Expression and characterization of LTx2, a neurotoxin from Lasiodora sp. effecting on calcium channels

A.A. Dutra a, L.O. Sousa a, R.R. Resende b, R.L. Brandão a, E. Kalapothakis c, I.M. Castro a,*

a Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisa em Ciências Biológicas, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400.000, Brazil

b Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil

c Laboratório de Biotecnologia e Marcadores Moleculares, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270.901, Brazil

1. Introduction

Previously studied animal toxins have been found to target neuronal receptors, neuronal ion channels and presynaptic membrane proteins involved in transmitter release [30]. Toxins that modulate ion channels represent a key class of pharmaceutical agents [9,12]. Natural toxins that interact with specific receptors may block the excitation of muscles leading to flaccid paralysis and death. These are desired features for pesticides [1,29].

The Brazilian Lasiodora spider, commonly known as “caranguejeiras”, inhabits southeastern Brazil. While the venom is not considered hazardous to humans, the spider’s urticating hairs can be allergenic. The crude venom and the two major peptide toxins of Lasiodora parahybana (L. parahybana) have been shown to be toxic to crickets and mice [11]. Fractions derived from ion exchange high-performance liquid chromatography (HPLC) showed little overlap between vertebrate and invertebrate activity. Although the two toxins (LpTx1 and LpTx2) were isolated and sequenced by Edman degradation, their activity remains unknown. Analysis of L. parahybana venom by LC/ESI-QqToF, nanoESI-MS and MALDI-TOF MS provided a peptide profile of L. parahybana venom [15].

Many spider venoms contain peptide neurotoxins active on ion channels. On the other hand, the importance of Ca²⁺ as a universal signaling agent in processes such as protein secretion, exocytosis, and muscle contraction has been addressed [5]. Most cells utilize two main sources of Ca²⁺ for generating calcium signals, one is Ca²⁺ entry across the plasma membrane and the other is Ca²⁺ release from internal...
stores. Ca\(^{2+}\) release from internal stores occurs primarily from the endoplasmic reticulum (ER) wherein two functionally distinct Ca\(^{2+}\) release channels have been identified, namely inositol 1,4,5-trisphosphate receptors (InsP\(_3\)Rs) and ryanodine receptors (RyRs) [3,4]. Ca\(^{2+}\) entry across the plasma membrane occurs via two distinct pathways, voltage-gated Ca\(^{2+}\) channels (VGCCs), and agonist-dependent and voltage-independent Ca\(^{2+}\) entry pathways, which are called ‘store-operated’ Ca\(^{2+}\) (SOCs) channels [5].

In the current study, venom was obtained from Lasiodora sp. collected around Belo Horizonte in the state of Minas Gerais, Brazil. Lasiodora sp. venom has been shown to contain pharmacological components that inhibit L-type Ca\(^{2+}\) channels and modulate Na\(^{+}\) channels [18,21]; however, these previous studies analyzed crude venom. Molecular cloning of cDNAs that code for the putative toxins produced by this spider can make direct recombinant protein studies possible. The aim of the present work was to express and characterize cDNAs that code for the putative toxins produced by this spider’s venom. To this end, cDNA encoding the LTx2 was inserted into the expression vector pET11a and the translated protein was expressed and purified for functional characterization. Initially, the types and functions of Ca\(^{2+}\) channels in plasma membrane and internal Ca\(^{2+}\) stores in BC3H1 cells were examined, by Ca\(^{2+}\) imaging experiments, as well as the possible involvement of InsP\(_3\)Rs or RyRs, and VGCCs or SOCs channels, in [Ca\(^{2+}\)]\(_i\) oscillations. Additionally, we provide evidence that Ltx2 toxin blocks L-type Ca\(^{2+}\) channels and inhibits the refill of intracellular Ca\(^{2+}\) store, eliminating the InsP\(_3\) promoting [Ca\(^{2+}\)]\(_i\) oscillations.

