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Abstract 

his paper describes the construction of an information flow that 
combines parametric modelling and genetic algorithms to optimise 
both the total weight of a structured steel roof and the shape of its 
surface to maximise the generation potential of photovoltaic energy. 

Through the systematisation of a design process using genetic algorithms 
integrated with generative design as an architectural design method, architects can 
work with problem parameterisation, going one step further than the mere formal 
proposition of solutions. As a result, we present a process in which there is a 
dialogical relationship between the architect and project in a continuous flow of 
information in the initial steps of the design process, guided by predefined 
optimisation objectives. Therefore, it is relevant to note that the designer accepts a 
reduced creative control over the final shape in favor of control over the core 
principles that constitute the optimisation algorithms. An approach that involved 
the designer in a process of post computational processing evaluations is also 
highlighted, giving him better support to discuss and analyze the design options.  
Keywords: Generative design. Genetic algorithms. Structural optimisation. Environmental 
optimisation. Steel construction. 

Resumo 

Este artigo descreve a construção de um fluxo de informações que combina 
modelagem paramétrica e algoritmos genéticos para otimizar o peso total de 
uma cobertura de aço estruturada e a forma de sua superfície para maximizar 
o potencial de geração de energia fotovoltaica. Através da sistematização de 
um processo de design usando algoritmos genéticos integrados ao design 
generativo como método de projeto arquitetônico, os arquitetos podem 
trabalhar com a parametrização de problemas, indo um passo além da mera 
proposição formal de soluções. Como resultado, apresentamos um processo 
no qual existe uma relação dialógica entre o arquiteto e o projeto em um fluxo 
contínuo de informações nas etapas iniciais do processo de projeto, orientado 
por objetivos de otimização predefinidos. Portanto, é relevante notar que o 
arquiteto aceita um controle criativo reduzido sobre a forma final em favor do 
controle sobre os princípios centrais que constituem os algoritmos de 
otimização. Destaca-se também uma abordagem que envolveu o arquiteto em 
um processo de avaliação pós-processamento computacional, dando-lhe 
melhores subsídios para discutir e analisar as opções de projeto. 
Palavras-chave: Design generativo. Algoritmos genéticos. Otimização estrutural. 
Otimização ambiental. Construção em aço. 
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Introduction 
Traditional design processes can be described as conscious experimentation processes: formal solution 
hypotheses are formulated, tested (in drawings and models) and discarded or adjusted until a designer is 
satisfied with the result. This means that there is a small number of hypotheses and a very limited number of 
iterations that the designer is able to consciously go through to optimise the initial design ideas. In this work, 
we propose using parametric tools to explore the maximum number of design hypotheses within a set of 
variables stipulated beforehand to explore complexities that manually would be, in practical terms, 
impossible to be tested. 
We used Grasshopper, a node-based editor within the Rhinoceros modelling software that allows the 
creation of a series of geometric operations to produce a flexible geometry, based on input variables. These 
variables can be set as ranges rather than predefined values: the total horizontal span of the roof, for 
instance, should not be smaller than a certain value but could be larger, just as its minimum height at any 
given point. These two variables alone can result in countless shape possibilities, each one with different 
proportions, total weight, ideal shape and so on. As variables are added, the potential complexity of the roof 
structure increases exponentially. 
To manage this complexity, these variables are controlled by a genetic algorithm that tests different values 
while aiming to optimise the model through minimising a single index: the division of the total steel cost of 
each design, expressed in Brazilian reais (R$) by the total solar energy generation potential, also expressed 
in R$. This means that the algorithm will seek to reduce the design, but will be willing to make it bigger if 
the additional cost is more than offset by the extra savings generated by the solar panels.  

Together, these two strategies provide an approach that ensures high performance by allowing the architect 
to act guided not only by the form itself, but also by a dialogical process of form generation, based on a set 
of constraints of physical, environmental and local factors that result in their optimisation. 
In order to structure and conduct the work, specific objectives were defined: reviewing the theoretical and 
practical content related to the architectural design practice, addressing processes in which the architect 
gives up control of the specific definition of a solution in favour of exploring a greater variety of formal 
configurations than would be possible using traditional design processes; the application of this content in 
the initial stages of architectural design of metal construction, seeking the creative generation of the form 
based on predefined optimisation criteria of the solution, as well as the description of this procedure in order 
to contribute and support further works by architects and other professionals involved in design processes. 

This   paper   presents,   therefore,   results   of   this   experiment   carried   out   during   a   master’s   degree   research,  
combining parametric modelling and genetic algorithm strategies for the creative generation of shapes. The 
case study addresses the process of optimising parameters of a steel structure covering the stands (tiered 
rows of seats) of a football field. This membrane-coated roof also receives photovoltaic panels for power 
generation. We aim to present the process of developing a formal solution that would minimise the total 
weight of the structure and consequently its cost, while maximising the energy generation potential of the 
structure. Applying performance and structural optimisation criteria, fields of knowledge common to 
architecture, engineering and other disciplines - mathematics and computer sciences in a transdisciplinary 
articulation within a case study can be complemented and replicated in different scenarios. 

