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Resumo

A seleção de atributos é uma etapa de pré-processamento amplamente difundida na
área de mineração de dados. Um de seus objetivos é reduzir o número de atributos
originais de uma base de dados para melhorar o desempenho de um modelo preditivo.
No entanto, apesar dos benefícios da seleção de atributos para a tarefa de classificação,
até onde sabemos, poucos estudos na literatura abordam a seleção de atributos para o
contexto de classificação hierárquica. Este trabalho propõe duas abordagens principais
de seleção híbrida de atributos supervisionada, combinando uma etapa filtro com uma
wrapper, na qual um classificador hierárquico global avalia subconjuntos de atributos. A
primeira abordagem usa a metaheurística Busca em Vizinhança Variável Geral com um
ranqueamento de atributos construído com a medida Incerteza Simétrica Hierárquica. A
segunda abordagem propõe uma adaptação da medida de seleção de atributos baseada em
correlação adaptada para classificação hierárquica e utiliza o algoritmo Best First Search
para pesquisar o espaço de subconjuntos de atributos. Doze bases de dados dos domínios
de proteína e imagem foram usadas para realizar experimentos computacionais para val-
idar o desempenho dos algoritmos propostos utilizando dois classificadores hierárquicos
globais propostos na literatura. Testes estatísticos mostraram que o uso dos métodos
de seleção de atributos propostos levaram a um desempenho preditivo consistentemente
melhor ou equivalente ao obtido quando todos os atributos iniciais são utilizados, além
do benefício de reduzir o número de atributos necessários, o que justifica a aplicação em
cenários de classificação hierárquica.

Palavras-chave: Seleção de Atributos Híbrida. Classificação Hierárquica. Busca em
Vizinhança Variável. Wrapper. Filtro. Seleção de Atributos baseada em correlação.





Abstract

Feature selection is a widespread preprocessing step in the data mining field. One
of its purposes is to reduce the number of original dataset features to improve a pre-
dictive model’s performance. However, despite the benefits of feature selection for the
classification task, as far as we are aware, few studies in the literature address feature
selection for hierarchical classification context. This work proposes two main supervised
hybrid feature selection approaches, combining a filter and a wrapper step, wherein a
global model hierarchical classifier evaluates feature subsets. The first uses the General
Variable Neighborhood Search metaheuristic and a feature ranking constructed with the
Hierarchical Symmetrical Uncertainty measure. The second one proposes an extension of
the Correlation-based Feature Selection measure for hierarchical classification and uses a
Best First Search algorithm to search the feature subset space. We used twelve datasets
from protein and image domains to perform computational experiments to validate the
effect of the proposed algorithms on classification performance when using two global
hierarchical classifiers proposed in the literature. Statistical tests showed that using our
methods as a feature selection led to a predictive performance that is consistently better
or equivalent to that obtained using all features, with the benefit of reducing the number
of features needed, which justifies their use for the hierarchical classification scenario.

Keywords: Hybrid feature selection. Hierarchical classification. Variable Neighborhood
Search. Wrapper. Filter. Correlation-based feature selection.
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Chapter 1
Introduction

Data mining applications have become essential in recent years due to the massive
increase in data generation and storage. The manipulation of data to transform it into
understandable and advantageous information launches new research challenges.

Feature selection aims to identify as many relevant features as possible and decrease the
cost requirements for processing data. Typically, data mining tasks use feature selection
as a preprocessing step. In this paper, we will focus on feature selection approaches for
the classification task. Therefore, we considered only datasets with labeled instances.
Improving classifiers’ predictive accuracy and reducing the classification’s execution time
are some of the benefits of feature selection (HAN; KAMBER; PEI, 2011).

Among data mining tasks, classification has received considerable attention from the
scientific community (HAN; KAMBER; PEI, 2011). Classification predicts the class la-
bel(s) of examples based on the problem domain represented by its features. There are
different complexity levels of classification problems in the literature. In traditional (flat)
classification problems, one or more class labels are assigned to each dataset instance,
and the classes are independent of each other. However, in many real applications, more
complex classification problems exist, in which classes that label instances are organized
into a hierarchical structure (SILLA; FREITAS, 2011) represented by a tree or a direct
acyclic graph (DAG), so-called hierarchical classification problems.

Researches have proposed different methods to solve hierarchical classification prob-
lems, categorized into local or global approaches, according to how the method handles
the class hierarchy. In the local approach, the classification is carried out using a set of
flat classifiers. In contrast, the global approach uses a single classifier that considers the
class hierarchy as a whole. Hierarchical classification methods may also be able to predict
different numbers of paths of labels. A method can be restricted to predict only a single
path of labels (single-label problem) or multiple paths of labels (multi-label problem).
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1.1 Motivation

Despite the benefits of using feature selection methods as a preprocessing step for
the classification task, many of the existing feature selection techniques in the literature
cannot be directly applied to a hierarchical classification scenario. The initial efforts
to solve feature selection for the hierarchical classification problem proposed to apply
conventional feature selection techniques and construct classifiers by breaking down the
hierarchical classification problem into several flat classification problems. This type of
approach allowed them to use feature selection techniques and classification algorithms
traditionally adopted in flat classification (KOLLER; SAHAMI, 1997; SECKER et al.,
2010; PAES; PLASTINO; FREITAS, 2014).

Few recent approaches that also use a set of flat classifiers have proposed techniques
based on recursive regularization that take into account the hierarchical information of
classes (e.g., parent-child, sibling, and graph relations) (ZHAO et al., 2017; TUO; ZHAO;
HU, 2019). In addition to structure information, another approach used a semantic
description of class labels to select different feature subsets for each sub-classifier(HUANG;
LIU, 2020). It is worth mentioning that none of them conducted experiments using global
hierarchical classifiers. Other ranked-based methods have proposed to readjust some
existing popular filter feature selection algorithms to take into account the hierarchical
structure of classes (SLAVKOV et al., 2014; DIAS; MERSCHMANN, 2015).

In the literature, several studies propose modifications on existing flat classifiers to
cope with the entire class hierarchy in a single step (CLARE; KING, 2003; CHEN; HU;
TANG, 2009; SILLA; FREITAS, 2009; VENS et al., 2008; OTERO; FREITAS; JOHN-
SON, 2009; OTERO; FREITAS; JOHNSON, 2010; ZHENG; ZHAO, 2020), resulting in
approaches that benefit from training a single classifier to solve hierarchical problems..
Given the relevance of global classifiers to the hierarchical classification scenario, one can
see the importance of developing preprocessing techniques capable of dealing with the
class hierarchy as a whole.

1.2 Goals and objectives

The goal of this thesis is to propose a feature selection approach specifically designed
for global model hierarchical classifiers, dealing directly with the class hierarchy relations.
To achieve this goal, we defined the following objectives:

o Combine filter measures and wrapper techniques to construct solutions to improve
global hierarchical classifiers’ predictive performance.

o Develop hybrid feature selection methods based on metaheuristics algorithms to
efficiently search the feature subset space.
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o Design a new search-based filter measure adapted for hierarchical classification prob-
lems capable of correctly evaluating the quality of feature subsets.

o Execute the wrapper evaluation only in strategic points of the search algorithms to
reduce their computational cost.

1.3 Original contributions

To summarize, our major contributions in this thesis are as follows:

o We developed two hybrid feature selection methods based on the Variable Neighbor-
hood Search (VNS) metaheuristic that combine the search-based step with a feature
ranking constructed by the Hierarchical Symmetric Uncertainty (𝑆𝑈𝐻) measure,
which evaluates features considering the hierarchical class structure.

o We designed a new Hierarchical Correlation-based Feature Selection (H-CFS) filter
measure.

o We developed two hybrid feature selection methods based BFS and GA for global
model hierarchical classifiers. These methods incorporate the H-CFS as an alterna-
tive fitness function to wrapper evaluations, reducing their computational costs.

1.4 Thesis organization

The remaining of this thesis is organized as follows. Chapter 2 presents an overview
of hierarchical classification and feature selection. In Chapter 3 we describe the problem
addressed in this work and present the related work. The proposed methods based on
VNS metaheuristic are presented in Chapter 4, and the new approaches using the H-CFS
measure are discussed in Chapter 5. Finally, conclusions and directions for future work
are described in Chapter 6.
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Chapter 2
Fundamentals

In this chapter we present throughout Sections 2.1.2 and 2.2 an overview on hierar-
chical classification and feature selection methods, respectively.

2.1 Hierarchical classification

Most classification studies in the data mining field are related to flat classification
problems, in which the classes are independent of each other. However, in many real-world
applications, the classes that label instances are organized into a hierarchical structure.

Different aspects can characterize hierarchical classification methods (SILLA; FRE-
ITAS, 2011). The first one is related to the type of hierarchical structure (tree or DAG)
that the method can process. Fig. 1 presents a tree and a DAG example, where the nodes
represent the classes, and the edges indicate a relationship between them. Basically, in a
tree structure (Figure 1a), each node (class) can possess only one parent node, while in a
DAG (Figure 1b), a child node (class) can have multiple parent nodes.

R

R.1

R.1.1 R.1.2

R.2

R.2.1 R.2.2 R.2.3

(a) Class hierarchy structured as tree

R

R.1

R.1.1 R.1.2

R.2

R.1-2.1 R.2.2 R.2.3

(b) Class hierarchy structured as DAG

Figure 1 – Types of hierarchical structure

The second aspect is related to how deep in the class hierarchy the classification
performs. A method can either perform mandatory leaf node prediction (MLNP) or non-
mandatory leaf node predictions (NMLNP). In MLNP, the most specific class assigned to
an instance must be one of the classes at a leaf node in the class hierarchy. Contrastingly,
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in NMLNP, any class node in the hierarchy (internal or leaf) can be assigned to an
instance.

The third aspect refers to the number of different paths of labels in the class hierar-
chy, in which the method can associate an instance. The methods may predict, to each
instance, just a single path of labels in the class hierarchy (single-label problem), or they
can be less restricted, predicting multiple paths of labels (multi-label problem).

Finally, the fourth aspect concerns how the classification method handles the class
hierarchy. The classification methods can perform either flat or hierarchical classification
(using a local or global model approach). In flat classification, the method ignores the class
hierarchy and performs predictions considering only classes associated with leaf nodes. In
the local model approach, the class hierarchy is explored through a local perspective,
with the combination of classifiers that consider, in an isolated manner, different parts
of the hierarchy. According to Silla and Freitas (2011), we can categorize local model
approaches according to how they use the local information of the hierarchy structure
and how they build their classifiers around it. There are three standard ways of using
local information: local classifier per node, local classifier per parent node, and local
classifier per the hierarchy level. The global model approach uses only one classifier, i.e.,
it builds a single model considering the class hierarchy as a whole.

In the literature, several works proposing modifications on existing flat classifiers to
cope with the entire class hierarchy in a single step are available. Some examples of mod-
ifications of traditional flat classification algorithms are: HC4.5 (CLARE; KING, 2003)
and HLC (CHEN; HU; TANG, 2009), modified versions of the C4.5; Global Model Naive
Bayes (SILLA; FREITAS, 2009), a modified version of the Naive Bayes; CLUS-HMC
(VENS et al., 2008), a method based on Predictive Cluster Trees; ℎAnt-Miner (OTERO;
FREITAS; JOHNSON, 2009) and ℎ𝑚Ant-Miner (OTERO; FREITAS; JOHNSON, 2010),
both adaptations of the Ant-Miner algorithm; and more recently the CSHCIC method
(ZHENG; ZHAO, 2020), which integrates hierarchical classification and cost-sensitive
learning to re-weight training data for the imbalanced class problem.

We used two global model hierarchical classifiers in this work, described in separate
subsections in the following.

2.1.1 Global Model Naive Bayes

The flat Naive Bayes (NB) is an efficient and effective inductive learning algorithm
for data mining (DUDA; HART, 1973). Despite its qualities, the flat NB is not designed
to deal with hierarchical classification problems. For this reason, Silla and Freitas (2009)
proposed the Global Model Naive Bayes (GMNB) algorithm, an adaptation of the flat
NB to deal with the class hierarchy by considering the relationship between classes during
the probabilities measurement.
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Let 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑡} be a set of training instances, 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} be the
set of predictive features of an instance 𝑑𝑗 ∈ 𝐷, and let 𝐶 = {𝑐1, . . . , 𝑐𝑟} be a set of classes
that relate to each other through a hierarchical structure. Each instance 𝑑𝑗 is represented
by its attribute vector 𝑌 𝑗 = {𝑦𝑗

1, 𝑦𝑗
2, . . . , 𝑦𝑗

𝑛} with 𝑦𝑗
𝑖 ∈ 𝐴𝑖 and associated with a class

𝑐𝑖 ∈ 𝐶.
Given a new instance 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, where 𝑦1, 𝑦2, . . . , 𝑦𝑛 are the predictive

feature values associated with 𝐴1, 𝐴2, . . . , 𝐴𝑛 respectively, the flat NB classifier simply as-
signs to this new instance the class 𝑐𝑖 associated with the maximum posterior probability,
calculated as 𝑃 (𝑐𝑖|𝑌 ) ∝ 𝑃 (𝑌 |𝑐𝑖)𝑃 (𝑐𝑖), where 𝑃 (𝑌 |𝑐𝑖) = ∏︀𝑛

𝑗=1 𝑃 (𝑦𝑗|𝑐𝑖). Thus, the GMNB
classifier’s main difference is in calculating the probabilities 𝑃 (𝑐𝑖) and 𝑃 (𝑦𝑗|𝑐𝑖), since it
estimates them taking into account the class hierarchy.