2. Materials and methods

2.1. Reagents

All reagents were purchased from Sigma (St. Louis, MO) in highest available purity, if not otherwise indicated. Primers used for RT-PCR reactions were purchased from Integrated DNA Technologies (Coralville, IA).

2.2. General molecular biology

Standard recombinant DNA techniques (e.g., phenol extraction, ethanol precipitation and electrophoresis) were carried out as described by Sambrook et al. [35].

2.2.1. DNA sequencing and computer analysis

Small-scale plasmid isolation from E. coli was carried out using the alkaline lysis SDS method [35] and purified using Millipore Multiscreen plates (Millipore). DNA sequencing reactions were performed on both strands using chain termination [36]. All reactions were carried out using the MegaBace 500 Sequencing Analysis System and DyEnamic™ ET dye terminator kit. Nucleic acids sequences were compared to sequences in the GenBank database [2].

2.2.2. Expression of toxin in E. coli

The plasmid pET11a (Novagen®) was used to express the mature LTx2 toxin (GenBank accession no. AY794220). The insert was prepared using a polymerase chain reaction (PCR) with forward (5’-CCATATGCTTTCGAATGTA-3’) and reverse (5’-GGGATCCCTAAATCTTCAAG-3’) primers. The forward PCR primer contained an Nde I restriction site including the translation initiation ATG codon, and the reverse primer had a BamH I site at the 3’ end immediately after the stop codon. PCR conditions included 34 cycles with each cycle with 94°C for 1 min, followed by 52°C for 1 min, and 72°C for 1 min. The reaction was concluded with a 5 min elongation phase at 72°C. The gel-purified PCR product was digested with Nde I/BamH I digested pET11a vector to produce the expression plasmid pET11a-LTx2.

Competent E. coli strain BL21 (DE3) cells were transformed with the recombinant plasmid. The presence of the appropriate insert was determined using direct colony PCR and DNA sequencing. Bacterial growth, induction with isopropyl-β-D-thiogalactopyranoside (IPTG) and preparation of cell lysates were performed as described by the manufacturer (Novagen®). Briefly, stocked cultures of transformants were grown in 4.0 ml of LB-ampicillin medium. One milliliter of inoculum was added to 100 ml fresh medium and incubated until the OD 600 was 0.5–0.7. Protein expression was induced by addition of 0.6 mM IPTG and the cultures were grown for 6 h at 30°C. Cells were harvested by centrifugation and resuspended in 10 ml lysis buffer (50 mM Tris pH 8.0, 100 mM NaCl, 10 mM imidazole, lysozyme 1 mg ml\(^{-1}\) plus proteases inhibitors (1 mM PMSF, 1 mM iodacetamide, 1 μg ml\(^{-1}\) peptatin, 1 mM EDTA). The cells were lysed by sonication on ice. After centrifugation at 20,000 × g, both fractions – soluble and inclusion bodies – were stored for further tests. Protein content was estimated by the Bradford’s protein assay [6] and samples were analyzed by SDS-PAGE.

2.2.3. SDS-PAGE and immunoblot

Proteins samples were prepared and separated by electrophoresis on 18% acrylamide gels [22]. Gels were run at 100 V for 1 h and stained with Coomassie Blue G-250 or transferred to a nitrocellulose membrane for immunolabeling [14] using anti-Lasiodora-venom antibodies.

2.3. Purification of recombinant LTx2

The LTx2 recombinant protein was purified from inclusion bodies. Protein refolding was carried out as described by Roberto et al. [33]. Reverse-phase chromatography was performed using a PEPMap C8 prepacked column and an HPLC Acta™ Explorer System (Amersham Biosciences, Uppsala, Sweden). After equilibrating the column with 0.1% trifluoroacetic acid (TFA)/deionized water (mobile phase), the protein was eluted with a continuous gradient of a mobile phase containing acetonitrile/0.1% TFA. The eluant profile was monitored continuously at 280 and 214 nm. The fractions were then dialyzed, lyophilized and stored at −20°C.