Theoretical references 
Architectural design processes depend on each choice made, whereby each decision defines a path that 
prevents different possibilities, unless the architect returns and objectively changes those decisions. Studies 
that have been the subject of debate for decades, such as those by Broadbent (1971), Alexander (1976), 
Schön (2000) and Lawson (2011), aim to make project practices explicit on rational grounds, exposing the 
existence  of  a  “problematisation  methodology”.  Decisions  are  made  incrementally   through  a  succession  of  
design problem solving and the final design is usually the result of successive approximations. This occurs 
in processes of action, reflection on action and about the action, undertaken by the designer, mediated by 
drawings and other representational models (SCHÖN, 2000). 

According to Lawson (2011), it is a path marked by cycles of analysis, synthesis and evaluation. The 
architect's competence for decision making is in his ability to retake, restructure, adapt and apply relevant 
ideas from previous projects (OXMAN, 2006; LAWSON, 2011). This can, however, be a problem when the 
architects' concepts become a pattern of thinking, and solutions to new issues can be restricted to the mere 



Ambiente Construído, Porto Alegre, v. 21, n. 4, p. 271-289, out./dez. 2021. 

 

Generative design: information flow between genetic algorithm and parametric design in a steel structure 
construction 

27
3 

reproduction of previous solutions. This limits the progress of a given project in its sequential stages and 
impairs discovering innovative possibilities (BUCHANAN, 1992). 

It must also be considered that in architectural design practices there is no single solution (answer) to a 
problem (question). Based on this recognition, Vassão (2010) proposes the project as a question, 
contradicting the understanding that it would be a definitive solution, or an answer to problems. 

We will highlight two of the many aspects of the design process highlighted by Vassão. The first one is that 
every project is as complex as it is understood to be. This is because every object, or every process, is 
always part of a larger system. When approaching the project as a question, the architect may be mapping 
this system and not speculating on an answer that he/she individually assumes as the correct one. 

The second aspect of the metadesign process is an ethical one. Treating a design process as a question, the 
designer partially assumes the position of an observer, which allows design solutions that are not within the 
designer’s  repertoire  to  emerge. 
The experience presented here aims to apply the theoretical framework of design processes to a real-world 
example, delineating the limits between objective tools for design optimisation and the role of the designer 
while using these tools. We present a process whereby a structure with a predefined shape can be optimised 
but, beyond that, the predefined metrics can yield shapes that had not been anticipated by the designer. 

Design and control 
Different experiences exist where design professionals have adopted methods for the emergence of results 
that are structurally different from those obtained by conventional procedures, if not in their final products 
(answer), at least in the ways to reach them (questions). The experiments with suspended networks by 
Antoni Gaudí, the Optimised Path Systems study, by Frei Otto and the Oblique WTC, a project by Lars 
Spuybroek are examples that result from such methods (Figure 1). 

These examples have two important characteristics. First of all, they are fluid processes that lead to 
continuously adjusted results according to changing conditions.  Second, they are focused on processes, not 
finalised designs. In all three cases, the methods adopted search for different, more convenient ways to deal 
with the problem (question), as opposed to methods based on the direct search for a solution (answer). 
According to Vassão (2010), the first characteristic refers to a customised application of scientific 
procedures (modelling) for the synthesis of form (final design). These design methodologies are opposed to 
the attempt to delimit a more general scientific basis (theorem). The second characteristic concerns control, 
or, more specifically, the lack of it in the design process. It can be observed that in all three cases, architects 
partially lost control of specific solution definitions to operate directly in the formalisation of problems. 
To illustrate this approach, we will review some examples from two perspectives. First, recognising 
architecture as a highly complex system, where the number of variables in the project (controlled system) is 
exponentially greater than the number of variables that the architect (controlling system) can anticipate. This 
is traditionally dealt with by adopting restrictions or eliminating certain branches of possibilities, rather than 
by promoting effective management of the process (VASSÃO, 2010). 
This is because, according to Ashby (1970), for one system to be able to regulate another, it is required that 
it has at least as many states as the system that one wishes to control. 

Figure 1 - Diagrams of the methods proposed by Gaudi, Frei Otto and Lars Suybroek 
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In the context of architectural design this type of management is present in project processes based on the 
solution, that is, those in which the architect designs the final product from his/her own previous knowledge 
and instinct. In such cases, the probability of discovering a novel design solution is slim (LAWSON, 2011). 
According to Glanville (2002), giving up control (that is, direct control over the final design) can expand the 
number of possibilities, allowing the emergence of unforeseen options. To do this, the author suggests a 
reformulation of how we understand the value of control. to allow us the benefit of being out of control. 
The absence of control, in this case, can be used to discover innovative alternatives that would otherwise be 
ignored or not even tried by the architect in his/her design process. Giving up control in design practice is 
not accepting a smaller or incomplete design, but to open up possibilities for the novel – the architect still 
curates and adjusts the final design as needed. 
What does it mean, then, to give up control in the practice of architectural design? According to Nagy 
(2018), a good strategy can be seen in the way organisms are projected in nature. 

