvkRecv ev) =
T-Invk (preservation tp ev) tmt tpl

preservation (T-Invk tp tmt tpl) (RC-InvkArg evl) =
T-Invk tp tmt (preservation-list tpl evl)

preservation (T-Invk (T-New fls cp) tmt tpl) (R-Invk rmt zp)
rewrite ≡-method rmt tmt =
subst (`-method tmt) tpl zp

preservation (T-New fls tpl) (RC-NewArg evl) =
T-New fls (preservation-list tpl evl)

The case for constructor T-Var is impossible, because a variable term cannot take a step, and we finish this
case using the Agda’s absurd () pattern. Constructor T-Field has two cases: (1) the congruence rule, applying
the induction hypothesis in the first expression; (2) the reduction step, where using the auxiliary lemmas
≡-fields and `-interl we show that the expression e′ preserves the initial type of expression e. The T-Invk
constructor is the most intricate, with three cases: (1) the congruence rule for the first expression, where we
apply the induction hypothesis; (2) the congruence for the list of arguments, where we use an auxiliary proof
preservation-list which applies the induction hypothesis for each argument; (3) the reduction step, where we
show that after a reduction step the type is preserved by using the auxiliary lemmas ≡-method, `-method,
and subst5. The function subst represents the lemma which states that Expression substitution preserves
typing [4]. Lastly, T-New has only the congruence case for which we apply the induction hypothesis for each
argument of the class constructor.

Similarly to the previous theorem, the progress function represents the theorem with the same name,
stating that if a well-typed expression e has type τ in an empty context [], then it can make Progress, i.e.,
or e is a value, or it can take another reduction step. We use the inductive datatype Progress to hold the
result of our proof, with two constructors: Done when e is a value, and Step when e reduces to an e′.

progress : ∀ {e τ } → [] ` e : τ → Progress e
progress (T-Var ())
progress (T-Field tp fls bnd) with progress tp
progress (T-Field tp fls bnd) | Step ev = Step (RC-Field ev)
progress (T-Field (T-New flds fts) fls bnd) | Done ev

rewrite ≡-fields flds fls =
Step (R-Field fls (proj2 (|=-interl fts))
(proj2 (3-interl fts (proj2 (|=-interl fts)) bnd))) p

progress (T-Invk tp mt tpl) with progress tp
progress (T-Invk tp mt tpl) | Step ev =

Step (RC-InvkRecv ev)
progress (T-Invk tp mt tpl) | Done ev with progress-list tpl
progress (T-Invk tp mt tpl) | Done ev | Step evl =

Step (RC-InvkArg evl)
progress (T-Invk (T-New flds fts) mt tpl) | Done ev |

Done evl = Step (R-Invk mt (proj2 (|=-interl tpl)))
progress (T-New fls tpl) with progress-list tpl
progress (T-New fls tpl) | Step evl = Step (RC-NewArg evl)
progress (T-New fls tpl) | Done evl = Done (V-New evl)

Most cases are simple, and the reader should understand without further explanation. The complicated
cases are those for T-Field and T-Invk, when processing the actual reduction step. When proving progress
for T-Field, to be able to produce a R-Field we needed to write two extra lemmas |=-interl and 3-interl, which
were omitted here for brevity. The case for T-Invk also used the lemma |=-interl to produce a R-Invk.

5 Evaluation

Following Wadler’s recipe [7] to automate evaluation for the Simple Typed Lambda Calculus (STLC), we
also define an evaluator for FJ, by the repeated application of the proofs of progress and preservation, using

5These lemmas are omitted from this text, but can be found in our source code repository [8].
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an Agda function that computes the reduction sequence from any given closed, well-typed expression to its
value.

First we present the inductive datatype _ � _, which represents the multi-step relation, or the reflexive
and transitive closure of the step relation. This relation is defined as a sequence of zero (refl) or more steps
(multi) of the underlying relation.

data _ � _ : Expr → Expr → Set where
refl : ∀ {e} → e � e
multi : ∀ {e e′ e′′} → e −→ e′ → e′ � e′′ → e � e′′

Then, we can implement the function eval. Since Agda is a total language, we use a Fuel (represented as
a natural number) to avoid non-termination. We also use two other inductive datatype definitions6 (Finished
which has two constructors: done indicating that the computation is successfully finished, and out-of-gas
indicating that the fuel ran out; and Steps, with one constructor: steps which combines the multi-step relation
_ � _ and the Finished datatype) to proceed with the evaluation.

eval : ∀ {e τ } → Fuel → [] ` e : τ → Steps e
eval zero t = steps refl out-of-gas
eval (suc fuel) t with progress t
... | Done vl = steps refl (done vl)
... | Step stp with eval fuel (preservation t stp)
... | steps stp′ fin = steps (multi stp stp′) fin

The eval function receives the fuel and evidence that e is a well-typed expression, and produces the Steps
to evaluate the given expression. It starts with a closed and well-typed term. By progress, it is either a value,
in which case we are Done, or it reduces to some other expression. By preservation, that other expression
will be closed and well-typed. This process is repeated until we reach a value, or the fuel rans out [7].

6 Related Work

There are several papers describing the mechanization of programming languages in proof assistants. For
example, in their book, Pierce et al. [11] describe the formalization of STLC in Coq, andWadler [7] present the
formalization of STLC in Agda. We used their ideas to build the foundations of our encoding. Besides these
books, there are several other papers mechanizing different versions of λ-calculus, among other languages [12,
13].

Regarding Featherweight Java, there are some projects describing its formalization. Feitosa et al. [14]
provided an intrinsically-typed formalization for FJ. Mackay et al. [15] developed a mechanized formalization
of FJ with assignment and immutability in Coq, proving type-soundness for their results. Delaware et al. [3]
used FJ as basis to describe how to engineer product lines with theorems and proofs built from feature
modules, also carrying the formalization Coq. All these papers inspired us in our modeling of FJ. The first
difference between these works and ours is that we encoded the semantic rules and proofs in Agda, which is
being used more frequently nowadays. Another difference is that we do not use any proof automation, since
Agda’s system is not as powerful as Coq’s. As far as we know, our work is the first to formalize FJ in Agda
using the extrinsic approach. We believe that this formalization can be used as basis to study properties of
object-oriented programming languages by other researchers.

7 Conclusion

In this paper, we presented a formalization of Featherweight Java using the Wright and Felleisen’s syntactic
approach to specify the static and dynamic semantics, proving the common soundness properties. As we
could notice, although FJ is a small core calculus, its non-trivial binding structures and intricate relation
between class tables and expressions give rise to challenges during its formalization. The Agda language has
shown to be a good tool for such work, although it does not provide proof automation, which can make the
maintainability process difficult for large subsets of languages and bigger proofs. During the development of
this work, we have changed our definitions many times, both as a result of correcting errors and streamlining
the presentation. The possibility of testing the changes by running the evaluation function helps to reason
about the impact right away.

As future work, we intend to extend the formalization to embed more features of Java, like dynamic
dispatch, λ-expressions and default methods, studying which features do enjoy the safety properties. We

6For brevity, we just discuss their constructors, however the complete source-code is available on-line [8].
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can also explore different approaches to formalize the language and extensions, and prove the equivalence
with the result presented in this paper.
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