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1 Introduction

This work presents a heuristic approach based on the General Variable Neighborhood Search for
the Eternity 1T Puzzle.

A solution is represented by a matrix of pieces, where each piece is represented by: index,
number of rotations (0..3), and four numbers representing the colors related to each direction (left,
up, right, down).

To explore the solution space of the problem, five movements were developed. Each movement
defines a neighborhood N(.), which are presented next.

The Movement Swap Corner (NS¢ (s)) swaps two pieces that must be in the corners of the
puzzle. After the swap, it rotates both pieces, separately, in order to put them in their right
positions.

Similarly to the Movement Swap Corner, the Movement Swap Side (N°9(s)) consists of swap-
ping two pieces that must be in the sides of the puzzle. After that, it rotates both pieces, separately,
adjusting their right positions.

The Movement Rotate (N'(s)) is characterized by, simply, rotating one piece.

The Movement Swap Center (NS (s)) swaps two pieces that are located out of the border
of the puzzle, in other words, the center of the puzzle.

The idea of the Movement Swap Rotate Center (N9%Y(s)) is to swap two pieces which are
located in the center of the puzzle. Then, it rotates both pieces, separately, leaving them in their
best positions. The best position of one piece is the position where the piece matches with more
colors, in relation to nearby pieces.

A solution is evaluated by a mono-objective function f, to be maximized, that computes the
score, that is, the total number of correctly-matched pairs of edges in a solution. All moves respect
the borders of the puzzle, so the method only generates valid solutions.

Two generators for initial solutions were proposed. The first one generates a valid puzzle with
random pieces. The second is a greedy-randomized strategy, in which, at each step, one of the best
scored pieces is inserted in the game. This algorithm starts with random corners and tries to build
good borders by choosing the best side pieces (in case of a tie, it chooses randomly). For the center
pieces, at each step, every candidate piece is rotated 4 times in order to define the best insertion
in the puzzle.

2 Proposed Algorithm

The proposed algorithm, called MS-GVNS, combines ideas from MultiStart [1] and General Variable
Neighborhood Search - GVNS [2] procedures. Similar strategies have been successfully applied to other
optimization problems by the authors of this work (see [3]). Algorithm 1 outlines the steps.



Algorithm 1: MS-GVNS

Input: LevelMaz, IterMax
Output: Solution s

1 while stop criterion not satisfied do
2 S0 + BuildGreedyRandomizedSolution()
3 s < VND(s0)
4 p<+0
5 while p < LevelMax and stop criterion not satisfied do
6 iter < 0
7 while iter < IterMax and stop criterion not satisfied do
8 s+ s
9 fori=1top + 2 do

10 k < SelectNeighborhood()

11 s' < Shake(s', k)

12 end

13 s < VD (s")

14 if f(s"”) < f(s) then

15 s« 8"

16 p<+0

17 iter <=0

18 end

19 iter < iter + 1

20 end

21 p+—p+1

22 end

23 end

24 return s

Building an initial solution sy (line 2 of Algorithm 1) is made by the greedy randomized
procedure described previously. The local search (lines 3 and 13 of Algorithm 1), in turn, uses
the VND procedure [2], with the movements described previously.

Whenever a given number of iterations without improvement is reached, the MS-GGVNS algo-
rithm applies p + 2 times the Shake procedure, using a previously selected neighborhood. The
procedure SelectNeighborhood (line 10 of the Algorithm 1) works as follows. We randomly select
a neighborhood k from the list { N3¢ N5 NE NSWCEY Each Shake(s', k) call (line 11 of Al-
gorithm 1) performs a random movement from neighborhood k of the shaken solution s’. After
IterMaz iterations without improvement, we increment p in order to generate solutions which
become increasingly distant from the current location in the search space.

The local search applied on the solution returned by the Shake procedure is based on the VND
procedure (line 13 of Algorithm 1). If VND finds a better solution, the variable p returns to the
lowest value, that is, p = 0.

Only a group of neighborhoods was used in the local search and two different strategies were
developed. The Center-to-Border strategy consists in exploring the neighborhoods in the fol-
lowing order: NSRC¢ NE NS5 and N9C. On the other hand, the Border-to-Center strategy
consists in exploring the neighborhoods in the following order: N5¢, N5 N and NS¢, Thus,
the VND used both strategies Center-to-Border and Border-to-Center, which can be different
at each VND call.

3 Computational Experiments and Conclusions

The proposed algorithm was coded in C++ programming language with the computational frame-
work OptFrame (available at http://sourceforge.net/projects/optframe/ under LGPLv3 license)
and compiled with the GNU Compiler Collection version 4.0. The algorithm was tested in a PC
Pentium Core 2 Quad (Q6600), 2.4 GHz, with 8 GB of RAM, running Linux Ubuntu 10.04, kernel
2.6.32-24.

As mentioned in [2], one important decision to build an efficient VND procedure is to select an
application order of the different neighborhoods. In a preliminary set of experiments (10 runs of 10
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minutes for each instance) we tried to discover the optimal sequence of neighborhood application,
that is, the one which, in average, produces better solutions in a limited amount of time when
running the MS-GVNS algorithm. To accomplish this objective, we compared 3 different strategies:
Border-to-Center, Center-to-Border and Random. The experiments showed that the best
strategies are Border-to-Center and Center-to-Border and this motivated us to use both
strategies for the final tests.

The results in Table 1 were produced using this new strategy. The proposed MS-GVNS algorithm
was executed with the following parameters: IterMax = 200, LevelMax = N, where N is the
maximum between height and weight of the problem instance.

Results of 30 executions of the problems 10x10, 12x12, 14x14 and 16x16 (with time limits of
1200, 1800, 2400 and 3600 seconds, respectively) appear in Table 1. In this table, column “Best”
refers to the best solution cost found in all our experiments. In column “Optimum” we indicate the
optimal value for each problem instance. Columns “Average”, “Median”, “Standard_Deviation”,
“N_Eval” represent average, median, standard deviation and average number of evaluations, re-
spectively.

Table 1. Experimental results: MS-GVNS algorithm

MS-GVNS
Problem Optimum Average Median Standard_Deviation N_Eval Best
10x10 180 165.67 166 0.7581 2362375563 167
12x12 264 238.93 239 1.3628 3408029901 241
14x14 364 320.77 321 2.2234 4438058316 325
16x16 480 419.57 419.5 2.6219 6695171793 425

As can be seen in Table 1, although it was not possible to reach optimal solutions, the algorithm
was capable of finding good solutions within the given time limit. The standard deviation was also
small, indicating that the proposed method is robust.
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