2.4. Pharmacological characterization

2.4.1. Calcium oscillations in BC3H1 cells

BC3H1 cells expressing muscle-type acetylcholine receptors (AChRs) [38] were cultured as described elsewhere [39]. Briefly, cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, CultiLab, Campinas, Brazil), 100 units ml⁻¹ penicillin, 100 (g ml⁻¹ streptomycin, and 2 mM l-glutamine. For experiments, 2.3 × 10⁵ BC3H1 cells ml⁻¹ were resuspended into 20 ml of 10% FBS medium. The suspension was mixed and 2 ml aliquots were pipetted into each dish. The medium was changed to 1% FBS 24 h after plating on bacterial dishes.

2.4.2. Calcium measurements

BC3H1 cells were loaded with Fluo-3-AM by incubation with 4 μM Fluo-3-AM in 0.5% Me₂SO and 0.1% of the non-ionic surfactant pluronic acid F-127 for 30 min at 37°C in 140 mM NaCl, 3 mM KCl, 1 mM MgCl₂, 2.5 mM CaCl₂, 10 mM HEPES, and 10 mM glucose at pH 7.4. After loading with Fluo-3-AM, the cells were washed with incubation buffer and incubated for 20 min to ensure complete de-esterification of the dye. Ca²⁺ imaging was performed with an LSM 510 confocal microscope (Zeiss, Jena, Germany). Fluo-3 fluorescence emission was excited with a 488 nm line from an argon ion laser and the emitted light at 515 nm was detected using a band pass filter. At the end of each experiment, 5 μM of the ionophore (4-Br-A23187) followed by 10 mM EGTA were used to determine maximal (F_max) and minimal (F_min) fluorescence values. Ca²⁺ concentration was calculated from the Fluo-3 fluorescence emission using a self-ratio equation as described previously [16,31,32] assuming a K_d of 450 nM [17]. The Ca²⁺ imaging data were obtained at 20–22°C. The osmolarity of all the solutions ranged between 298 and 303 mosmol l⁻¹. Concentrations were calculated for cell populations containing at least 10 cells in three different experiments.