More specifically, the GMNB considers that any instance of the class 𝑐𝑖 also belongs
to all its parent classes. Considering the example in Figure 1a, if a training instance
belongs to the class 𝑅.1.2, then it will be counted in the frequencies of all probabilities
involving the class 𝑅.1.2 (𝑃 (𝑅.1.2) and 𝑃 (𝑦𝑗|𝑅.1.2)) and also in all probabilities related
to its parent class 𝑅.1 (𝑃 (𝑅.1) and 𝑃 (𝑦𝑗|𝑅.1)). These adaptations allow the GMNB to
predict classes at any level of the class hierarchy.

2.1.2 CLUS-HMC

The CLUS-HMC is a decision tree learner algorithm designed for hierarchical multi-
label classification problems (VENS et al., 2008). It takes a set of instances and search
for the best feature value test to be placed in a node. The algorithm then calls itself
recursively to build a subtree for each cluster induced by the test using the training data.
The best test is the one that maximally reduces the variance induced on the training
instances. Maximizing variance reduction will maximize the homogeneity of the clusters,
which improves the classification performance.

The variance is estimated according to Equation (1). If we take a set of instances 𝐷

and perform the arithmetic mean 𝑣 of their label vectors (classes), the 𝑗th component of
𝑣 will contain the proportion of instances in the set that are classified in the class 𝑐𝑗. The
variance of a set of instances is defined as the mean square distance between the label
vector 𝑣𝑖 of each instance and the mean label vector 𝑣.

𝑉 𝑎𝑟(𝐷) =
∑︀

𝑖 𝑑(𝑣𝑖, 𝑣)2

|𝐷|
(1)

The distance used by CLUS-HMC is the weighted Euclidean distance, presented by
Equation (2), where 𝑣𝑘,𝑗 is the 𝑗th class of the class vector 𝑣𝑘 of a given instance 𝑥𝑘,
and the class weights 𝑤(𝑐𝑗) decrease with the depth of the class in the hierarchy (e.g.,
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𝑤(𝑐𝑗) = 𝑤
𝑑𝑒𝑝𝑡ℎ(𝑐𝑗)
0 , with 0 < 𝑤0 < 1). Thus, higher weights are assigned to class nodes

at the smaller (more generic) levels in the hierarchy. This is natural, considering that
similarities at smaller levels are more important than similarities at greater (deeper)
levels.

𝑑(𝑣1, 𝑣2) =
√︃∑︁

𝑗

𝑤(𝑐𝑗)(𝑣1,𝑗 − 𝑣2,𝑗)2 (2)

Consider for example the class hierarchy shown in Figure 1a, and two examples
(𝑌 1, 𝐶1) and (𝑌 2, 𝐶2) with 𝐶1 = {𝑅.1, 𝑅.2, 𝑅.2.2} and 𝐶2 = {𝑅.2}. Using a vector
representation with consecutive components representing membership of class R.1, R.1.1,
R.1.2, R.2, R.2.1, R.2.2 and R.2.3, in that order, 𝑑([1, 0, 0, 1, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0]) =√︁

𝑤0 + 𝑤2
0.

2.2 Feature selection

Feature selection has received increasing attention from researchers in recent years due
to the continued rapid growth in data volume. Powerful as a preprocessing step, it selects
a subset of predictive features to improve learning models’ performance. Data containing
irrelevant or redundant features can reduce classifiers’ predictive capability and increase
the classification processing time (HALL, 2000). Several research works have already
shown that, in specific datasets, some of the features can be removed from the feature set
without jeopardizing the predictive accuracy of the classifier (BLUM; LANGLEY, 1997).
In practice, the use of feature selection in the classification task can result in the following
benefits (LIU; MOTODA, 2007):

(i) Improvement of the predictive capability of classifiers.

(ii) Reduction of the running time spent in the classification learning process.

(iii) Development of simplified classification models, which allow for easier interpreta-
tion.

We can categorize feature selection methods according to different aspects. The first
one is related to the use of the labeled class value. Feature selection methods can pro-
cess datasets that have class values previously labeled, partially labeled, and non-labeled
instances, leading to the development of supervised, semi-supervised, and unsupervised
algorithms, respectively. A supervised feature selection algorithm determines the rele-
vance of features by evaluating their existing correlation with the class feature. In this
paper, we considered datasets with labeled instances. Therefore, we will focus on studies
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that proposed feature selection approaches for the supervised learning context, specifically
feature selection approaches for the classification task.

Another aspect is related to how the methods evaluate the quality of the predictive
features. In this sense, we can consider different approaches, which, in general, can be
categorized into embedded, filter, wrapper, or hybrid (involving possible combinations
among embedded, filter, and wrapper) (LIU et al., 2010).

A method is categorized as a filter when it uses only intrinsic properties of the data.
However, when a method uses a classifier to assess the quality of a given feature subset,
it is categorized as a wrapper. Filter methods have the advantage of being independent
of a classifier, generally faster than wrapper techniques. On the other hand, the wrapper
approach usually has the advantage of reaching higher predictive performance than filters.

When we use an embedded feature selection approach, the classification model per-
forms the feature selection simultaneously with its creation. Typical examples of these
techniques are decision tree algorithms because they perform the selection of features
placed into the nodes of the generated trees (COSTA et al., 2007; VENS et al., 2008;
CHEN; HU; TANG, 2009).

2.2.1 Filter approaches

Filter approaches are independent of the classification algorithm that will be applied.
They use the features’ intrinsic properties (i.e., the “relevance” of the features) to evaluate
the quality of features or subsets of features. Typically, one can divide techniques based
on filter approaches into two groups: feature ranking-based approaches and search-based
approaches.

The feature ranking-based approach applies statistical metrics to evaluate each feature
individually, ranks features according to their relevance, and selects the top 𝑘 features
from the ranked list (where 𝑘 is a predefined number). This approach’s drawback is that
it considers only one feature per evaluation (univariate method), ignoring the correlations
between features. One feature that is irrelevant by itself can be significantly informa-
tive when considered together with other features (LIU; MOTODA, 2007). Examples of
ranking-based methods are Information Gain Attribute Ranking (YANG; PEDERSEN,
1997), Symmetrical Uncertainty (SU) (LIU; MOTODA, 2007), Gain Ratio (LIU; MO-
TODA, 2007), and Chi-Squared (YANG; PEDERSEN, 1997).

The search-based approach considers the relationship between features in a feature
subset (being a multivariate method), searching for the space of possible feature subsets.
Each feature subset considered by the search method represents a candidate solution,
which has its quality measured by an evaluation function. Assuming that the evaluation
function penalizes redundant feature subsets, this approach has the advantage of feature
redundancy elimination. On the other hand, this approach takes more time to generate
and measure each feature subset’s quality, which is usually slower than the univariate
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approach. Recall that if there are 𝑛 possible features initially, then there are 2𝑛 possible
subsets, which turns the evaluation of every candidate feature subset prohibitive for all
but a small fraction of the total number of possible subsets.

In this sense, one can apply various heuristic search strategies such as hill climb-
ing and best first (LIU; MOTODA, 2007) to search the feature subset space in a rea-
sonable time. Metaheuristic algorithms such as Simulated Annealing (SA) (DEBUSE;
RAYWARD-SMITH, 1997), Genetic Algorithms (GA) (XUE et al., 2016), and Particle
Swarm Optimization (PSO) (AGRAWAL et al., 2021) have also been applied efficiently
as search-based feature selection approaches. Recently, researchers have explored strate-
gies that design parallel algorithms to improve the running time of their feature selection
approach, as proposed by Huang et al. (2019) for internet text classification. Examples
of search-based methods are Correlation-Based Feature Selection (CFS) (HALL, 2000;
JUNGJIT; FREITAS, 2015), and Consistency-based Feature Selection (LIU; SETIONO,
1996).

In the following subsections, we present two filter approaches that we used in this work.
Section 2.2.1.1 describes the Hierarchical Symmetrical Uncertainty (𝑆𝑈𝐻) ranking-based
approach, an adaptation of SU to hierarchical classification. Section 2.2.1.2 describes the
CFS search-based method. Finally, in Section 2.2.1.3, we present the GA metaheuristic,
used in Section 5.2 to search the feature subset space.

2.2.1.1 Hierarchical Symmetrical Uncertainty

The classical SU filter approach is a non-linear measure of correlation widely used to
evaluate features that combines the Entropy (E) and the Information Gain (IG) measures,
described by Equation (3), where, for a given predictive feature 𝐴𝑖 ∈ 𝐴 and a class 𝑐𝑗 ∈ 𝐶,
the value of 𝑆𝑈(𝐴𝑖, 𝑐𝑗) quantifies the correlation between 𝐴𝑖 and a class 𝑐𝑗.

𝑆𝑈(𝐴𝑖, 𝑐𝑗) = 2×
⎛⎝ 𝐼𝐺(𝑐𝑗, 𝐴𝑖)

𝐸(𝑐𝑗) + 𝐸(𝐴𝑖)

⎞⎠ (3)

The SU measure is not designed to deal with the hierarchical classification context.
Thus, an adaptation was necessary to make the measure considers the relationship existent
among the classes. The 𝑆𝑈𝐻 measure (DIAS; MERSCHMANN, 2015) is the combination
of the Hierarchical Entropy (𝐸𝐻) and the Hierarchical Information Gain (𝐼𝐺𝐻) (CHEN;
HU; TANG, 2009). The 𝐸𝐻 is described by Equation (4), and it is a weighted average of
the entropy for each level of the class hierarchy.

More specifically, consider the hierarchical class structure 𝐻𝐶 = {𝑁1, 𝑁2, . . . , 𝑁ℎ},
where 𝑁𝑖 denotes the 𝑖th hierarchical level and ℎ the total number of levels in the hierarchy.
Also, consider that the level 𝑁1 is the one that contains the child nodes of the root node
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of the hierarchical structure. In this way, the entropy is estimated for each hierarchy
level of classes, starting from the first level (𝑖 =1). Thus, the more specific is a class in
the hierarchy, the deeper (greater) its level is. Finally, consider also 𝑁𝑖 = {𝑁(𝑖,𝑗) |𝑗 =
1, ..., 𝑚𝑖 }, where 𝑁(𝑖, 𝑗) corresponds to 𝑗th node (class) of level 𝑖 and 𝑚𝑖 is the total
number of nodes (classes) of level 𝑖. Therefore, in Equation (4), 𝑃 (𝑖, 𝑗) is the occurrence
probability of the 𝑗th class of level 𝑖.

𝐸𝐻(𝑐𝑗) = −
ℎ∑︁

𝑖=1

𝑚𝑖∑︁
𝑗=1

(𝑃(𝑖,𝑗) × 𝑙𝑜𝑔2 𝑃(𝑖,𝑗)) × 𝑤𝑖 (4)

The weighting adopted by the 𝐸𝐻 is described in Equation (5), where 𝑤𝑖 is the weight
assigned to level 𝑖 of the hierarchy. It is worth mentioning that ∑︀ℎ

𝑖=1 𝑤𝑖 = 1. Furthermore,
it can be seen from Equation (5) that 𝑤1, 𝑤2, . . . , 𝑤ℎ corresponds to an arithmetical series
where the highest weights are associated to the lowest (more generic) levels of the class
hierarchy.

𝑤𝑖 = (ℎ− 𝑖 + 1) ×
⎛⎝ 2

ℎ × (ℎ + 1)

⎞⎠ , 𝑤ℎ𝑒𝑟𝑒 𝑖 ≥ 1 (5)

The hierarchical Information Gain (𝐼𝐺𝐻) is described by Equation (6), where 𝐸𝐻(𝑐𝑗)
is the hierarchical entropy of a class 𝑐𝑗 and 𝐸𝐻(𝑐𝑗 |𝐴𝑖) is the hierarchical entropy of a
class 𝑐𝑗 after observing a feature 𝐴𝑖.

𝐼𝐺𝐻(𝑐𝑗, 𝐴𝑖) = 𝐸𝐻(𝑐𝑗) − 𝐸𝐻(𝑐𝑗 |𝐴𝑖) (6)

Therefore, Equation (7) describes the 𝑆𝑈𝐻 , where 𝐼𝐺𝐻(𝑐𝑗, 𝐴𝑖) is the reduction caused
in the hierarchical entropy of a class 𝑐𝑗 due to additional information provided by a feature
𝐴𝑖, 𝐸𝐻(𝑐𝑗) is the hierarchical entropy of a class 𝑐𝑗, and 𝐸𝐻(𝐴𝑖) is the entropy of a feature
𝐴𝑖.

𝑆𝑈𝐻(𝐴𝑖, 𝑐𝑗) = 2×
⎛⎝ 𝐼𝐺𝐻(𝑐𝑗, 𝐴𝑖)

𝐸𝐻(𝑐𝑗) + 𝐸𝐻(𝐴𝑖)

⎞⎠ (7)

2.2.1.2 Correlation-Based Feature Selection

Hall (2000) proposed the CFS, a well-known search-based filter method for single-
label classification problems. It is a simple and fast-to-execute method, suitable for both



32 Chapter 2. Fundamentals

nominal class and continuous class problems (i.e., classification and regression problems,
respectively).

The principle behind this measure states that a good feature subset should have two
main properties: (1) the correlation between each feature and other features in the same
subset should be low to minimize feature redundancy, and (2) the correlation between
each feature in that subset and the class should be high.