The project as control 

One   should  not   understand   the  way  organisms   emerge   in  nature   as   “design”   in   its   intentional   sense,  as   is  
traditionally the case in architecture. The sense of design used by Nagy (2018), in this case, is in the way 
that nature responds to the process that determines formal characteristics of a species when influenced by the 
environment over a given time. 
First described by Charles Darwin, this process operates at a level of properties and abilities that all 
members of a species share with each other. A fundamental characteristic of a species is its ability to 
reproduce, since, over time, this process continuously improves species through adaptation and interaction, 
in a process known as natural selection. 

According to Nagy (2018), even though we do not yet have the tools and knowledge necessary to design 
totally natural systems, mathematical concepts provide us with a concrete way to reformulate the 
evolutionary process as fundamentally an optimisation process. 
Most optimisation problems, according to Yang (2010), can be described in genetic form (Equations 1 to 3): 

  ∈  
𝑓 (𝑥), (𝑖 = 1,2,… ,𝑀)               Eq. 1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜  ℎ (𝑥) = 0, (𝑗 = 1,2,… , 𝐽)               Eq. 2 

𝑔 (𝑥) ≤ 0, (𝑘 = 1,2,… , 𝑘)                Eq. 3 

Where 𝑓 (𝑥); ℎ (𝑥) and 𝑔 (𝑥) are functions of the vector (Equation 4): 

𝑥 = (𝑥 , 𝑥 ,… , 𝑥 )                     Eq. 4 

The components xi and x are called design variables. The 𝑓 (𝑥)functions where 𝑖 = 1,2,… ,𝑀 are called 
objective functions. We can classify the optimisation as mono-objective, when 𝑀 = 1, or multi-objective, 
when 𝑀 > 1. The space reached by the decision variables is commonly called the project space 𝑅 , while 
the space formed by the values of the objective function is called the solution space and the equalities ℎ and 
inequalities 𝑔  are called constraints (YANG, 2010). 

Optimisation problems can be operated by different approaches, the most common being the use of 
algorithms. For this paper, the Genetic Algorithm (GA) was chosen. This algorithm is particularly 
interesting because its rules and operations are inspired by Darwinian evolution and the natural selection of 
systems found in nature (SHIFFMAN, 2012), which allows us to explore the design process in architecture 
using the potentialities of natural systems. 
In Computer Science, GA refers to the technique of seeking a specific result by outlining a set of problems. 
In the context of architectural design, one of the methods that uses this type of algorithm is called Generative 
Design. Its purpose is to explore, in an agile and effective way, new possibilities of answers within a 
universe of questions. 
In our experiment, a hybrid form of design emerges from the partial manipulation of final objectives of the 
structure, rather than rationally designed shapes to address objectively perceived preconditions of the design. 
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Design of design 

To design like nature, we need to consider how we can design a species (NAGY, 2018) and a fundamental 
reference of natural design system in this paper is its relationship between genotype and phenotype. The two 
are deeply interlinked, the phenotype of an organism being the product of the interaction of a genotype with 
its environment. The biological process that causes an organism to develop and result in the phenotype is 
called morphogenesis. 

In architecture, models of changeable geometries can be specially built using parametric modelling software. 
In parametric modelling, projects are no longer designed, but programmed based on geometric and 
mathematical relationships. This allows the construction of mutable designs, making it possible to design 
like nature (Figure 2), as it broadens the definition of project as an individual - non-mutable project - to 
project as a system - one that encodes a whole species - within the design concept based on nature described 
by Nagy (2018). 

In this perspective, the process of evolution of nature, because of its emphasis on performance, is an 
inspiration for our design process. 

This approach is not something new and has been explored since the beginning of the development of the 
computational design field. This can be observed by the Digital Design in the Architecture map, prepared by 
Savov (2020) using data from 12,000 articles published between 1975 and 2019 (Figure 3). From these, 
1243 have keywords such as computational design, form-finding, adaptive simulation, generative, 
performance, simulation, algorithm, optimisation and other related terms. This represents 10% of the works 
produced in this period. 

On the other hand, Calixto and Celani (2015) present 22 years (1992-2014) of work with exclusively 
evolutionary approaches applied to spatial planning problems, concluding that the development of 
computing in this period has not yet significantly impacted the development of spatial planning problems, 
and is mostly theoretical and unapplied. 
Recently, other authors have explored practical performance-based optimisation applications. Borges, Grilo 
and Fakury (2016), Leitão, Branco and Cardoso (2017) and Caetano et al. (2020) showed applications of 
structural optimisations but limited their application only to the optimisation of shapes or in their 
generations. 

Barczik and Kruse (2016) and Nagy, Zhao and Benjamin (2018) presented hybrid generative approaches that 
yield high performance while allowing the designer to explore their results. Their approaches, however, lack 
the parameters with which to evaluate resulting designs.  

Figure 2 – Genotype and phenotypes in the design approach 
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Figure 3 –Digital Design in Architecture Map 

 
Source: adapted from Savov (2020). 