To evaluate the contribution of VGCC activation to the studied Ca²⁺ signals, the depolarizing stimuli were delivered in the presence of the non-selective VGCC and SOC blocker (100 μM Cd²⁺). Before testing the effects of Cd²⁺, we evaluated the stability of Ca²⁺ responses to depolarizing stimuli repeated at 5-min intervals. The amplitude of the ΔF/Δt ratios in response to the first four stimulations remained fairly stable; those of the third and fourth transients were, respectively, 4.6 ± 1.8% (n = 42) and 7.3 ± 1.9% (n = 39) smaller than that of the first.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Access number</th>
<th>Primer</th>
<th>Sequence (5’-3’)</th>
<th>Length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP3R1</td>
<td>NM_010585</td>
<td>FWD</td>
<td>5’CCA TCA ATG AAA TAT CCG GGC A3’</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’AAC TTC ATC ATC TGA GCA A3’</td>
<td></td>
</tr>
<tr>
<td>IP3R2</td>
<td>NM_019923</td>
<td>FWD</td>
<td>5’GTT ACA GGA TGT CCG GGC CT3’</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’AGA GGT CCG TTG ACA CTA AT3’</td>
<td></td>
</tr>
<tr>
<td>IP3R3</td>
<td>NM_080553</td>
<td>FWD</td>
<td>5’TCA CGA GTA CCT CAG CAT CG3’</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’AAC TTG ACA AGG GTC ACC AG3’</td>
<td></td>
</tr>
<tr>
<td>RYR1</td>
<td>NM_009109</td>
<td>FWD</td>
<td>5’TCA CGA GTA CCT CAG CAT CG3’</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’AAC TTG ACA AGG GTC ACC AG3’</td>
<td></td>
</tr>
<tr>
<td>RYR2</td>
<td>NM_023868</td>
<td>FWD</td>
<td>5’ACA ACC CAA ATG CCG GCC TC3’</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’TAG GCA CCT CCT TCC CAT C3’</td>
<td></td>
</tr>
<tr>
<td>RYR3</td>
<td>NM_177652</td>
<td>FWD</td>
<td>5’TAG CCC AGT AGA AGG CA3’</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’CAG ACT TCA TAT CCG GCT CA3’</td>
<td></td>
</tr>
<tr>
<td>α-Subunit L-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>CACNA1C</td>
<td>FWD</td>
<td>5’TGTGTTGGTTTCGTCATTTGCA3’</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’CCCTCTGGACCTCATAGAGGGAGGAG3’</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>CACNA1D</td>
<td>FWD</td>
<td>5’GAGCTCTGATTAGTATAGTGAGGAAT3’</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’AGGATGAGCAAAGATGTCAT3’</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>CACNA1F</td>
<td>FWD</td>
<td>5’GAGGAGGAGATGAAGAGAGA3’</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’TGTGTTGGGAGTAGTAGTG3’</td>
<td></td>
</tr>
<tr>
<td>P/Q, N, R types</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>CACNA1A</td>
<td>FWD</td>
<td>5’GAGCCGCTGTGATGACAGGGAAACC3’</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’GAGCTGGCAGCTCACCCTGTGAGTGC3’</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>CACNA1B</td>
<td>FWD</td>
<td>5’GAAGTATGCTGAAGTCAGC3’</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’CCTGGTGTGTCAGCCCGCTGGA3’</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>CACNA1E</td>
<td>FWD</td>
<td>5’GAGACTGTGTTGACTTGGAGGACC3’</td>
<td>697</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’ATAGAGCATATTGAGGACCCATGGC3’</td>
<td></td>
</tr>
<tr>
<td>T-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>CACNA1G</td>
<td>FWD</td>
<td>5’TACGGAGGCTTGGAGAAAAA3’</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’GATGATGTGAGG(A/G)TGAT3’</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>CACNA1H</td>
<td>FWD</td>
<td>5’GAGCAGATCTAATTCACAC3’</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’GATGATGTGGG(A/G)TGAT3’</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>CACNA1I</td>
<td>FWD</td>
<td>5’GAGAAAGAGGCCGCTT3’</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’GATGATGTGGG(A/G)TGAT3’</td>
<td></td>
</tr>
<tr>
<td>β-Actin</td>
<td>NM_007393</td>
<td>FWD</td>
<td>5’AGG AAG AGG ATG CCG CAG TGG3’</td>
<td>535</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV</td>
<td>5’ CGA GCC CCA CAG CAA GAG AG3’</td>
<td></td>
</tr>
</tbody>
</table>

FWD = forward primer; REV = reverse primer.
2.4.3. Reverse transcription and conventional PCR

Total RNA was isolated using TRIzol (Invitrogen) from undifferentiated BC3H1 cells. Integrity of the isolated RNA was verified by separation on a 2% ethidium bromide-stained agarose gel. DNA was removed from RNA samples by incubation with DNase I (Ambion Inc., Austin, TX).

Primer sequences for reverse transcription and PCR amplification of β-actin, InsP3Rs and RyRs isoforms mRNA are listed in Table 1. Negative controls were realized with water and total RNA non-reverse transcribed. The amplification reaction mixture (50 μl) contained 200 ng of the cDNA sample, 1.25 U of Ampli-Taq DNA polymerase, 1× PCR reaction buffer, 200 mM of each primer, 200 μM dATP, dCTP, dGTP, and dTTP, and 1.5 mM MgCl₂ (Applied Biosystems). The thermal cycling conditions included 5 min at 95 °C. Thermal cycling proceeded with 35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s. After amplification, electrophoresis of 10 μl reaction mixture on a 2% NuSieve:agarose gel (3:1) (FMC product, Rockland, ME) was visualized under UV illumination after staining with ethidium bromide.