Thus, Equation (12) describes the merit estimation of a feature subset, where 𝑟𝐹 𝐿

is the average feature-label correlation over all the feature-label pairs for all features in
the current feature subset, 𝑟𝐹 𝐹 is the average feature-feature intercorrelation over all the
pairs of features in the current feature subset 𝐹 , and 𝑘 is the the number of features
in 𝐹 . Essentially, when 𝑟𝐹 𝐿 increases and 𝑟𝐹 𝐹 decreases, the quality of a feature subset
increases regarding its ability to predict the labels of a class.

𝑚𝑒𝑟𝑖𝑡 = 𝑘𝑟𝐹 𝐿√︁
𝑘 + 𝑘(𝑘 − 1)𝑟𝐹 𝐹

(8)

2.2.1.3 Genetic Algorithms

GA is a metaheuristic inspired by the process of natural selection, based on Darwin’s
evolutionary theory (GOLDBERG, 1989). The basic idea is that individuals in a popu-
lation with better genetic features are more likely to survive and produce offspring more
fittest each time while individuals that are less fit tend to disappear.

In a GA, we evaluate each individual (candidate solution) by a fitness function ac-
cording to the target problem. In the context of a GA for feature selection, an individual
is typically represented as a bit string where each bit takes the value 1 or 0 to indicate
whether or not, respectively, a feature is included in the candidate feature subset.

Fig. 2 presents the basic structure of a GA. It starts with an initial population of
individuals (candidate feature subsets), and iteratively performs the selection of individ-
uals based on a measure fitness and creates new child individuals based on crossover and
mutation of the parent individuals just selected. This process is iteratively repeated until
a stopping criterion (e.g., a fixed number of iterations or generations) is satisfied.

There are two main types of genetic operators: crossover and mutation. Crossover
or recombination merges information from two parents into one or two offspring. There
are three main categories of crossover in the literature: one-point crossover, multi-point
crossover, and uniform crossover. The mutation operator considers each gene (bit of a
candidate solution) separately and allows each gene to flip (bit-flip mutation) according
to the mutation rate (a user-specified parameter). Usually, a large value of mutation rate
would lead the GA into a purely random search. To avoid this problem, the mutation rate
is usually small, in the range of 0.5−5%. In contrast, the crossover operator is performed
with a higher probability, e.g., 80%.
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Figure 2 – Basic GA structure

2.2.2 Wrapper approaches

In wrapper approaches, the same classifier used in the classification step evaluates the
quality of the feature subsets. Therefore, the “usefulness” of a given subset of features
is measured by evaluating the trained classifier using only the features included in that
subset. As search-based filter approaches, wrapper approaches need to promote searches
among possible subsets of features. Each feature subset is then used to train a classifica-
tion model evaluated according to some performance measure (KOHAVI; JOHN, 1997).
The search process proceeds until it finds the subset with the highest evaluation in terms
of the classifier’s predictive performance.

Techniques that follow a wrapper approach generally produce better predictive per-
formance results than those based on the filter approach since the classification algo-
rithm itself drives the feature selection. However, in wrapper-based techniques, the clas-
sifier must be trained and evaluated multiple times during the search process, which
could cause a very high computational cost, making it impractical for high dimensional
datasets (BERMEJO; GÁMEZ; PUERTA, 2011).

2.2.3 Hybrid filter-wrapper approaches

In the last few years, hybrid filter-wrapper techniques have become the focus of many
studies, as in this way, they aggregate the advantages of filter and wrapper approaches.
Examples of hybrid filter-wrapper algorithms designed for flat classification problems
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are HFS-C-P, a framework that integrates a correlation-guided clustering technique and
PSO (SONG et al., 2021); BDE-X Rank, an approach that combines a wrapper method
based on a Binary Differential Evolution (BDE) algorithm with a ranking-based filter
method (APOLLONI; LEGUIZAMÓN; ALBA, 2016); MIMAGA, an algorithm that com-
bines the Mutual Information Maximization (MIM) and the Adaptive Genetic Algorithm
(AGA) (LU et al., 2017); and HI-BQPSO, a method that combines a filter technique with
an improved quantum-behavior PSO algorithm (WU et al., 2019).

This work proposes two main supervised hybrid feature selection approaches, combin-
ing a filter and a wrapper step, wherein a global model hierarchical classifier evaluates
feature subsets. The first one combines the GVNS metaheuristic as a search-based method
with a feature ranking constructed by the 𝑆𝑈𝐻 measure. The second approach is an adap-
tation of the CFS measure for hierarchical single-label classification and uses a best first
algorithm to search the feature subset space.
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Let 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑡} be a set of dataset instances. Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} be
the set of predictive features of an instance 𝑑𝑗 ∈ 𝐷 such that each 𝐴𝑖, 1 ≤ 𝑖 ≤ 𝑛, is a set
of continuous or categorical values. Let 𝐶 = {𝑐1, . . . , 𝑐𝑟} be a set of classes that relate
to each other through a hierarchical structure, represented by a partial order ≺ℎ, i.e., for
all 𝑐1, 𝑐2 ∈ 𝐶, 𝑐1 ≺ℎ 𝑐2 if and only if 𝑐1 is a superclass of 𝑐2. Each instance 𝑑𝑗 ∈ 𝐷 is
represented by the pair (𝑌 𝑗, 𝑐𝑗), in which 𝑌 𝑗 = {𝑦𝑗

1, 𝑦𝑗
2, . . . , 𝑦𝑗

𝑛} is a list of feature values
with 𝑦𝑗

𝑖 ∈ 𝐴𝑖, and 𝑐𝑗 ∈ 𝐶 is the class of the instance 𝑑𝑗.

The Feature Selection for Hierarchical Classification (FSHC) problem identifies rele-
vant features for the hierarchical classification task. It attempts to remove features from
the dataset that do not increase or reduce the classification model’s performance. Ac-
cordingly, a solution to the FSHC problem is a subset 𝑋 ⊆ 𝐴 that can adequately classify
new instances.

To exemplify, let 𝐷 be a set of academic papers, A = {Word count, Character count,
Verb count, Noun count} the feature set and C = {Computer science, Software engineer-
ing, Artificial intelligence} the categorization of academic papers into defined topics in
which Computer science is the superclass of Software engineering and Artificial intelli-
gence. Let 𝑑𝑗 ∈ 𝐷 be a paper with feature values recorded as 𝑌 𝑗 = {500, 2000, 100, 200}
and categorization Software engineering. Thus, the pair (𝑌 𝑗, 𝑐𝑗) = ({500, 2000, 100, 200},
Software engineering) represents this paper. The subset of features X = {Word count,
Verb count, Noun count} is an example of solution to this problem.

The time needed to train and execute a classifier, its complexity and the probability
of over-fitting, and dataset dimensionality increase with the number of features. Thus,
removing irrelevant and redundant features from datasets can improve the predictive
classifier accuracy, simplify the generated classification model, and reduce the time spent
to train a classifier. For this reason, feature selection is one of the most popular data
preprocessing tasks in data mining literature.
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3.1 Related work

Few studies in the literature discuss feature selection techniques for the hierarchical
classification scenario as previously defined.

In the work of Koller and Sahami (1997), document classification (whose classes repre-
sent a hierarchy of topics) was addressed through the local model classification approach
in association with feature selection using probabilistic methods for feature selection and
classification. They construct a binary classifier for each node of the class hierarchy. A
feature selection method is then applied to identify the most relevant features for con-
structing each local classifier. The feature selection method uses a measure of information
theory previously proposed by Koller and Sahami (1995). As a result of this application,
besides improving the predictive accuracy, reducing the number of features allowed more
robust and simpler classifiers.

Secker et al. (2010) solved the problem of predicting protein functions by performing
feature selection in conjunction with a local hierarchical classification approach. They
used a top-down hierarchical classification strategy to select both classifiers and features
for each dataset and each node of the hierarchy. Thus, in each node where a classifier
has been constructed, a feature selection step is performed to reduce that particular
node’s dataset dimensionality. The proposed feature selection method uses the measure
Correlation-based Feature Selection (CFS) and the Best First algorithm – both available
in the WEKA data mining toolkit (GARNER, 1995; HALL et al., 2009). They conducted
experiments to answer whether feature selection could improve computational efficiency
without jeopardizing accuracy in predicting protein functions. Their experiments showed
that this top-down system proposal significantly reduced the time required to train and
test the classification model while maintaining predictive accuracy.

Paes, Plastino and Freitas (2014) explored the use of feature selection techniques to
improve the predictive performance of two different hierarchical classification approaches,
local per parent node and local per level. They proposed a method that produces a
ranking of the features using the Information Gain (IG) measure (COVER; THOMAS,
1991). After forming the ranking, the 𝑝 best features are selected, with 𝑝 being an input
parameter of the method. They used datasets from the bioinformatics area to conduct
their experiments and concluded that the classifiers’ best results occurred when some
feature selection strategy was adopted.

In all of the works mentioned above, the application of feature selection techniques
and classifiers’ construction were performed by decomposing the hierarchical classification
problem into several flat ones, which allowed them to use feature selection techniques
and classification algorithms traditionally adopted in flat classification. Some recent ap-
proaches that use local model classifiers have proposed techniques based on recursive
regularization that take the hierarchical structure of classes into account to select differ-
ent feature subsets for each sub-classifier (ZHAO et al., 2017; TUO; ZHAO; HU, 2019;
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HUANG; LIU, 2020).
Zhao et al. (2017) first propose a hierarchical feature selection technique based on

recursive regularization using parent-child and sibling relations in a tree for hierarchical
regularization. Experimental results showed that their algorithm efficiently selects differ-
ent feature subsets for each node in a hierarchical tree structure. They achieved compet-
itive results for both classification accuracy and computational efficiency compared with
flat feature selection approaches.

Similarly, Tuo, Zhao and Hu (2019) proposed a hierarchical feature selection method
with graph regularization. They sequentially used each internal node as the root node and
the corresponding child nodes as leaf nodes, forming different subtrees. Then, they con-
structed parent-child relations as regularization of any two subtrees in the hierarchical tree
structure. Their algorithm can also use the DAG label structure. They compared their
method with different feature selection methods on six image datasets. The experimental
results validate the efficiency and effectiveness of the proposed algorithm.

Huang and Liu (2020) proposed the most recent study that uses recursive regulariza-
tion. It is the first attempt to explore a way to take advantage of the semantic description
and the hierarchical structure of class labels in supervised feature selection. First, they
represent the label descriptions as the semantic regularization via a vector of real num-
bers using sentence embedding techniques. Then, they propose a similarity score based on
the attention mechanism to calculate the relevance between pairwise label vectors. Con-
sequently, they could explore the semantic similarities of labels and use them to guide
the feature selection. They also used parent-child and sibling relations as the structural
regularization. Finally, they built a supervised learning model and imposed the semantic
and structural regularization terms on each sub-classifier. Their proposed framework out-
performed the state-of-the-art feature selection methods in the hierarchical classification
domain.

Unlike those studies, our approach does not train one classifier per tree node but works
in association with a global hierarchical classifier, dealing directly with the hierarchical
structure of classes as a whole.

Other ranked-based methods propose to adapt some existing popular filter feature se-
lection algorithms to handle the hierarchical structure of classes (SLAVKOV et al., 2014;
DIAS; MERSCHMANN, 2015). The work of Slavkov et al. (2014) proposes a feature
selection technique capable of dealing with the hierarchy of classes as a whole, without
the decomposition of the hierarchical problem in several flat classification problems, con-
sidering hierarchical multi-label classification problems. They developed an adaptation
of the ReliefF (ROBNIK-ŠIKONJA; KONONENKO, 2003) algorithm to the hierarchical
multi-label context, called HMC-ReliefF. They employed forward feature addition (FFA)
curves to evaluate their method, a stepwise filter-like procedure to construct classifiers
for different numbers of top-k ranked features. By comparing the HMC-ReliefF curve
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to an expected FFA curve obtained from a set of random rankings of features, their ex-
periments showed that, for various datasets, the HMC-ReliefF algorithm performed well.
Differently, we focus on solutions that deal with the hierarchical single-label classification
scenario in this work.

Concerning hierarchical single-label classification, Dias and Merschmann (2015) pro-
posed an adaptation of 𝑆𝑈 filter measure to consider the hierarchical structure of classes.
A comparative analysis between the ranking generated from the proposed measure, called
𝑆𝑈𝐻 , and another ranking randomly generated were performed. In this last one, the
most relevant features are dispersed throughout the ranking positions. In this compara-
tive evaluation, as expected, the 𝑆𝑈𝐻 ranking resulted in higher predictive performances
of the GMNB classifier than random rankings. In this work, we use the 𝑆𝑈𝐻 filter measure
(described in Section 2.2.1.1) to construct rankings combined with a wrapper step.

It is worth mentioning that Cerri et al. (2018) proposed to use the CLUS-HMC de-
cision tree induction classifier as a feature selector, checking if the features selected to
construct its tree are good enough to be used as input for two hierarchical multi-label
classifiers based on neural networks and genetic algorithms. Their experimental results
show that using CLUS-HMC as a feature selector led to better results than when using
conventional flat multi-label methods, showing the need for developing feature selection
methods specifically to consider hierarchical class relationships.
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Next, we discuss the proposed algorithms based on VNS metaheuristic to solve the
FSHC problem. The representation of a solution and its evaluation is presented in Sec-
tion 4.1. Section 4.2 and Section 4.3 describe how to build an initial solution and to apply
the neighborhood structures to explore the solution space of the problem, respectively.
Section 4.4 and Section 4.5 provide a detailed description of the proposed algorithms,
Variable Neighborhood Search for Feature Selection in Hierarchical Classification (VNS-
FSHC) and General Variable Neighborhood Search for Feature Selection in Hierarchical
Classification (GVNS-FSHC), respectively. Finally, Section 4.6 describes the experimen-
tal setup and reports the computational results, and Section 4.7 concludes the chapter.