This paper aims to go one step further. To do this, we suggest a post-generative approach to form 
(computational stage) where the architect focuses on evaluating results including new points of view, 
different from those taken as objectives in the search for formal solutions considered optimal. This strategy, 
added to that of using parametric tools and genetic algorithm to investigate the maximum number of design 
hypotheses from a set of variables previously stipulated, aims to contribute to the understanding of the 
generative project, not as an end, but as a means of helping this professional make decisions. 

Method and strategy for generative design 
In the experiment hereby presented, we applied the evolutionary process combining parametric modelling 
and genetic algorithm strategies to optimise the development of a steel structure of the roof of the stands 
(tiered rows of seats) in a soccer field. We organised the experiment in three stages according to the diagram 
presented in Figure 4. The first is the construction of the design space, that is, the system that generates all 
possible solutions for a given design problem. Then, for the first option, we created a mono-objective 
function to evaluate the performance of each design, seeking the minimum value possible for the net present 
value (NPV) of the costs of the structure considering both its construction cost and the market value of the 
energy produced by its solar panels; for the second option, we addressed it as a multi-objective problem, 
dividing the functions into different objectives: to minimise the total weight of the structure and to maximise 
the energy potential of the roof. Finally, the application of evolutionary algorithms to research the project 
space and find the highest performing design options in each case. 

Rhinoceros software and its Grasshopper plug-in for parametric modelling were used. Grasshopper add-ons 
were also applied:  
(a) Karamba - application for structural analysis;  

(b) Ladybug - application for environmental analysis; and  

(c) Discover - framework for generative design.  

Then, a quantitative analysis of the data obtained was performed, using scatter plots and the selection of the 
best individuals (designs). 

Geometry: building the design space  

Figure 5 describes all the elements and their respective input parameters used to construct the model, which 
started with a set of parabolic arches subdivided and interconnected by diagonals. The first two parabolas 
(blue lines) are controlled by input parameters at the midpoint (z axis). As they form the basis of the 
structure, these arches are supported at their ends. Then, four other parabolas (pink lines) are controlled by 
input parameters at the midpoint (z and y axes) and at their ends (x and z axis). 

The last three parabolas, (green lines), are controlled by input parameters at the midpoint (z axis) and at the 
ends (x and z axes). This set of arches, in turn, is controlled by an input parameter (division) and 
interconnected at their points by diagonals (grey lines). Finally, each set of members is controlled by an 
input parameter that allows us to define, independently, the dimensions of the tubular section of each type of 
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member (A, B, C and D). This was done from a table with the 30 circular tubular sections most produced by 
the manufacturer Vallourec. 

Figure 4 – Diagram of the generative process application 

 

Figure 5 – Model diagram and parametric controls  
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The design space of this model has 21 entries with values ranging from 10 to 500 characters. 

Each combination of these inputs specifies a point within the project space that represents a project. 
Although the possible complexity is not immediately apparent, the total possible solutions for this project 
space is 2.21 x 1042. 

The manual test of each hypothesis is virtually impossible, since, considering the average hypothetical 
expenditure of 10 minutes per hypothesis, it would be necessary to dedicate 1.76 x 1025 times the age of 
planet Earth, considering its age estimated at 4.54 x 109 years (SHIFFMAN, 2012). 
In the analogy to the evolutionary process mentioned earlier, the results of the mutable model developed 
would   be   the   phenotypes   of   the   “roof   structure”   species  while   the   set   of   input   parameters   that   define   the  
models would represent their genotype, that is, the set of chromosomes that describes all the formal 
possibilities of this organism. 

Building the structural assessment 

To apply the genetic algorithm in the search for high performance designs, the model must also contain a set 
of measures that inform the algorithm whose designs have the best performance. The structural analysis is a 
fundamental step in the elaboration of this system. 

In order to obtain the structure's response to the actions that are applied to the model, we used Karamba, an 
add-on that calculates the displacements and the soliciting efforts in the model elements built in the 
Grasshopper environment. 
For the structural model of Karamba, based on the Finite Element Method, the element of circular tubular 
sections was used for all elements. After assembling the structural model, Karamba offers, in real time, 
feedback on the calculations of displacements and efforts during changes in the dimensions and strength of 
the material in the structure model (PREISINGER, 2016). 

In the configuration of the supports, freedom was allowed for all degrees of movement in the rotation axes 
(Rx, Ry, Rz) and restriction for all degrees of freedom in the translation axes (Tx, Ty, Tz). 
The definition of loads was divided into the structure's own weight, wind load and permanent loads. To 
define these loads, the following combinations were considered (Equations 5 to 8): 

𝑐𝑜𝑚𝑏 = 1.4𝑥𝐶𝑃 + 1.4𝑥𝐶𝐴                 Eq. 5 

𝑐𝑜𝑚𝑏 = 1.4𝐶𝑃 + 1.4𝑥𝐶𝐴 + 1.4𝑥0.6𝑥𝐶𝑉                Eq. 6 

𝑐𝑜𝑚𝑏 = 1.4𝑥𝐶𝑃 + 1.4𝑥𝐶𝑉 + 1.4𝑥0.7𝑥𝐶𝑉               Eq. 7 

𝑐𝑜𝑚𝑏 = 1.4𝑥𝐶𝑃 + 1.4𝑥𝐶𝑉                  Eq. 8 

CP is the permanent load, AC the accidental load and CV the wind load. To determine part of the permanent 
loads, the area of the membrane cover was calculated beforehand. The area reserved for photovoltaic panels 
was also calculated, a construction presented in the next section. The permanent and overload loads were 
distributed over the nodes of elements D. 
To define the wind load (CV), two points were considered: it is not simple to determine the wind load in 
buildings that are not rectangular and gabled; this experiment is an optimisation process and therefore needs 
to incorporate calculations that are dynamic. 