3. Results

3.1. Cloning and expression

The cDNA encoding the mature LTx2 protein was cloned into a pET11a expression vector (pET11a–LTx2), sequenced to confirm the correct frame, and the recombinant toxin was obtained using BL21 (DE3) E. coli cells. Fig. 1A shows E. coli extracts electrophoresed on an 18% SDS-PAGE after induction with IPTG. A faint band of approximately 5.7 kDa was detected after 4 h of induction, which is consistent with previous studies that deduced molecular weight for this toxin to be ~5.7 kDa. Additionally, immunochemical identification of the recombinant protein using antisera against whole venom is shown in Fig. 1B. A second band just below of 5.7 kDa was detected by Western blot and may correspond to a protein degradation product. Crude venom used as a positive control showed a band with a similar molecular weight. In the negative control (non-induced cells), this band was not observed (Fig. 1B).

Fig. 2 – (A) HPLC purification of the recombinant LTx2 in a reversed-phase C8 column (Sephasil Peptide C8 5 µ, 4.6/205). The thin line represents absorption at 280 nm and the thick line represents absorption at 214 nm. The dotted line corresponds to the acetonitrile gradient (0–100%). Material eluted in the first peaks is the salt present in the sample. The fraction eluted at 25% acetonitrile was analyzed by SDS-PAGE and activity. (B) SDS-PAGE (18%) of the fraction eluted in RP-HPLC. Lane 1: low molecular weight standard added of aprotinin. Lane 2: fraction recovered in RP-HPLC–recombinant LTx2. A single band of approximately 6 kDa is present. (C) Immunochemical identification of the recombinant protein. C.V., crude venom; LTx2, recombinant LTX2.
3.2 Purification of LTx2 recombinant

Recombinant LTx2 protein was expressed in transformed E. coli (BL21 DE3) and found in both the soluble and insoluble fractions. The LTx2 recombinant protein from the insoluble fraction was solubilized (6 M guanidine hydrochloride, 5% β-mercaptoethanol) and after refolding, was purified in a PepMap C8 RP column (Fig. 2A). The homogeneity of the eluted fraction was demonstrated by SDS-PAGE and Western blot (Fig. 2B and C). The purified protein was demonstrated to be biologically active by calcium imaging in BC3H1 cells (see Sections 3.3.2 and 3.3.3).

3.3 Activity

3.3.1 Ca2+ oscillations in BC3H1 cells

To investigate the dynamics of [Ca2+]i in BC3H1 cells, we performed Fluo-3 imaging experiments. Spontaneous [Ca2+]i oscillations were observed in 47 of 62 cells (76%), in external buffer containing 2.5 mM Ca2+ without any stimuli (Fig. 3A).

Two major pathways control the [Ca2+]i: the Ca2+ entry across the plasma membrane and the Ca2+ release from internal stores. The contributions of each source of Ca2+ to spontaneous [Ca2+]i oscillations in BC3H1 cells were evaluated. In Ca2+-free buffer, the spontaneous [Ca2+]i oscillations continued for a while (Fig. 3B). The registered frequencies for [Ca2+]i oscillation were not statistically different in Ca2+-free buffer and Ca2+-containing buffer (the period was 2.7 ± 1.3 min, n = 31, and 4.2 ± 1.2 min, n = 38, respectively). Otherwise, the amplitudes of spontaneous [Ca2+]i oscillation were significantly decreased by 35.7 ± 3.8% in free-Ca2+ buffer (n = 5; P-value is < 0.05 by paired t-test). These results indicate that the amplitude, but not the frequency of [Ca2+]i, oscillation, is regulated by Ca2+ entry through the plasma membrane. Therefore, we speculated that [Ca2+]i oscillation may be regulated mainly by Ca2+ release from intracellular stores. In order to test this hypothesis, the ER contribution to generate [Ca2+]i oscillations was examined. First, the effects of the specific Ca2+ pump blockers, cyclopiazonic acid (CPA) and thapsigargin (Thaps) were tested. Application of 1 μM Thaps (not shown) or 10 μM CPA inhibited completely [Ca2+]i oscillations (Fig. 3C), suggesting the involvement of Ca2+ release from ER. Two types of Ca2+ release channel are present in ER or sarcoplasmic reticulum (SR), RyRs and InsP3Rs. For the next context, the functionality of these receptors in BC3H1 cells was studied. Acetylcholine 100 μM (ACh), in Ca2+-free buffer, which would activate only muscarinic receptors producing InsP3 to activate InsP3Rs, did not induce [Ca2+]i transients (53 of 58 cells; Fig. 4A), but in external buffer containing Ca2+ ACh induced an increase in [Ca2+]i transients of 778 ± 72 nM (n = 72 cells), calculated as reported in Section 2.4.2. We have also tested the effects of the cell-permeant InsP3R blocker, 2-aminoethoxydiphenyl borate (2-APB), in BC3H1 cells [41]. 2-APB (75 μM) blocked completely spontaneous [Ca2+]i oscillations (23/23 cells) and, as it was expected, a subsequent application of ACh (100 μM) did not induce any