4.1 Solution representation and evaluation

In this work, we propose hybrid feature selection methods based on the VNS meta-
heuristic, which first generate an initial solution 𝑋 ⊆ 𝐴 and then explore the problem’s
solution space from this starting point.

To evaluate each solution 𝑋 ′ = {𝑥′
1, 𝑥′

2, . . . , 𝑥′
𝑚}, 𝑚 ≤ 𝑛 that is generated, we used the

5-fold cross validation strategy in association with the hierarchical 𝐹 -measure (ℎ𝐹 ) (KIR-
ITCHENKO; MATWIN; FAMILI, 2005) to evaluate the performance of each global hier-
archical classifier adopted.

The ℎ𝐹 measure is an adaptation of the traditional 𝐹 -measure, intensely used in
flat classification problems, to take into account the class hierarchy. According to Silla
and Freitas (2011), the main reason for using the ℎ𝐹 measure is that it can be effectively
applied to any hierarchical classification scenario, i.e., tree, DAG, single-label, multi-label,
MLNP, or NMLNP.
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The quality of the solution 𝑋 is calculated according to the following equation:

ℎ𝐹 (𝑋) = 2× ℎ𝑃 (𝑋)× ℎ𝑅(𝑋)
ℎ𝑃 (𝑋) + ℎ𝑅(𝑋) (9)

where ℎ𝑃 (𝑋) and ℎ𝑅(𝑋) stand for the hierarchical Precision and the hierarchical Recall,
respectively.

Considering 𝑃𝑗 as the set consisting of the most specific class predicted for the test
instance 𝑗 and all its ancestor classes, and 𝑇𝑗 as the set consisting of the true most specific
class of this same test instance and all its ancestor classes, the ℎ𝑃 (𝑋) and ℎ𝑅(𝑋) of the
solution 𝑋 can be defined according to (10) and (11):

ℎ𝑃 (𝑋) =
∑︀

𝑗 |𝑃𝑗 ∩ 𝑇𝑗|∑︀
𝑗 |𝑃𝑗|

(10)

ℎ𝑅(𝑋) =
∑︀

𝑗 |𝑃𝑗 ∩ 𝑇𝑗|∑︀
𝑗 |𝑇𝑗|

. (11)

4.2 Building an initial solution

The initial solution is generated using the Incremental Wrapper Subset Selection (IWSS)
approach (RUIZ; RIQUELME; AGUILAR-RUIZ, 2006), which works in two steps as fol-
lows:

(i) Filter : a filter-based measure evaluates each predictive feature independently in
regard to the dataset classes to create a ranking 𝑅 considering the 𝑆𝑈𝐻 mea-
sure (DIAS; MERSCHMANN, 2015). Then, the ranking 𝑅 of all features is con-
structed using the roulette wheel method as in the survival selection phase in
Genetic Algorithms (GOLDBERG, 1989). Thus, a feature’s selection probability
is proportional to its 𝑆𝑈𝐻 value compared to this metric value for all other pre-
dictive features. That is, the best-evaluated features by the 𝑆𝑈𝐻 metric are more
likely to be selected in the first rounds of the roulette wheel method, occupying
the initial ranking positions.

(ii) Wrapper : the initial solution 𝑋 starts with the best-rated feature in the ranking
𝑅. Then we try to insert in 𝑋 the next feature 𝐴𝑖 ∈ 𝑅 iteratively by evaluating
the performance of that expanded subset 𝑋

′ = 𝑋∪{𝐴𝑖}. We evaluate the quality
of each candidate subset 𝑋

′ in a wrapper way (using a global model classifier). If
𝑋

′ increases the classifier’s predictive performance, 𝐴𝑖 is added to 𝑋 or discarded
otherwise.

We used the same five folds of the cross-validation method in all wrapper evaluations
to have fair comparisons. Also, we complement the IWSS method by adding a step
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that verifies feature redundancy. When analyzing the inclusion of a feature 𝐴𝑖 in the
initial solution, if its insertion in 𝑋 does not improve the classifier’s performance, we
try to swap it with each feature already inserted in 𝑋. Then if one of these temporary
subsets increases the classifier’s performance concerning 𝑋, the best-evaluated subset is
maintained for the next iteration.

For instance, let be 𝑋 = {𝐴1, 𝐴2} and ℎ𝐹 (𝑋) = 0.70. We try to insert 𝐴3 in 𝑋, but it
did not improve the classifier’s performance. Therefore, we generate the temporary subsets
𝑌 = {𝐴3, 𝐴2} and 𝑍 = {𝐴1, 𝐴3}, with ℎ𝐹 (𝑌 ) = 0.75 and ℎ𝐹 (𝑍) = 0.60. As ℎ𝐹 (𝑌 ) is
greater than ℎ𝑓(𝑋), 𝑌 is maintained for the next iteration, which would be try to include
𝐴4 in 𝑌 . This procedure aims to revoke some previous decisions by identifying selected
features that may become ineffective with the insertion of another one. Thus, this step
follows the well-known Proximate Optimality Principle (POP) (GLOVER; LAGUNA,
1997).

4.3 Neighborhood structures

We considered three types of neighborhoods on a solution 𝑋 to search the problem
solution space:

(i) Neighborhood structure 𝑁1: It consists in removing a feature 𝑋𝑗 ∈ 𝑋 from 𝑋, that
is, 𝑋 = 𝑋 ∖ {𝑋𝑗}.

(ii) Neighborhood structure 𝑁2: It consists in inserting a feature 𝐴𝑖 ∈ (𝐴 ∖𝑋) into 𝑋,
that is, 𝑋 = 𝑋 ∪ {𝐴𝑖}.

(iii) Neighborhood structure 𝑁3: It consists in swapping a feature 𝑋𝑗 ∈ 𝑋 with a
feature 𝐴𝑖 ∈ (𝐴 ∖𝑋).

For the example described in Chapter 3, given the solution X = {Word count, Verb
count, Noun count}, a swap movement consists of swap a feature in X with another that
is not already inserted in X. Thus, 𝑋

′ = {Word count, Character count, Noun count}
is a neighbor of X considering the swap movement. Likewise, 𝑋

′ = {Word count, Verb
count, Character count, Noun count} is a neighbor example considering the insertion
movement, and 𝑋

′ = {Verb count, Noun count} is a neighbor of X produced by the
removal movement.

4.4 VNS approach for FSHC

The first proposed algorithm, so-called VNS-FSHC, is based on the VNS metaheuris-
tic (MLADENOVIĆ; HANSEN, 1997). Its pseudo-code is outlined in Algorithm 1.
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In Algorithm 1, VNSmax indicates the maximum number of iterations without im-
provement in the best solution found. 𝐷, 𝐶 and 𝑀 are the training set, the GMNB
classifier and the 𝑆𝑈𝐻 filter measure, respectively. Furthermore, 𝑁1, 𝑁2 and 𝑁3 are the
neighborhoods defined in Section 4.3.

An initial solution 𝑋 (line 2) is generated by applying the IWSS approach described in
Section 4.2. Next, in line 4, 𝑤 is generated randomly (2 ≤ 𝑤 ≤ 4). This parameter is the
number of folds in which the evaluation (ℎ𝐹 ) of the tested solution must be higher than
the evaluation of the current solution. This parameter is used in the Relevance function
(line 12), a procedure that compares the evaluations of solutions 𝑋 ′ and 𝑋 ′′.

The RandomDescent method (line 11) is adopted as an improvement step using the
neighborhood 𝑁1. It analyzes a neighbor that belongs to 𝑁1 and accepts it only if it is
strictly better than the current solution. If it is not true, the current solution remains
unchanged and another neighbor is generated and analyzed. Additionally, the 𝑆𝑈𝐻 filter
measure is used to generate the ranking of features and the selection of features to swap
is performed using the roulette wheel method as in the survival selection phase in Genetic
Algorithms. Then, features that do not belong to the solution and have higher values
of ranking have more chance of being chosen to swap with features that belong to the
solution and have lower values of ranking. The procedure is interrupted after RDmax
iterations without improvement in the best solution found.

Algorithm 1 VNS-FSHC algorithm
1: in: 𝐷, 𝐶, 𝑀, 𝑁1(.), 𝑁2(.), 𝑁3(.) out: 𝑋
2: 𝑋 ← InitialSolution(𝐷, 𝐶, 𝑀);
3: Calculate VNSmax based on 𝑋
4: 𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚(2, 4);
5: Iter← 0;
6: while Iter < VNSmax do
7: 𝑘 ← 2; Iter← Iter + 1;
8: while 𝑘 ≤ 3 do
9: Randomly generates a neighbor 𝑋 ′ ∈ 𝑁𝑘(𝑋);

10: Calculate RDmax based on 𝑋 ′

11: 𝑋 ′′ ← RandomDescent(𝑋 ′, RDmax, 𝐷, 𝐶, 𝑀, 𝑤, 𝑁1(.));
12: if Relevance(𝑋 ′′, 𝑋, 𝑤) then
13: 𝑋 ← 𝑋 ′′; 𝑘 ← 2; Iter← 0;
14: else
15: 𝑘 ← 𝑘 + 1;
16: end if
17: end while
18: end while
19: return 𝑋;
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4.4.1 Relevance function

Algorithm 2 outlines the pseudo-code of the Relevance function. It starts averaging
the ℎ𝐹 performance achieved on 5-fold cross-validation for each solution (lines 2 and 3).
Then, solution 𝑋 ′′ is considered better than 𝑋 if the average ℎ𝐹 (𝑋 ′′) is bigger than
ℎ𝐹 (𝑋) (line 5) and also if 𝑤 of the five ℎ𝐹 (𝑋 ′′) are bigger than ℎ𝐹 (𝑋) (line 11). Thus,
if both conditions are true, the function indicates that the solution 𝑋 ′′ is better than the
solution 𝑋.

Algorithm 2 Relevance function
1: in: 𝑋 ′′, 𝑋, 𝑤 out: boolean
2: 𝑋 ′′.ℎ𝐹 = ( ∑︀5

𝑖=1 𝑆 ′.ℎ⃗𝐹 [𝑖] )/5;
3: 𝑋.ℎ𝐹 = ( ∑︀5

𝑖=1 𝑆 ′′.ℎ⃗𝐹 [𝑖])/5;
4: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0;
5: if 𝑋 ′′.ℎ𝐹 > 𝑋.ℎ𝐹 then
6: for 𝑖 = 1 to 5 do
7: if 𝑋 ′′.ℎ⃗𝐹 [𝑖] > 𝑋.ℎ⃗𝐹 [𝑖] then
8: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + +;
9: end if

10: end for
11: if 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝑤 then
12: return true;
13: end if
14: end if
15: return false;

4.5 GVNS approach for FSHC

This section presents the GVNS-FSHC algorithm, an adaptation of the General Vari-
able Neighborhood Search (GVNS) metaheuristic (HANSEN et al., 2019) for the FSHC
problem.

GVNS is a variation of the VNS metaheuristic, a framework for building heuristics
based on neighborhoods’ systematic changes. It is applied to find a local minimum in a
descent step and escape from the corresponding valley in a perturbation step (HANSEN
et al., 2019). GVNS differs from VNS concerning the local search method. While in
VNS, the local search is conventional, in GVNS, the local search is done by the Variable
Neighborhood Descent (VND) (MLADENOVIĆ; HANSEN, 1997) method.

In our GVNS-FSHC algorithm, we apply the basic sequential VND, named B-VND
by Hansen et al. (2019). Algorithm 3 presents the pseudo-code of the proposed GVNS-
FSHC.

In Algorithm 3, 𝐷, 𝐶, and 𝑀 are the training set, the hierarchical classifier, and the
𝑆𝑈𝐻 filter measure, respectively. Furthermore, 𝑁1, 𝑁2, and 𝑁3 are the neighborhoods
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defined in Section 4.3. The 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max, 𝑅𝐷𝑟𝑎𝑡𝑒, and 𝑤 inputs are predefined parameters
and will be explained below.

The 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max parameter defines the maximum number of attempts without improve-
ment using the same level 𝑘 of perturbations of the Shake function. In a classical GVNS
algorithm, the number of perturbations is increased whenever there is no improvement in
the solution. Instead, in our algorithm, we only increase the number of perturbations af-
ter performing some local search attempts without improving the current solution. This
strategy follows the ideas introduced by Reinsma, Penna and Souza (2018) and used
successfully in Santos et al. (2020).

The 𝑅𝐷𝑟𝑎𝑡𝑒 is a percentage rate used in the B-VND procedure of improvement,
described in Section 4.5.1. Finally, 𝑤 is the number of folds in which the tested solution’s
evaluation (ℎ𝐹 ) must be greater than the current solution’s evaluation. The Relevance
function is described in Section 4.4.1.

The algorithm generates an initial solution 𝑋 (line 3) by applying the IWSS approach
described in Section 4.2. In line 4, the variable 𝑘, which defines the number of random
moves that will be applied in a given solution 𝑋 to generate a perturbed solution in the
current neighborhood, is initialized. In line 5, the variable 𝑎𝑡𝑡𝑒𝑚𝑝𝑡, used to control the
number of iterations using the same level 𝑘 of perturbations without improvement in the
current solution 𝑋, is started.