From this, a series of simplifications were made to determine the wind load. The first was to calculate the 
drag force (Fa) only at 90°, which corresponds to the longest length of the structure and the most orthogonal 
side. The other simplification was to determine an average height for the entire model. 

The idea of assigning a single point for height made the construction of the algorithm easier and the 
optimisation work more agile, because every time the geometry changes during the optimisation process, the 
drag force (Fa) can be recalculated instantly and the midpoint refers to the area (Ae) where the wind acts, 
which in this case is not a regular and constant geometry (it changes throughout the optimisation process). 

As the results obtained in the structural analysis directly influence the feasibility of the project, we define the 
following conditions: dimensioning in the ultimate limit state of the bars subjected to the efforts of 
compression, traction and bending moments, in which these calculating efforts must be equal to or less than 
that these same resistant efforts of calculation; determination of the maximum displacement of the structure, 
where the maximum permitted arrow must be less than the largest span divided by three hundred (l/300). 
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These limits are based on Brazilian standards (including NBR 6123 (ABNT, 1988), NBR 8681 (ABNT, 
2003) and NBR 8800 (ABNT, 2008)). 

For dimensioning in the ultimate limit state, the actions of active requests were increased (multiplied by 
1.10) and those of resistance, in turn, reduced (divided by 1.10) (Equation 9): 

𝑆 ∗ 1.10 ≤ . 10                 Eq. 9 

The treatment adopted to deal with the conditions of restrictions in this work was punitive, that is, those 
options that broke the restrictions rules were immediately disqualified, which prevented them from 
participating in the next intersections (YENIAY, 2005). 

The penalty method was constructed in two ways. First in multiplicative form (Equation 10): 

𝑒𝑣𝑎𝑙(𝑥) = { ( ),
( ) ( ),

                Eq. 10 

Under this convention, the objective was the result of eval(x), where p(x) represents a penalty term in the 
structural verification logic. If no violation occurred, p(x) would equal zero. Otherwise, the option would be 
disqualified, giving p(x) equal to one hundred thousand (100,000). This logic was applied in the evaluation 
of the compression, traction and bending moment analyses. 

The second way occurs in the form of addition. This convention was applied exclusively to the displacement 
criterion (Equation 11): 

𝑒𝑣𝑎𝑙(𝑥) = { ( ),
( ) ( ),

            𝑖𝑓  𝑥   ∈ 𝐹               Eq. 11 

Although they do not describe the relative performance among design options, constraints are important 
because they determine whether an option is viable or not. In our analogy to the evolutionary processes 
found in nature, the restrictions functioned as a survival test for individuals (project options). 

Building energy assessment 

Once the conditions for structural integrity were parametrised, we were able to add other objectives 
(problems), such as the maximisation of the energy potential of the roof based on the example of Spasic 
(2015). 
This objective was built with components of the environmental analysis plug-in Ladybug, which allows us 
to import and analyse meteorological data in the Grasshopper environment. 
The configurations of the photovoltaic model from the California Energy Commission (CEC) Modules 
library were imported to calculate the amount of electrical energy that can be produced by the surface. The 
module chosen for this phase was the Centrosolar America VS-160C1 cell, version NRELv1, considering its 
flexibility and low weight. This setting calculates the amount of electrical energy that can be produced by 
the roof surface based on the NREL PVWatts v1 calculator. 

Genetic algorithm: the Discover evolutionary solver 

For an effective search for high performance options, we needed an external system that could work with the 
model. The meta-heuristic algorithms proved to be particularly interesting because their rules and operations 
are inspired by the evolutionary processes of nature, which would allow us to explore design in a manner 
similar to what occurs in natural design (SHIFFMAN, 2012; NAGY, 2018). 

Discover, by Nagy, is a flexible and modular structure user to explore the design space based on this type of 
algorithm. Discover consists of a modular library for single-objective and multi-objective optimisation, 
written in Python, and an interface written in JavaScript that allows the user to visually explore the 
optimisation process. 
Although Discover is a good tool for solving complex design optimisation problems, the algorithm is driven 
by only four basic operators, based on natural selection:  

(a) generation - the algorithm randomly generates a sample of the design space alternatives, forming the 
initial generation;  

(b) selection - the algorithm selects the best positioned individuals to be used in the next generation, thus 
creating a "mating pool" containing the best designs, according to its objective;  
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(c) crossing - the algorithms selected as promising designs are recombined to create a new population of 
designs; and 

(d) mutation - ensures that the search explores solutions not contained in past generations through pseudo-
random variation. 

This path is similar to that of natural evolution. In both, the genetic information of the parents is randomly 
recombined to create a new individual. The basic idea is that since the parents have survived long enough to 
reproduce, both must have some genetic material that could be useful for the survival of the species in 
general. When recombining, the new individual will probably inherit winning characteristics from both 
parents - a convergence factor, increasing their chances of surviving and reproducing in a next generation 
(WIRSANSKY, 2020). 

These methods alone, however, might not find the best possible solution. This happens when the alternatives 
of the first generation, carried out randomly, have no or few fundamental characteristics in their genetics, 
preventing the transfer of important information to the new generation. Therefore, as in nature, we need a 
mechanism that can randomly insert new information into the genetic background. This is done by the 
mutation operator, responsible for changing the entries of a random number of children, usually a small 
percentage, before entering the next generation - a factor that stimulates diversity (WIRSANSKY, 2020). 

Configuring the genetic algorithm 

This part involved running a template available as part of the Discover package in a Python interface. Figure 
6 shows the complete model. 

In this model, all input parameters (line 05) have been configured. In this same file, the output parameters 
were also established (line 27). In these lines, the objective functions of the experiment are defined. 
In the first stage of the experiment, we were interested in problems with only one objective function, that is, 
those described as mono-objective. Thus, a composite function was constructed that should minimise the 
result between dividing the product of multiplication between the total weight of the structure (in 𝑘𝑔) and 
the average price of steel (in 𝑅$) by the product of the multiplication between potential energy (in 𝑘W h) 
and the average price of 𝑘W h (in 𝑅$). 
For the second phase, the total weight of the structure and the energy potential of the roof were divided into 
different objective functions, creating a multiobjective problem: minimising the total weight of the structure 
and maximising the energy potential of the roof (line 28). 

Figure 6 – Python definition of the genetic algorithm for generative design 
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Once the input and output parameters were defined, the necessary options for the general work were 
concluded as follows:  

(a) number of generations: 150 (line 32);  

(b) population number: 59 (line 33);  

(c) mutation rate: 0.05 (line 34); and  
(d) elite number saved: 10 (line 35).  

After filling in the model, the algorithm was executed (line 45). 
When the optimisation was completed, the Discover package offered a file containing the database of each 
option explored in the project space during the optimisation. This file contained the information for each 
project, with all its inputs and outputs. Finally, a .html file was also made available, which is used to launch 
the Explorer interface. This interface was adopted, making it possible to visualise the results and plot them 
in relation to the objectives, in a scatter plot. The results are discussed below. 

Analysis of results: the project’s 
The experiments generated a set of 11,800 different project options, 5,900 alternatives in each stage, which 
were analysed in search of an assertive answer (solution) for the project. At the outset, an important 
limitation of the process was perceived, since with each decision made, a large part of the space for 
exploring possibilities was restricted in the later phases, considerably reducing the probability of reaching a 
truly "optimal" project. 
The implementation of this strategy has made it possible to give up control of the specific definition of a 
solution in favour of exploring a greater variety of options than would be possible using traditional design 
methods. 
In the experiments presented, the loss of control was due to the mathematical modelling of the problem and 
the automatic search for solutions using heuristics. This loss of control stems from the fact that the final 
shape of the structure was not subjectively imagined by the designer but reached through processes that 
likely results in shapes at least somewhat different to what could have been imagined beforehand. In the next 
sections, a detailed analysis of the optimisation experiments will be presented through a quantitative 
approach to the data obtained, through scatter plots and strategies for selecting the best individuals (design 
options) in each case. 

Experiment 01: mono-objective optimisation 

In the first stage, a set of 5,900 options was generated. The task at this stage was to filter the data sets by 
scores and select the alternative with the best performance. 

Figure 7a shows the scatter plot of the project space searched by Discover. Each circle represents a project. 

We emphasise that, as it is a mono-objective optimisation, the graph presents all the options aligned as the 
abscissa and the ordinate assume the same value (goal). This makes its interpretation very intuitive because 
the lower the weight of the project, the closer to the bottom left corner it will be. 
In this graph, the evolutionary process described above can be observed. We noticed that with the crossing 
of the intersections, the designs were progressively pushed to the lower left corner of the graph (optimal 
point). For the sake of comparison, some options were shown (Figure 7b). 