A neighborhood structure is chosen randomly (line 8), and then the perturbed solu-
tion 𝑋 ′ is generated by the shaking procedure (line 9) that considers the neighborhood
structure 𝑁𝑙(.) to perform 𝑘 moves on the solution 𝑋. The solution 𝑋 ′ is subjected to the
B-VND local search procedure, generating the solution 𝑋 ′′. Next, the Relevance function
verifies if 𝑋 ′′ is better than the current solution 𝑋. If an improvement is detected, 𝑋 ′′ is
considered the best solution found so far, and 𝑘 is set to one. In lines 16 to 19, when no
improvement is detected, if 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max iterations have already been run, the variable 𝑘 is
increased by 1 and 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 is restarted. GVNS-FSHC ends when the given total running
time 𝑡max expires.

4.5.1 Variable neighborhood descent

The basic sequential VND procedure, named B-VND in Hansen et al. (2019), is the
local search used in the GVNS-FSHC algorithm (line 10 of Algorithm 3). Our B-VND
approach uses the following sequence of neighborhoods, in this order: 𝑁1, 𝑁2, and 𝑁3.
We ordered these neighborhoods by their size, which is a common strategy in VNS-based
algorithms, according to ).

In Algorithm 4, 𝑋 is the current solution subjected to the B-VND local search proce-
dure, and 𝑅𝐷𝑟𝑎𝑡𝑒 is a percentage used to calculate the maximum number of iterations
without improvement of the random descent improvement step. Furthermore, inputs 𝐷,
𝐶 , 𝑀 , 𝑤, 𝑁1, 𝑁2, and 𝑁3 are the same as defined in Algorithm 3.
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Algorithm 3 GVNS-FSHC algorithm
1: in: 𝐷, 𝐶, 𝑀, 𝑁1(.), 𝑁2(.), 𝑁3(.),

𝑎𝑡𝑡𝑒𝑚𝑝𝑡max, 𝑅𝐷𝑟𝑎𝑡𝑒, 𝑤
2: out: 𝑋
3: 𝑋 ← InitialSolution(𝐷, 𝐶, 𝑀);
4: 𝑘 ← 1;
5: 𝑎𝑡𝑡𝑒𝑚𝑝𝑡← 0;
6: repeat
7: 𝑎𝑡𝑡𝑒𝑚𝑝𝑡← 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 + 1;
8: Randomly choose a neighborhood structure 𝑁𝑙(.)
9: 𝑋 ′ ← Shake(𝑋, 𝑁𝑙(.), 𝑘);

10: 𝑋 ′′ ← B-VND(𝑋 ′, 𝑅𝐷𝑟𝑎𝑡𝑒, 𝐷, 𝐶, 𝑀, 𝑤, 𝑁1(.), 𝑁2(.), 𝑁3(.));
11: if Relevance(𝑋 ′′, 𝑋, 𝑤) then
12: 𝑋 ← 𝑋 ′′;
13: 𝑘 ← 1;
14: 𝑎𝑡𝑡𝑒𝑚𝑝𝑡← 0;
15: else
16: if 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 > 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max then
17: 𝑘 ← 𝑘 + 1;
18: 𝑎𝑡𝑡𝑒𝑚𝑝𝑡← 0;
19: end if
20: end if
21: until 𝑡 ≤ 𝑡max
22: return 𝑋;

In line 3, 𝑙 represents the current neighborhood structure used by the B-VND pro-
cedure. Initially, the maximum number of iterations without improvement (𝑅𝐷𝑚𝑎𝑥 in
line 6), used by the random descent improvement step (lines 8 to 15), is defined. Con-
sidering 𝑋 ′ the current solution and 𝐴 the set of predictive features (Chapter 3), we will
denote |𝑋 ′| as the number of elements of 𝑋 ′, and 𝑅𝐷𝑚𝑎𝑥 = 𝑅𝐷𝑟𝑎𝑡𝑒× |𝑋 ′| × |𝐴 ∖𝑋 ′|.

Our B-VND procedure has a random descent step (lines 8 to 15) in the same neigh-
borhood and a step to change neighborhoods (lines 16 to 21). At the beginning of the
B-VND procedure, the algorithm makes a copy 𝑋 ′ of the current solution 𝑋 (line 5). The
random descent strategy starts by analyzing a neighbor 𝑋 ′′ that belongs to the current
neighborhood 𝑁𝑙(𝑋 ′) (line 9) and accepts it as the new current solution if it is strictly
better than 𝑋 ′ (line 10). Otherwise, 𝑋 ′ remains unchanged, and the algorithm gener-
ates and analyzes another neighbor. The algorithm repeats this random procedure until
𝑅𝐷𝑚𝑎𝑥 iterations without improvement in the same neighborhood (line 8). After that, if
the improved solution 𝑋 ′ is better than 𝑋, then 𝑋 ′ becomes the new current solution, and
the random descend search returns to the first neighborhood (lines 17 and 18); otherwise,
the search continues in the next neighborhood (line 20). The B-VND ends when there is
no improvement in neither of the three neighborhoods.

It is worth mentioning that the 𝑆𝑈𝐻 filter measure generates a feature ranking, used
to direct the selection of features to swap, insert, or exclude from a candidate solution.
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Algorithm 4 B-VND algorithm
1: in: 𝑋, 𝑅𝐷𝑟𝑎𝑡𝑒, 𝐷, 𝐶, 𝑀, 𝑤, 𝑁1(.), 𝑁2(.), 𝑁3(.)
2: out: 𝑋
3: 𝑙← 1;
4: while 𝑙 ≤ 3 do
5: 𝑋 ′ ← 𝑋;
6: 𝑅𝐷𝑚𝑎𝑥← 𝑅𝐷𝑟𝑎𝑡𝑒 percent of a predefined number of iterations
7: 𝑖𝑡𝑒𝑟𝑅𝐷 ← 1;
8: while 𝑖𝑡𝑒𝑟𝑅𝐷 ≤ 𝑅𝐷𝑚𝑎𝑥 do
9: Randomly choose 𝑋 ′′ ∈ 𝑁𝑙(𝑋 ′)

10: if Relevance(𝑋 ′′, 𝑋 ′, 𝑤) then
11: 𝑖𝑡𝑒𝑟𝑅𝐷 ← 1;
12: 𝑋 ′ ← 𝑋 ′′;
13: end if
14: 𝑖𝑡𝑒𝑟𝑅𝐷 = 𝑖𝑡𝑒𝑟𝑅𝐷 + 1;
15: end while
16: if Relevance(𝑋 ′, 𝑋, 𝑤) then
17: 𝑋 ← 𝑋 ′;
18: 𝑙← 1;
19: else
20: 𝑙 = 𝑙 + 1;
21: end if
22: end while
23: return 𝑋;

To do this, we perform the roulette wheel method, as used in the survival selection phase
in Genetic Algorithms. Therefore, the probability of inserting a feature in a candidate
solution is higher if it has higher ranking values. Similarly, features in a candidate solution
set with low ranking values have a higher probability of being removed from the solution
set.

4.6 Experimental results

The VNS-FSHC and GVNS-FSHC algorithms presented in Sections 4.4 and 4.5, re-
spectively, were implemented in C++, using the compiler g++, version 4.8.5 for their
execution. The experiments were performed on a computer with Intel Xeon(R) CPU
E5620 @ 2.40GHz × 16, with 48 GB of RAM and CentOS Linux 7 operational system.
Although the processor of this computer has more than one core, the algorithm is not
optimized for multi-processing.

The proposed algorithms were designed to run as a preprocessing step for global hi-
erarchical classifiers. In this sense, the computational experiments evaluate the proposed
algorithm’s efficacy for feature selection in the hierarchical single-label classification con-
text. We used the GMNB and the CLUS-HMC hierarchical classifiers to evaluate the
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quality of the selected features. It is worth mentioning that the CLUS-HMC deals with
hierarchical multi-label problems, but it can also be used in the hierarchical single-label
context. In the latter case, one needs only to consider single-label datasets as a partic-
ular case of multi-label classification in which the number of paths of labels in the class
hierarchy is equal to one.

Based on the evaluation metrics, hierarchical Precision and hierarchical Recall, de-
scribed in Section 4.1, we compared the proposed algorithms against the following strate-
gies:

(i) ALL: we measured the performance of the classifier without any feature selection
preprocessing step, i.e., using all features from the dataset.

(ii) BF: we implemented a bottom-up wrapper-based approach of the best first algo-
rithm, a well-known heuristic search method (LIU; MOTODA, 2007). We first
ranked all the features using the classifier performance evaluation in a descending
manner. Then, starting with a subset containing only the first feature of the rank,
the algorithm returns the best feature subset found by the heuristic search, measur-
ing the quality of each candidate subset based on the classifier performance. Instead
of evaluating all the subsets of features generated in the OPEN list, we chose a pre-
defined number of backtracking to a candidate solution in the OPEN list without
improvements as the stopping criterion of the algorithm.

4.6.1 Dataset description

The experiments use twelve public benchmark datasets with classes hierarchically
organized in a tree structure, covering two domains, protein and image. The protein
domain is represented by bioinformatic datasets1 referring to the yeast genome (CLARE;
KING, 2003).

The image datasets2 were selected from the ImageCLEF 2007 competition for anno-
tation of medical X-ray images. ImageCLEF aims to provide an evaluation forum for the
cross-language annotation for images of the medical radiological domain (DIMITROVSKI
et al., 2011).

These datasets are initially available as multi-label data. Since our method focus on
dealing with the single-label scenario, we perform a preprocessing step to convert them
into single-label data. Table 1 shows general characteristics of the datasets. For each
dataset, the second column corresponds to the dataset domain, whereas the third column
represents the total number of features. The fourth column represents the number of
instances, and the fifth column represents the number of classes in each level of the tree
hierarchy.
1 http://dtai.cs.kuleuven.be/clus/hmcdatasets/
2 http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification/
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Table 1 – General characteristics of the datasets

Dataset Domain # Features # Instances # Classes/Level
CellCycle protein 77 3723 15/14/14/8
Church protein 27 3720 15/14/14/7
Gasch2 protein 52 3742 15/14/14/8

SPO protein 80 3653 15/13/14/7
Phenotype protein 67 1551 12/13/12/6

Eisen protein 79 2359 12/14/13/7
Derisi protein 63 3677 15/13/14/7

Gasch1 protein 173 3727 15/14/14/8
Sequence protein 478 3874 15/14/14/8

Expression protein 551 3742 15/14/14/8
ImageCLEF07A image 80 11006 4/8/8
ImageCLEF07D image 80 11006 8/7/11

The data preprocessing was carried out through four steps. In the first step, we
selected, for each instance, the most frequent class considering the leaf nodes in the
original dataset. In the second step, each missing value was replaced using the method
Hierarchical Supervised Imputation Method (HSIM) (GALVÃO; MERSCHMANN, 2016).
In the third step, every class with fewer than ten instances was merged with its parent class
until all classes possessed at least ten instances. Finally, in the fourth step, we applied
the unsupervised discretization method Equal Frequency Binning (YANG; WEBB, 2001)
with 20 partitions to convert all continuous features into discrete values.

4.6.2 Parameter settings

Fig. 3 presents the 5-fold cross-validation setup used for all our experiments and
comparisons The best feature subset for both algorithms was selected also using the
5-fold cross-validation procedure within the training set.

Figure 3 – 5-fold cross-validation setup
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The parameters of the VNS-FSHC are those used by Costa et al. (2018), which were
fixed at the following values: VNSmax = 0.1 × (number of features included in the initial
solution) × (number of features excluded from the same solution), and RDmax = 0.1
× (number of features included in the current solution passed to the RandomDescent
method) × (number of features excluded from the same solution).

Regarding the BF algorithm, we did preliminary experiments varying the stopping
criterion from {5, 10, 15} in all the datasets. Since we did not significantly improve the
classifier’s performance using the value 15 compared to 10, we fixed the stopping criterion
as 10 in all datasets.

The parameter tuning of the GVNS-FSHC used the Irace package (LÓPEZ-IBÁÑEZ
et al., 2016), an automatic algorithm configuration method. Table 2 shows the tuning
setup, and we considered the 5-fold cross-validation procedure within the training set
of the SPO dataset. The Irace generated three configurations, presented in Table 3.
Configuration 1 (𝑤 = 2, 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max = 4, and 𝑅𝐷𝑟𝑎𝑡𝑒 = 0.02) was chosen because it
requires the lowest computational cost.

Table 2 – GVNS-FSHC tuning setup.

Parameter Range
𝑤 {2, 3, 4}
𝑎𝑡𝑡𝑒𝑚𝑝𝑡max {2, 4, 6, 8, 10}
𝑅𝐷𝑟𝑎𝑡𝑒 {0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20}

Table 3 – Irace best configurations.

Configuration 𝑤 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max 𝑅𝐷𝑟𝑎𝑡𝑒

1 2 4 0.02
2 2 10 0.10
3 4 10 0.20

4.6.3 Computational results

Section 4.6.3.1 presents the computational results using the GMNB classifier and Sec-
tion 4.6.3.2 shows the CLUS-HMC results.