Created in the first generation, option #6 is the worst. This is because, at this stage, the alternatives are 
completely random and, therefore, individuals may contain few right components to achieve the goal. For 
this reason, this option failed in more than one criterion in the structural analysis and was pushed to the 
opposite end of the optimal point. They can be clearly seen in Figure 8. 
We noticed that, even in the random phase, options #11, #21, #22 and #28 show progressive improvements. 
From these, option #28 came very close to the optimum, even close to individual #5603 of the last 
generations, presenting the greatest potential for future crossing, when compared to the other options 
mentioned. 
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Figure 7 – Mono-objective scatterplot (a) and chosen options (b)  

 

Figure 8 - Project progress on the mono-objective scatterplot 

 

Alternatives #71, #84, #293, #434, #267, #3262, #4146, #5176 show, in turn, that despite the progress of the 
process, the intense crossing still generates bad individuals, which were possibly discarded. 
In this case, option #5899 can be considered ideal. This is because there is no other that  has  a  final  “goal”  
parameter smaller than 3.44. 
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When accessing this option in the viewer provided by the Discover package, we have access to all 
parameters of inputs and outputs of this model, such as the profile sections (Figure 9), the value of its 
objective, among others. 

In Figure 10, this alternative can be seen enlarged and it is defined by its input and output parameters. 

Experiment 02: multiobjective optimisation 

Figure 11a shows the scatter plot of the second stage of the experiment with 5,900 alternatives. The 
objective of this step was to find options that met the structural constraint with the minimum weight 
(objective weight) and the greatest possible energy potential (objective energy). Given that these two 
objectives are in competition, there is no single solution, as presented in the previous experience, but, rather, 
a set with several solutions considered satisfactory, which allows the decision on the choice of solution to 
occur after the computational process. 

Isolating the high-performance alternatives in the project space, we notice that the drawings form a line that 
moves from the bottom left corner upwards. This is because the strategy adopted as a constraint moved them 
to this position. 

In this case, in which the negotiation between having more coverage area contradicts the criterion of less 
weight, the options considered optimal were concentrated in a line perpendicular to the abscissa (minimised 
objective) and parallel to the ordered (maximised objective). 
The options along this line can be considered optimal. This is because improving any of them in one 
objective would necessarily make it worse in another. Thus, a thorough analysis of several alternatives is 
necessary. For the sake of demonstration, we selected some of these options (Figure 11b) for a more detailed 
approach. 

Figure 9 – Project option profiles #5899 

 

Figure 10 – Design option #5899  
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Figure 11 - Multi-objective scatter plot (a) and selection of part of the optimal options (b) 

 

Once this set of options is selected, the task is then to discuss them. Here, the project is emphasised once 
again as a process, an open entity, where the participation of the architect and others involved, directly and 
indirectly, with the space to be built is fundamental for decision making, taking advantage of a correct 
exploration characteristic of each of the alternatives considered optimal. This approach consists of a 
dialogue between generative (computational) design and the conscious intervention of a designer focusing 
on evaluating the results and objectively picking the optimal choice. This is what differentiates the approach 
adopted in this work from the traditional design processes: the quality of the discussion and analysis carried 
out to subjectively achieve a final project is supported by a set of optimised solutions mathematically 
obtained through computational processes. 

As an example of this task, let us imagine a direct relationship of the energy potential as an initiative to pay 
the total cost of steel, in weight, used to construct the roof (Table 1). 

We have that option #5852 is, in this case, the best choice. Accessing this option, we observe its input and 
output parameters. Figure 12 shows the profile sections for this option. 
In Figure 13, this alternative can be seen enlarged and it is defined by its input and output parameters. 

However, this logic changes when there is long-term planning, such as the reduction of energy consumption 
expenditures over 30 years. 

In this new perspective, option #5808 is the best choice. Accessing this option, the profile sections of this 
option can be seen (Figure 14). 

In Figure 15, this alternative can be seen enlarged and it is defined by its input and output parameters. 

Final considerations 
The experiments presented highlight the relationship between optimisation and open design, where the 
designer reduces his objective control over the final shape as he takes up action upon the physical constraints 
that generate the shape. This loss of control is due precisely to mathematical modelling, which constitutes an 
analytical practice, and to the automatic search for solutions through heuristics. It also highlights the 
advantage of using the multiobjective methods compared to the mono-objective ones as it allows decisions 
to choose the solution to occur after the computational process. In addition to evaluating the results, the 
designer can add new points of view to these, different from those considered in the search for optimal 
solutions. It is a process that forms a continuous and expanding feedback loop in which the insertion of other 
optimisation parameters can occur in several stages, not ending in the initial design phases when the initial 
form generation occurs. 

Thus, this work aims to contribute to the studies in the area from the perspective of generative design as a 
means, especially useful in the initial phases of the design process, and not as an end of the design processes 
in architecture, as the theme has been commonly treated. 
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Table 1 – Comparative table 

ID Cost (R$)1 kWh (R$)2 Months3 30 years (R$)4 

#5816 1.131.123,60 191.691,60 82 4.437.626,18 
#5815 832.881,80 168.751,52 59 4.229.663,89 
#5812 917.966,20 186.582,41 59 4.679.506,14 
#5817 849.987,20 169.891,02 60 4.246.806,02 
#5879 854.774,20 174.691,02 59 4.385.956,52 
#5813 887.208,20 177.774,36 60 4.446.022,56 
#5807 863.828,20 175.906,23 59 4.413.358,74 
#5806 867,504.20 176,626.07 59 4,420,357.92 
#5808 955,103.00 190,987.90 60 4,774,534.15 
#5852 864,733.60 185,764.66 56 4,708,206.25 
#5819 893,495.00 181,131.24 59 4,540,442.07 
#5895 952,516.80 177,529.29 64 4,373,361.79 
#5818 893,663.00 184,690.57 58 4,647,054.07 
#5805 918,301.20 188,541.29 58 4,737,937.47 
#5809 955,103.00 190,987.85 60 4,774,532.39 