4.6.3.1 Results with the GMNB classifier

Considering the stochastic nature of the VNS-based algorithms, each one was applied
30 times to each dataset. To compare the GMNB performance using both the VNS-
FSHC and the GVNS-FSHC algorithms, we first recorded the running time spent by
each execution of the VNS-FSHC. Then, we executed the GVNS-FSHC with the same
running time for a fairer comparison, considering the same dataset partition and seed for
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Table 4 – ℎ𝐹 results (using the GMNB classifier)

ALL BF VNS-FSHC GVNS-FSHC

Dataset avg (sd) avg (sd) avg (sd) avg (sd)
CellCycle ∙ 25.23 (1.1) ∙ 23.93 (3.2) ∙ 24.34 (3.5) 25.27 (2.4)
Church 14.59 (3.5) 20.20 (4.3) ∙ 22.20 (4.4) 22.28 (4.5)
SPO 16.57 (1.2) ∙ 20.44 (0.3) ∙ 20.33 (0.6) 20.42 (0.8)
Gasch2 ∙ 19.68 (1.3) ∙ 17.89 (1.4) 17.48 (1.7) 18.71 (1.3)
Phenotype 10.09 (1.9) 15.53 (1.4) ∙ 16.13 (1.3) 16.70 (1.9)
Eisen ∙ 23.78 (2.1) 19.98 (1.4) 19.39 (1.7) 21.84 (1.9)
Derisi 14.75 (1.4) ∙ 16.75 (0.7) ∙ 16.62 (0.9) 16.42 (1.1)
Gasch1 24.87 (1.7) ∙ 28.31 (0.9) ∙ 28.01 (1.7) 28.04 (2.0)
Sequence ∙ 19.96 (0.7) ∙ 19.76 (1.2) ∙ 18.81 (1.6) 19.46 (0.6)
Expression 36.24 (1.5) ∙ 46.33 (2.2) ∙ 47.45 (2.6) 48.12 (2.4)
ImageCLEF07A ∙ 80.37 (1.2) ∙ 80.79 (0.9) ∙ 80.27 (0.8) 80.67 (0.8)
ImageCLEF07D 63.04 (0.9) ∙ 66.58 (1.0) ∙ 66.65 (0.7) 66.78 (0.7)

generating random numbers of those metaheuristic algorithms. As the BF heuristic is
deterministic, it was required only one execution for each dataset.

The results obtained in each dataset were compared by using two one-way hypothesis
tests with a significance level of 0.05. To choose the most appropriate statistical test for
each dataset result, we first verified if they were well-modeled by a normal distribution
by applying the Shapiro-Wilk test (ROYSTON, 1982). If samples came from popula-
tions with normal distributions, we applied the ANOVA test (HEIBERGER, 2015), a
parametric hypothesis test for two independent samples, or else, we applied the Kruskal-
Wallis test (HOLLANDER; WOLFE, 1973), non-parametric analysis of variance which
can compare several independent samples.

Table 4 shows the results obtained by using all features, the BF comparison algorithm,
the VNS-FSHC, and the GVNS-FSHC algorithm concerning the ℎ𝐹 measure. From the
second to the fifth column, we represent the ℎ𝐹 values reached by the GMNB classifier
using all the dataset features (second column) and feature selection (other columns).
In these columns, “avg” indicates the average result, with the standard deviation (sd)
in parentheses. Bold results show the best absolute value, and a result preceded by ∙

indicates no statistically significant difference between the specific result and the GVNS-
FSHC result.

The experiments showed that the GVNS-FSHC algorithm obtained the best abso-
lute average for five datasets (CellCycle, Church, Phenotype, Expression, and Image-
CLEF07D). Moreover, the GVNS-FSHC is better than at least one comparison strat-
egy with statistical significance for four of these five datasets. For the remaining ones
(SPO, Gasch2, Eisen, Derisi, Gasch1, Sequence, and ImageCLEF07A), its performance
was equivalent to the best result found, i.e., the difference was not statistically significant.

It is also important to mention that for the GMNB classifier, using a feature selec-
tion method improved the model’s performance for most of the datasets (Church, SPO,
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Table 5 – Number of features (using the GMNB classifier)

BF VNS-FSHC GVNS-FSHC

Dataset All avg sd avg sd avg sd
CellCycle 77.0 14.6 7.4 13.1 5.8 18.8 3.2
Church 27.0 3.2 0.4 3.1 0.7 3.0 0.0
SPO 79.0 4.0 1.0 4.0 0.9 3.7 0.7
Gasch2 52.0 19.8 3.1 4.7 4.9 20.6 2.8
Phenotype 67.0 12.8 3.1 7.7 3.7 16.8 4.5
Eisen 79.0 1.6 0.5 1.6 0.5 27.0 1.8
Derisi 63.0 2.0 0.7 2.3 0.7 3.7 5.6
Gasch1 173.0 17.8 2.2 15.8 2.7 23.4 4.9
Sequence 478.0 4.2 2.3 7.0 6.3 37.1 6.4
Expression 551.0 25.4 3.4 19.9 3.1 24.0 3.5
ImageCLEF07A 80.0 60.8 8.2 52.4 5.4 63.7 2.8
ImageCLEF07D 80.0 27.0 3.8 28.2 3.6 31.1 2.8

Phenotype, Derisi, Gasch1, Expression, and ImageCLEF07D).
Table 5 shows the comparison results between the algorithms concerning the number of

features used by the GMNB classifier. The second column presents the number of features
used without feature selection, and the remaining columns represent both the average
(avg) and standard deviation (sd) of the number of features used by the algorithms.

When we compare the results of Table 5 concerning Table 4, we observed that when the
GVNS-FSHC has not the best absolute performance concerning the ℎ𝐹 measure (SPO,
Gasch2, Eisen, Derisi, Gasch1, Sequence, and ImageCLEF07A), it selects fewer features
than the strategy with the best absolute performance value for four datasets. The only
exceptions to this performance occur in Derisi, Gasch1, and ImageCLEF07A datasets, in
which BF is the best strategy regarding best absolute performance and number of selected
features.

Ultimately, these results show that the GVNS-FSHC algorithm with the GMNB clas-
sifier is consistently better or equivalent to the other comparison strategies regarding the
ℎ𝐹 measure.

Aiming to characterize and compare the behavior of the GVNS-FSHC algorithm to its
previous version (the VNS-FSHC algorithm) concerning the running times, we used the
multiple time-to-target plot (mttt-plot) tool (REYES; RIBEIRO, 2018). The mttt-plot is
an extension of time-to-target plot (FEO; RESENDE; SMITH, 1994) to sets of multiple
instances.

Runtime distributions (ttt-plots) display on the ordinate axis the probability that an
algorithm will find a solution at least as good as a given target value for a given problem
instance within a given running time, shown on the abscissa axis (REYES; RIBEIRO,
2018). To build a ttt-plot, the algorithm 𝒜 is run 𝑞 times on the fixed instance ℐ and
stops as soon as it finds a solution whose objective function is at least as good as the given
target value 𝑙𝑜𝑜𝑘4. After concluding the 𝑞 independent runs, a Cumulative Distribution
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Function (CDF) represents the solution times.
To build a mttt-plot, instead of one single instance and target value, 𝑝 instances ℐ𝑗

and their corresponding targets 𝑙𝑜𝑜𝑘4𝑗 are used, for 𝑗 = 1, 2, . . . , 𝑝. Let each 𝑆𝑗 ≥ 0
be a continuous random variable representing the time taken by algorithm 𝒜 to find
a solution as good as the target value 𝑙𝑜𝑜𝑘4𝑗 for instance ℐ𝑗 and 𝐹𝑆𝑗

(𝑠) = 𝑃 (𝑆𝑗 ≤ 𝑠)
be the cumulative distribution function of 𝑆𝑗. The mttt-plot is defined by a set of 𝑧

points (𝛼𝑘, 𝐹𝑆1+...+𝑆𝑝(𝛼𝑘)), for 𝑘 = 1, 2, . . . , 𝑧 and 𝑧 ≫ 𝑞, where each 𝛼𝑘 is a sample of
𝑆1 + . . . + 𝑆𝑝, and 𝐹𝑆1+...+𝑆𝑝 is an estimator of 𝐹𝑆1+...+𝑆𝑝 . To generate these 𝑧 points, we
sample 𝑧 occurrences of the sum of independent variables 𝑆1 + . . .+𝑆𝑝 using the algorithm
proposed by Reyes and Ribeiro (2018).

We considered one partition of each dataset (5) as instances. For each instance, two
target values were considered (𝑎 = mean of 30 runs of each dataset, and 𝑏 = 𝑎−0.01×𝑎),
making a total of 𝑝 = 10 instance-target pairs. Each algorithm was run 𝑞 = 20 times for
each instance-target pair, until a solution at least as good as the corresponding target
was found for each instance.

Fig. 4 shows the mttt-plot for each algorithm, resulting from the 10 individuals ttt-
plots using 𝑧 = 2 × 104. We observed that the GVNS-FSHC performs better for this
10 instance-target pairs set. The GVNS-FSHC finds a target solution within 107.4 mil-
liseconds in approximately 70% of the times it ran. In contrast, the VNS-FSHC finds
a solution in a longer time (within 107.6 milliseconds), considering the same 70% of the
times it ran. On the other hand, when we set a processing time, the GVNS-FSHC is more
likely to reach the target value than VNS-FSHC. For example, at time 107.4 milliseconds,
the VNS-FSHC reaches the target value only in approximately 15% of the executions,
while the proposed algorithm reaches the target value in about 75% of the executions.

Fig. 5 shows the evolution of the objective function (ℎ𝐹 measure) over time considering
the pair (partition, seed) that generated the best result for the GVNS-FSHC in each
dataset. It is possible to notice that, corroborating the mttt-plots results presented in
Fig. 4, in most datasets, the GVNS-FSHC achieves the improvements before the VNS-
FSHC algorithm.

4.6.3.2 Results with the CLUS-HMC classifier

To see if our approach improved the performance of a classifier widely used in the
literature, in this section, we compare the CLUS-HMC (VENS et al., 2008) performance
with and without the feature selection generated by the GVNS-FSHC and the BF algo-
rithm, using the same classifier. Worth emphasizing that the CLUS-HMC is a classifier
based on decision trees. Specifically, it makes a feature selection embedded to optimize
the objective function or performance of the learning model.

Table 6 shows the results of the GVNS-FSHC using the CLUS-HMC classifier and
following the same notation of Table 4. The results show that the feature selection step
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Figure 4 – Combined mttt-plot for VNS-FSHC × GVNS-FSHC

Table 6 – ℎ𝐹 results (using the CLUS-HMC classifier)

ALL BF GVNS-FSHC

Dataset avg (sd) avg (sd) avg (sd)
CellCycle ∙ 22.39 (6.2) ∙ 22.05 (7.6) 22.37 (5.8)
Church 19.40 (7.6) ∙ 22.57 (4.3) 22.74 (3.8)
SPO ∙ 21.79 (1.5) ∙ 21.65 (1.9) 21.64 (1.3)
Gasch2 ∙ 17.47 (1.8) ∙ 16.67 (1.9) 16.65 (2.1)
Phenotype ∙ 15.44 (1.1) ∙ 14.78 (1.2) 15.10 (0.7)
Eisen ∙ 22.77 (1.6) ∙ 21.82 (2.1) 22.43 (1.7)
Derisi ∙ 18.14 (1.2) ∙ 18.49 (0.8) 16.82 (1.1)
Gasch1 ∙ 21.57 (1.5) ∙ 22.04 (1.0) 21.69 (1.7)
Sequence ∙ 22.68 (0.9) ∙ 21.37 (1.8) 22.95 (1.5)
Expression ∙ 42.11 (1.0) ∙ 42.22 (1.8) 42.33 (2.0)
ImageCLEF07A ∙ 64.92 (1.2) ∙ 64.04 (1.0) 64.78 (0.8)
ImageCLEF07D ∙ 66.11 (0.8) ∙ 65.01 (0.5) 65.46 (1.0)

using the GVNS-FSHC algorithm did not improve the CLUS-HMC classifier’s perfor-
mance with statistical significance (except for the Church dataset), confirming the power
of decision trees as natural feature selectors. However, the GVNS-FSHC algorithm did
not jeopardize the CLUS-HMC classifier’s performance with statistical significance either.

Considering the number of features used by the CLUS-HMC classifier with and without
the feature selection step, shown in Table 7, one can see a significant reduction in the
number of features. Thus, this feature selection can still be compelling since it can improve
the model interpretability without losing accuracy.
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Figure 5 – Evolution of the objective function (hF) over time considering the pair (parti-
tion, seed) that generated the best result for the GVNS-FSHC in each dataset
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Table 7 – Number of features (using the CLUS-HMC classifier)

BF GVNS-FSHC

Dataset All avg sd avg sd
CellCycle 77.0 14.4 4.6 22.9 5.9
Church 23.0 5.6 1.5 6.1 1.3
SPO 79.0 3.2 0.8 21.1 6.4
Gasch2 52.0 10.0 4.8 17.5 5.3
Phenotype 67.0 4.6 1.7 14.6 9.3
Eisen 79.0 1.6 0.5 27.0 6.6
Derisi 63.0 2.0 1.6 3.7 6.5
Gasch1 173.0 5.6 2.2 23.4 4.9
Sequence 478.0 9.6 2.3 37.1 6.4
Expression 551.0 7.6 2.1 24.0 3.5
ImageCLEF07A 80.0 60.8 8.3 63.7 2.8
ImageCLEF07D 80.0 27.0 3.8 31.1 2.8

4.7 Final considerations

In this chapter, we presented a novel feature selection method tailored for global model
hierarchical classifiers. We developed two hybrid filter-wrapper approaches based on the
VNS metaheuristic, so-called VNS-FSHC and GVNS-FSHC, which use the 𝑆𝑈𝐻 measure
in a filter step, and the GMNB or the CLUS-HMC as the classifier of a wrapper step.
We compare the GVNS-FSHC method with different strategies on twelve datasets (from
protein and image context).

The experimental results using the GVNS-FSHC algorithm with the GMNB classifier
showed that the predictive performance was consistently better or equivalent to the other
comparison strategies. Furthermore, the GVNS-FSHC reduced the number of features in
all datasets without negatively impacting the classification accuracy.

We also observed that the GVNS-FSHC is better or equivalent to the VNS-FSHC algo-
rithm concerning the classifier’s predictive performance. Moreover, when we considered
the running times’ behavior, the GVNS-FSHC performed better than the VNS-FSHC
since it reached the improvements first.

Concerning the CLUS-HMC classifier, the GVNS-FSHC feature selection method did
not improve the classification performance, showing decision trees’ power as natural fea-
ture selectors. However, the GVNS-FSHC was able to select fewer features with no
statistically significant difference in the performance results.
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Chapter 5
Hybrid hierarchical feature selection

methods using a new correlation-based
measure

Next, we discuss our proposed hybrid feature selection methods that combine an adap-
tation of the CFS search-based filter measure with wrapper evaluations to solve the FSHC
problem. We aim to investigate the effectiveness of incorporating the adapted filter mea-
sure to evaluate feature subsets in a hybrid feature selection approach that runs the
classifier (wrapper phase) less often, reducing computational costs.

This chapter is organized as follows. Section 5.1 presents the Hierarchical Single-
label Correlation-based Feature Selection (H-CFS), our proposed measure. Section 5.3
and Section 5.2 provide a detailed description of the proposed algorithms, Best First
Search for Hierarchical Single-label Correlation-based Feature Selection (BFS-H-CFS) and
Genetic Algorithm for Hierarchical Single-label Correlation-based Feature Selection (GA-
H-CFS), respectively. Finally, Section 5.4 describes the experimental setup, Section 5.5
reports the computational results, and Section 5.6 concludes the chapter.

5.1 Hierarchical Correlation-based Feature Selection

This section presents the H-CFS measure, an adaptation of the well-known CFS mea-
sure proposed by Hall (2000). As in CFS (Section 2.2.1.2), the evaluation of a feature
subset (merit) is estimated using Equation (12), where 𝑟𝐹 𝐿 is the quotient of the aver-
age feature-label correlation by the number of pairs feature-label, 𝑟𝐹 𝐹 is the quotient of
the average feature-feature correlation by the number of pairs feature-feature, 𝐹 is the
evaluated feature subset, 𝐿 is the set of class labels, and 𝑘𝐹 is the number of features in
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𝐹 .

𝑚𝑒𝑟𝑖𝑡 = 𝑘𝐹 𝑟𝐹 𝐿√︁
𝑘𝐹 + 𝑘𝐹 (𝑘𝐹 − 1)𝑟𝐹 𝐹

(12)

Equation (13) describes the 𝑟𝐹 𝐹 correlation. As in CFS, the correlation 𝑟𝑓𝑖𝑓𝑗
is com-

puted for each pair of features (𝑓𝑖, 𝑓𝑗) in the dataset, then the results are averaged dividing
the total summation of all results by the number of pairs of features, denoted by 𝑝.

𝑟𝐹 𝐹 =
∑︀𝑘𝐹

𝑖,𝑗=1, 𝑖>𝑗 |𝑟𝑓𝑖𝑓𝑗
|

𝑝
(13)

The difference of H-CFS to CFS is in the way that we estimate the term 𝑟𝐹 𝐿. The
main idea is that we calculate the average feature-label correlation using the arithmetic
mean of all feature-label pairs considering the hierarchical relation among classes by using
Equations (14) and (15). The conventional CFS measure computes the 𝑟𝐹 𝐿 considering
the mean of the correlation between each feature in 𝐹 and each single class, using only
Equation (14). Differently, H-CFS uses Equation (15) to calculate the average value of
the correlation coefficient between each feature in a candidate subset 𝐹 and each class in
the set of all class labels, weighting each class by its level in the class hierarchy.

𝑟𝐹 𝐿 =
∑︀𝑘𝐹

𝑓𝑖=1 |𝑟𝑓𝑖�̄�
|

𝑘𝐹

(14)

𝑟𝑓�̄� =
∑︀ℎ

𝑖=1
∑︀𝑘𝐿𝑖

𝑗=1 𝑤𝑖|𝑟𝑓𝐿𝑖,𝑗
|∑︀ℎ

𝑖=1 𝑤𝑖𝑘𝐿𝑖

(15)

where 𝐿𝑖 is the set of classes in level 𝑖, ℎ is the number of levels in the hierarchy, 𝑘𝐿𝑖

is the number of classes in 𝐿𝑖, and 𝑤𝑖 is the weight assigned to level 𝑖.
Equation (16) describes the calculation of the class weights 𝑤𝑖, with 0 ≤ 𝑤0 ≤ 1 and

1 ≤ 𝑖 ≤ ℎ. The idea is that 𝑤𝑖 decreases with the depth of the level 𝑖 in the class hierarchy.
Vens et al. (2008) proposed this weighting scheme in the Euclidean distance measure of
the CLUS-HMC classifier. As in the referenced work, we have arbitrarily set 𝑤0 = 0.75.

𝑤𝑖 = 𝑤𝑖
0 (16)

To estimate the correlation between two features 𝑋 and 𝑌 , we used the Pearson’s
correlation coefficient (𝑟𝑋𝑌 ). Equation (17) describes how to estimate 𝑟𝑋𝑌 when 𝑋 and
𝑌 are two continuous variables.

𝑟𝑋𝑌 =
∑︀𝑛

𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)√︁∑︀𝑛
𝑖=1(𝑥𝑖 − �̄�)2 ∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
(17)

where 𝑥𝑖 and �̄� are the value of variable 𝑋 in the 𝑖th instance and the average value
of 𝑋, respectively. Similarly, 𝑦𝑖 and 𝑦 are the value of variable 𝑌 in the 𝑖th instance and
the average value of 𝑌 , and 𝑛 is the number of instances in the training set.
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When one feature is continuous, and the other discrete, a weighted Pearson’s correla-
tion is calculated according to Equation (18). Specifically, for a discrete feature 𝑋 and
a continuous feature 𝑌 , if 𝑋 has 𝑘 values, then 𝑘 binary features are correlated with 𝑌 .
Each of the 𝑋𝑏𝑖 binary features takes value 1 when the 𝑖th value of 𝑋 occurs and 0 for all
other values. Each of the 𝑟𝑋𝑏𝑖𝑌 is weighted by the prior probability that 𝑋 takes value
𝑖 (HALL, 2000).

𝑟𝑋𝑌 =
𝑘∑︁

𝑖=1
𝑝(𝑋 = 𝑥𝑖)𝑟𝑋𝑏𝑖𝑌 (18)

Equation (19) describes the Pearson’s correlation when both features involved are
discrete. We create binary features for both and calculate all weighted correlations for all
combinations.

𝑟𝑋𝑌 =
𝑘∑︁

𝑖=1

𝑙∑︁
𝑗=1

𝑝(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗)𝑟𝑋𝑏𝑖𝑌𝑏𝑗
(19)

It is worth mentioning that we used the absolute values of the correlation coefficient
in all 𝑟𝑋𝑌 occurrences. As assumed by Jungjit et al. (2013), it is advisable to use absolute
values of correlations because both positive and negative values can represent redundancy
between a pair of features. For instance, if a feature subset contains one pair of features
(𝑋, 𝑌 ) with 𝑟𝑋𝑌 = 0.8 and another pair of features (𝑋, 𝑊 ) with 𝑟𝑋𝑊 = −0.8, these two
values would cancel each other, resulting in an average 𝑟 over those two feature pairs
of 0, a misleading value, since the two correlation values suggest a significant degree of
redundancy in each of those feature pairs.

5.2 GA approach using H-CFS

This section presents the Genetic Algorithm for Hierarchical Single-label Correlation-
based Feature Selection (GA-H-CFS) approach. GAs are stochastic (non-deterministic)
global search methods inspired by the process of natural selection, based on Darwin’s evo-
lutionary theory (EIBEN; SMITH, 2015). This metaheuristic has been applied efficiently
as a search-based feature selection approach for flat classification problems (XUE et al.,
2016).

The main idea of GAs is that the individuals better adapted to their environment
will survive in nature, while the remaining ones will vanish with time. GA starts with
a random individual initialization process which generates a population of individuals,
where each individual is a candidate solution to the target problem. Next, GA selects
parents from the set of individuals using some selection approach, as tournament selection
or roulette wheel approach. Then, crossover and mutation operations are applied to
selected parents to create new individuals. Finally, GA selects survival individuals from
offspring individuals and goes to the next generation.
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In the proposed GA-H-CFS, each individual (candidate feature subset) is represented
by a string of 𝑛 bits, where 𝑛 is the number of features. The 𝑖th bit (𝑖 = 1, . . . , 𝑛) takes
the value 1 if a feature is selected or 0 otherwise. Each individual is evaluated by a fit-
ness function, given by H-CFS, described in Section 5.1. At each generation (iteration),
individuals are selected by the roulette wheel selection operator, which selects individuals
with a probability proportional to their fitness (quality) values. The selected individu-
als then undergo one-point crossover or bit-flip mutation with a predefined probability.
The selection, crossover, and mutation operators are conventional GA operators (EIBEN;
SMITH, 2015).

The main novelty of the proposed GA is the use of the H-CFS as a fitness function.
Additionally, we add a wrapper phase using the GMNB classifier, and therefore the ℎ𝐹

measure (described in Section 4.1) works as a second fitness function. We run this eval-
uation measure only to the best solution found in each generation and return the best
subset found by the wrapper phase when the search terminates. The reasoning behind
this idea is to execute the wrapper evaluation, which is the most computational costly
step, only in strategic points of the search.

5.3 BF approach using H-CFS

This section presents the Best First Search for Hierarchical Single-label Correlation-
based Feature Selection (BFS-H-CFS) approach.

The Best First Search (BFS) is a well-known heuristic search method used for feature
selection (LIU; MOTODA, 2007). The BFS forward model starts with an empty set of
features and generates all possible single subset feature candidates. Then, the subset with
the highest evaluation is chosen and expanded by adding a single feature to generate all
possible subset candidates. Expanded subsets go to the CLOSED list of nodes. Addition-
ally, the remaining subsets are added to the OPEN list of candidates nodes to expand.
If expanding the current subset results in no improvement, the search backtracks to the
best-unexpanded subset in the OPEN list and continues from there. Given enough time,
the BFS algorithm will explore the entire feature subset space and terminate when the
OPEN list is empty. Thus, it is common to limit backtracking to an unexpanded sub-
set that results in no improvement. The best subset found is returned when the search
terminates.

The main novelty of the proposed BFS is the use of the H-CFS as an evaluation
function. Additionally, we add a wrapper phase with the GMNB classifier, using the
ℎ𝐹 measure (described in Section 4.1) to evaluate candidate subsets of features. We
run this second evaluation measure only when the BFS decides to backtrack to a subset
in the OPEN list considering the evaluations performed by the H-CFS measure. At
that point, we use the wrapper evaluation to the current candidate subset and also to the



5.4. Experimental setup 61

best-unexpanded subset in OPEN. The BFS will expand the best-unexpanded subset from
OPEN if the wrapper evaluation endorses the backtracking decision. If not, it will expand
the current subset and remain in the same branch. Similar to the GA-H-CFS approach,
the reasoning behind this idea is to execute the wrapper evaluation only in strategic points
of the search. The best subset found is returned when the search terminates. We chose
a predefined number of backtracking without improvements as the stopping criterion of
the algorithm.

5.4 Experimental setup

The GA-H-CFS and BFS-H-CFS algorithms were implemented in C++, using the
compiler g++, version 4.8.5 for its execution. The experiments were performed on a
computer with Intel Xeon(R) CPU E5620 @ 2.40GHz × 16, 48 GB of RAM, and CentOS
Linux 7 operational system. Although this computer processor has more than one core,
the algorithm was not optimized for multi-processing.

We used the GMNB hierarchical classifier to evaluate the quality of the selected fea-
tures. Based on the evaluation metrics, hierarchical Precision and hierarchical Recall,
described in Section 4.1, we compared the proposed algorithms against the following fea-
ture selection strategies:

(i) ALL: we measured the performance of the classifier without any feature selection
preprocessing step, i.e., using all features from the dataset.

(ii) BFS-NW: a version of the BFS-H-CFS algorithm described in Section 5.3 with No-
Wrapper (NW) evaluations to investigate the performance of the H-CFS measure as
a unique evaluation function of this hybrid feature selection approach. We chose a
predefined number of backtracking without improvements as the stopping criterion
of the algorithm.

Our experiments and comparisons use the same datasets and prepossessing steps de-
scribed in Section 4.6.1. We used the same 5-fold cross-validation setup for each dataset.
The best feature subset for both algorithms was selected using the 5-fold cross-validation
procedure within the training set when using the wrapper evaluation. Moreover, we used
each training set fold to estimate the H-CFS evaluation.

The parameter settings of GA-H-CFS were: population size = 500, number of genera-
tions = 300, crossover probability = 0.9, mutation probability = 0.01. We did preliminary
experiments varying the number of generations from {100, 200, 300} in all datasets and
chose the parameter value that generated the best results.