Note: 
1total structure cost = (total structure weight) x (steel price value - R $ 20.00/kg); 
2annual electric energy revenue = (annual photovoltaic energy potential) x (annual average kWh value - R$ 0.587); 
3time to pay the structure with the photovoltaic energy revenues = (total cost of the structure)/(revenue/12); and 
4gross income in 30 years (excluding the structure value). 

Figure 12 – Project option profiles #5852 

 

Figure 13 - Design option #5852 
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Figure 14 - Project option profiles #5808 

 

Figure 15 - Design option #5808 

 

As these procedures have been used for a short time in the Brazilian context and are still in its infancy, we 
hope that this work offers support to architects in this design path. To do this, a detailed description of the 
strategies adopted in the application of the content in an architectural design of metallic construction was 
presented: in the description of the design of an architectural model with steel construction system; in the 
definition of a set of guidelines to assess the qualities of specific aspects of the product based on multiple 
variables - in the structural analysis of the roof and its capacity to generate photovoltaic energy -; in the 
approach of the modes of evaluation of generative processes with one or multiple objectives, through 
sampling and visualisation in a dispersion graph and in detailing the modes of evaluation of the resulting 
designs. It is considered that the process of formalising the problem presented here and the comparison of 
the two project optimisation scenarios performed are relevant in the contemporary context of architecture. 
However, we believe in a broader contribution to this investigation, by showing how different formulations 
for the same problem behave in a design process, especially in its initial phases of creative generation of the 
shape.  
We also highlight the potential of using genetic algorithms as an auxiliary tool integrated with generative 
design and as a design method, allowing a customised application of scientific procedures (modelling) for 
the synthesis of form (final design). In the workflow presented here, a creative approach is overlaid to 
traditional,  “hardcore”  scientific  methods.   
It is, however, necessary to put the relevance of this project path into perspective, recognising it as a 
powerful resource available to professionals, but whose adequacy must necessarily be weighed according to 
the nature of the problem, criteria and restrictions placed at stake. In fact, it should be considered that this 
path does not completely break with the cognitive logic of traditional architectural design processes, being 
marked by some of its principles and characteristics. Here, the existence of specific cycles of analysis, 
synthesis and evaluation is highlighted, as described by Lawson (2011), although significantly streamlined 
over time and informed with greater accuracy as to various aspects of product performance. 

Architectural production and its design processes are always marked by specific demands and conditions. 
Each solution is the result of many factors - knowledge, designer's skills, requirements and restrictions of 
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different orders. From the initial moments of conception to the final solution proposed, there is usually 
intense work of optimisation along the design path, the result of continuous problematisation that feeds the 
reflection actions of the designer, which, in general, are not linear. In different ways, this marks the 
procedures studied here as well as the more conventional and recurrent practices. In the same way, the 
notions of imprecision, incompleteness and uncertainty, which are inherent to all design processes, impose 
the need to understand the limitations of each one and, also, the possible complementarity between them. 
(SCHÖN, 2000; LAWSON, 2011). In this light, tools and methods discussed here need to be thought of in 
their imaginable articulations with others, in all design stages. 
Lawson (2011) claims that there is unlikely to be a correct or even optimal response in the design process. 
Thus, although the experiment developed here generated thousands of different project options, as the results 
were being analysed, it was clear how fragile the certainty of an assertive answer (solution) to a problem. 
This is because once a decision has been made, much of the scope for exploring possibilities in the later 
phases is limited, making it highly unlikely that the design process will achieve a truly "optimal" project. 

In any case, the use of parametric tools to investigate the maximum number of design hypotheses from a set 
of variables stipulated beforehand allows the exploration and evaluation of complex situations that, in 
practical terms, would be impossible to cover manually. The importance of such tools is particularly evident 
in view of the complexity of contemporary demands, which demand from architects increasingly complex 
and difficult approaches to be covered in conventional methods. The research presented intends to inspire 
further research to investigate the use of genetic algorithms in other stages of the design processes or to 
investigate possibilities of their integration with other computational tools aimed at architectural production. 
It also raises countless research possibilities that associate variables related to the demands of sustainability, 
experiments with new materials and construction technologies, among others. 

Finally, this study and the experiment developed present a transdisciplinary path for professional action. 
According to Brandão (2005), architecture is configured as transdisciplinary in its intrinsic constitution, as it 
places the built world, the world of ideas and the world of language in a reciprocal and interdependent 
function. Here, tools and method simultaneously enable and enhance the architect's transit through different 
areas of knowledge, namely to cover disciplines such as architecture, engineering, mathematics, informatics 
and biology. Notably, there was a great approximation of the first two, breaking some boundaries between 
them. 
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