Regarding the BFS-H-CFS algorithm, we did preliminary experiments varying the
stopping criterion, which is a predefined number of backtracking without improvements,
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Table 8 – ℎ𝐹 results for BFS-H-CFS and GA-H-CFS

ALL BFS-NW BFS-H-CFS GA-H-CFS

Dataset avg (sd) avg (sd) avg (sd) avg (sd)
CellCycle ∙ 25.23 (1.1) 12.99 (0.8) 24.90 (1.9) ∙ 25.79 (1.6)
Church 14.59 (3.5) 13.91 (1.6) 18.05 (4.3) ∙ 18.24 (5.2)
SPO 16.57 (1.2) 12.75 (1.9) 19.10 (0.6) ∙ 19.0 (1.4)
Gasch2 ∙ 19.68 (1.3) 15.04 (0.8) 18.55 (1.1) ∙ 18.21 (1.0)
Phenotype 10.09 (1.9) ∙ 15.08 (2.3) 16.11 (1.2) ∙ 15.85 (2.2)
Eisen ∙ 23.78 (2.1) 18.0 (1.6) 24.35 (1.8) 22.07 (0.7)
Derisi ∙ 14.75 (1.4) 12.75 (1.1) 14.08 (0.9) ∙ 14.26 (0.6)
Gasch1 24.87 (1.7) ∙ 27.16 (1.8) 29.40 (1.7) 26.31 (1.5)
Sequence 19.96 (0.7) 10.85 (1.2) 25.02 (1.6) 20.86 (0.2)
Expression 36.24 (1.5) 25.46 (3.9) 45.36 (2.6) 34.07 (4.6)
ImageCLEF07A 80.37 (1.2) 54.68 (1.9) 67.92 (1.2) 77.40 (1.6)
ImageCLEF07D ∙ 63.04 (0.9) 55.37 (3.8) 62.37 (1.7) ∙ 63.31 (0.5)

Table 9 – Number of selected features for BFS-H-CFS and GA-H-CFS

BFS-NW BFS-H-CFS GA-H-CFS

Dataset All avg sd avg sd avg sd
CellCycle 77.0 4.2 6.4 17.0 5.7 27.8 6.2
Church 27.0 6.0 0.7 9.6 0.5 8.8 1.0
SPO 79.0 6.4 1.2 6.8 0.8 7.6 1.6
Gasch2 52.0 6.4 3.1 19.0 0.9 18.6 1.5
Phenotype 67.0 13.6 3.1 34.0 9.4 24.2 3.6
Eisen 79.0 10.8 0.5 46.6 0.8 34.0 3.0
Derisi 63.0 9.8 2.7 16.4 3.5 23.0 2.2
Gasch1 173.0 11.0 2.2 24.4 6.1 78.6 2.7
Sequence 478.0 46.6 2.3 91.0 4.4 225.8 6.5
Expression 551.0 12.7 3.4 36.2 11.5 268.4 14.1
ImageCLEF07A 80.0 7.4 4.8 46.2 2.5 36.8 3.8
ImageCLEF07D 80.0 7.0 1.2 15.2 3.6 32.0 3.2

from {10, 20, 30} in all datasets and chose the parameter value that generated the best
results (stopping criterion = 30). Additionally, for the BFS-NW algorithm, we fixed the
stopping criterion = 30.

5.5 Computational results

All the GA-H-CFS results are averages of 10 runs with a different random seed used to
create the initial population in each run. As the BFS-H-CFS and the BFS-NW heuristics
are deterministic, only one execution was required for each training set.

We compared the results obtained in each dataset using two one-way hypothesis tests
with a significance level of 0.05. We chose the most appropriate statistical test for each
dataset result as described in Section 4.6.3.
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In general, the BFS-H-CFS algorithm obtained the best predictive performances in
our experiments. Differently, the BFS-NW performed worst, showing the importance of
the wrapper evaluation phase to improve the performance of a feature selection approach.
Table 8 presents the ℎ𝐹 values reached by the GMNB classifier using all the dataset
features (second column) and feature selection (third to fifth columns). In these columns,
“avg” indicates the average result, with the standard deviation (sd) in parentheses. Bold
results show the best absolute value, and a result preceded by ∙ indicates no statistically
significant difference between the specific result and the BFS-H-CFS result.

The experiments showed that the BFS-H-CFS algorithm obtained the best absolute
average for seven datasets (SPO, Gasch2, Phenotype, Eisen, Gasch1, Sequence, and Ex-
pression). For the remaining ones (CellCycle, Church, Derisi, ImageCLEF07A, and Im-
ageCLEF07D), its performance was equivalent to the best result found for four datasets
(CellCycle, Church, Derisi, and ImageCLEF07D), i.e., the difference was not statistically
significant. The only exception to this occurs for the ImageCLEF07A dataset, in which
any feature selection approach improved the performance of the GMNB classifier using
all features.

Table 9 shows the comparison results between the algorithms concerning the number
of features used by the GMNB classifier. The second column presents the number of
features used without feature selection, and the remaining ones (third to eighth columns)
represent both the average (avg) and standard deviation (sd) of the number of features
used by the algorithms.

When we compare the results of Table 9 regarding Table 8, we observed that when
the BFS-H-CFS has equivalent performance concerning the ℎ𝐹 measure with the GA-
H-CFS (CellCycle, Church, SPO, Gasch2, Phenotype, Derisi, and ImageCLEF07D), it
selects fewer features for four of those seven datasets, confirming its advantage over the
GA-H-CFS approach.

Moreover, when the dataset’s initial number of features increases, the number of fea-
tures selected by the GA-H-CFS increases much faster than the number selected by the
BFS-H-CFS (e.g., Gasch1, Sequence, and Expression). One possible explanation for this
is that the BFS heuristic adds one feature in the current candidate feature subset at a
time. On the contrary, the GA metaheuristic search may add many features to a given
individual at once using the crossover operator. In theory, this gives the GA the advan-
tage of coping better with feature interactions, but this comes with the disadvantage that
the extra features added to a candidate subset in a single crossover operation may include
some features less relevant to class prediction.

5.5.1 GVNS-FSHC × BFS-H-CFS

Table 10 shows the results obtained by our best approaches, the GVNS-FSHC, and the
BFS-H-CFS algorithms. From the second to the third column, we represent the ℎ𝐹 values
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Table 10 – ℎ𝐹 results for GVNS-FSHC and BFS-H-CFS with GMNB classifier

ALL GVNS-FSHC BFS-H-CFS

Dataset avg (sd) avg (sd) avg (sd)
CellCycle 25.23 (1.1) ∙ 25.27 (2.4) ∙ 24.90 (1.9)
Church 14.59 (3.5) 22.28 (4.5) 18.05 (4.3)
SPO 16.57 (1.2) ∙ 20.42 (0.8) ∙ 19.10 (0.6)
Gasch2 19.68 (1.3) ∙ 18.71 (1.3) ∙ 18.55 (1.1)
Phenotype 10.09 (1.9) ∙ 16.70 (1.9) ∙ 16.11 (1.2)
Eisen 23.78 (2.1) ∙ 21.84 (1.9) ∙ 24.35 (1.8)
Derisi 14.75 (1.4) 16.42 (1.1) 14.08 (0.9)
Gasch1 24.87 (1.7) ∙ 28.04 (2.0) ∙ 29.40 (1.7)
Sequence 19.96 (0.7) 19.46 (0.6) 25.02 (1.6)
Expression 36.24 (1.5) 48.12 (2.4) 45.36 (2.6)
ImageCLEF07A 80.37 (1.2) 80.67 (0.8) 67.92 (1.2)
ImageCLEF07D 63.04 (0.9) 66.78 (0.7) 62.37 (1.7)

reached by the GMNB classifier using all the dataset features (second column) and feature
selection (other two columns). In these columns, “avg” indicates the average result, with
the standard deviation (sd) in parentheses. Bold results show the best absolute value,
and a result preceded by ∙ indicates no statistically significant difference between the
GVNS-FSHC and the BFS-H-CFS performances.

Table 10 shows that both algorithms have equivalent performance for six datasets
(CellCycle, SPO, Gasch2, Phenotype, Eisen, and Gasch1). For the remaining ones, the
GVNS-FSHC performs better for five of six datasets compared to BFS-H-CFS (Church,
Derisi, Expression, ImageCLEF07A, and ImageCLEF07D). This result was already ex-
pected since the GVNS-FSHC runs the classifier evaluation in the wrapper phase more
times than BFS-H-CFS, with the drawback of being more computationally expensive.

5.6 Final considerations

This chapter presented two novel hybrid filter-wrapper approaches based on GA and
BFS algorithms that combine the H-CFS filter measure with a wrapper step to work as
fitness functions for FSHC.

The experimental results using the BFS-H-CFS algorithm with the GMNB classifier
showed that the predictive performance was consistently better or equivalent than other
comparison strategies (except for the ImageCLEF07A dataset). Furthermore, the BFS-
H-CFS reduced the number of features in eleven of twelve datasets without negatively
impacting the classification performance.

Concerning the BFS-NW algorithm results, we observed that the H-CFS feature selec-
tion measure alone could not improve the classifier performance for most datasets (the only
exceptions are Phenotype and Gasch1 datasets). On the other hand, when we compare
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the BFS-NW results with the BFS-H-CFS approach, which differs from the BFS-NW only
in the addition of the wrapper phase, it is possible to observe a consistency improvement
of the method in terms of classifier performance.

Regarding the GA-H-CFS approach, we observed that the number of features selected
tends to increase rapidly with the problem size (number of initial features of datasets).
At the same time, the BFS-H-CFS is less sensitive to this issue.

As future work, we plan to develop an evolutionary computation approach that will
use a fitness function with two objectives, the candidate subset evaluation and the number
of selected features, to prevent the search strategy from selecting too many features at
once.
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Chapter 6
Conclusions and future works

This work has focused on the development of feature selection methods tailored for
global hierarchical classifiers. In Chapter 4, we have proposed two hybrid algorithms
based on the VNS metaheuristic, named VNS-FSHC and GVNS-FSHC, which use the
𝑆𝑈𝐻 measure in a filter step and two global model classifiers (GMNB or CLUS) in a
wrapper step.

Computational experiments were carried out with twelve datasets from protein and
image domains to evaluate the effect of the proposed algorithms on classification perfor-
mance when using global hierarchical classifiers.

When using the GMNB classifier, the GVNS-FSHC algorithm was consistently better
or equivalent to the other comparison strategies. Furthermore, the GVNS-FSHC reduced
the number of features in all datasets without negatively impacting the classification
accuracy.

Regarding the CLUS-HMC classifier, the GVNS-FSHC feature selection method did
not improve the classification performance, showing the power of decision trees as nat-
ural feature selectors. However, it was able to select fewer features with no statistically
significant difference in the performance results.

Even though we obtained positive results with this approach, we faced the drawback of
scalability to high-dimensional datasets. Aiming to tackle this issue, we focused on devel-
oping a new hybrid feature selection approach capable of running the wrapper evaluation
less often to reduce computational cost.

In Chapter 5, we presented two novel hybrid filter-wrapper approaches based on GA
and BFS algorithms, so-called GA-H-CFS and BFS-H-CFS, respectively. These methods
combine the H-CFS filter measure, an adaptation of the traditional CFS measure, with a
wrapper step, working as an alternative fitness function for FSHC. The reasoning behind
this approach is to execute the wrapper evaluation, which is the most computational
costly step, only in strategic points of the search algorithms.

The experimental results showed that the BFS-H-CFS algorithm performed better
with the GMNB classifier compared to the other strategies. Furthermore, the BFS-H-CFS
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reduced the number of features in eleven of twelve datasets without negatively impacting
the classification performance.

Considering the GA-H-CFS approach, we faced the drawback that this method tends
to select subsets with a higher number of features that increase rapidly with the database
size (number of initial features of datasets).

As future work, we plan to develop an evolutionary computation approach that will
use a fitness function with two objectives, the candidate subset evaluation and the number
of selected features, to prevent the search strategy from selecting too many features at
once. Additionally, we intend to carry out experiments with the GA-H-CFS approach
using other types of crossover and mutation operators.

We also intend to investigate if the BFS-H-CFS algorithm remains efficient for datasets
with a significantly higher number of features.

Furthermore, given the positive results of this work for hierarchical single-label prob-
lems, we can conclude that an extended version for multi-label problems should be in-
vestigated. Also, our feature selection method can be useful to solve extreme multi-label
classification problems (BHATIA et al., 2016), in which the objective is to learn feature
architectures and classifiers that can automatically tag a data point with the most relevant
subset of labels from an extremely large label set.

6.1 Academic publications

The research described in this thesis has led to the production of two peer-reviewed
papers. The first one was published in the proceedings of an international conference.
The second paper was published in an international journal. Additionally, one last paper
is in preparation for submission to an international conference.

o COSTA, H.; GALVÃO, L. R. ; MERSCHMANN, L. H. C. ; SOUZA, Marcone
J. F.(2018). A VNS algorithm for feature selection in hierarchical classification
context. Electronic Notes in Discrete Mathematics, v. 66, p. 79-86. Proceedings of
the 5th International Conference on Variable Neighborhood Search, 2017. [Qualis
B3 - journal]

o LIMA, H. C. S. C.; OTERO, F. E. B.; MERSCHMANN, L. H. C.; SOUZA, Marcone
J. F. A novel hybrid feature selection algorithm for hierarchical classification. IEEE
Access, 2021. [Qualis A2 - journal]

o LIMA, H. C. S. C.; OTERO, F. E. B.; MERSCHMANN, L. H. C.; SOUZA, Marcone
J. F. A new hierarchical single-label correlation-based hybrid feature selection. [In
preparation]
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