Fig. 3 – Ca2+ transients in BC3H1 cells. Cells were loaded with Fluo-3-AM for 30 min. (A) Spontaneous Ca2+ oscillations were registered in external buffer containing 2.5 mM Ca2+ and (B) in Ca2+-free external buffer (1 mM EGTA). (C) Application of 10 μM cyclopiazonic acid (CPA) blocked completely spontaneous [Ca2+]i oscillations.

Fig. 4 – Agonist-induced Ca2+ release in BC3H1 cells. (A) Addition of 100 μM acetylcholine (ACh)-induced [Ca2+]i transients in external buffer containing 2.5 mM Ca2+. When we substitute the Ca2+-containing to Ca2+-free buffer and 100 μM ACh was applied, no [Ca2+]i transient was induced and [Ca2+]i oscillations was eliminated. When we changed the Ca2+-free to Ca2+-containing buffer [Ca2+]i increased gradually. (B) After addition of the cell-permeant InsP3R blocker, 2-APB (75 μM) [Ca2+]i oscillations were completely blocked and additional application of ACh (100 μM) did not induce any increase of [Ca2+]i. (C) In Ca2+-free buffer, small oscillations were observed. After the application of 10 mM caffeine, Ca2+ release from ER could not be induced.
increase of \([\text{Ca}^{2+}]_{\text{i}}\), (32/32 cells; Fig. 4B). In contrast, 10 mM caffeine, which activates most forms of RyRs [25] did not affect the level of \([\text{Ca}^{2+}]_{\text{i}}\), (54/54 cells, Fig. 4C). The above results suggest that InsP3Rs mediate the release of \(\text{Ca}^{2+}\) from ER and generate \([\text{Ca}^{2+}]_{\text{i}}\), oscillation in BC3H1 cells.

3.3.2. \(\text{Ca}^{2+}\) entry pathways through plasma membrane in BC3H1 cells

It has been proposed that the main \(\text{Ca}^{2+}\) entry pathways in non-excitatory cells is by SOCs channels, which are activated by \(\text{Ca}^{2+}\) store depletion [10,28]. However, it is not well understood whether SOCs are present or not in BC3H1 cells, and whether VGCCs channels function in the plasma membrane. Application of 1 \(\mu\text{M}\) Thaps in \(\text{Ca}^{2+}\)-free external buffer induced an increase followed by a decrease in \([\text{Ca}^{2+}]_{\text{i}}\), in BC3H. Addition of 2.5 mM \(\text{Ca}^{2+}\) to the external buffer, evoke a slow increase of \([\text{Ca}^{2+}]_{\text{i}}\), (28/28 cells), which indicates \(\text{Ca}^{2+}\) entry through the plasma membrane (Fig. 5A). In cells treated with 10 \(\mu\text{M}\) CPA, the level of \([\text{Ca}^{2+}]_{\text{i}}\), increased gradually in the presence of 2.5 mM \(\text{Ca}^{2+}\) and decreased when the buffer was changed to \(\text{Ca}^{2+}\)-free buffer. New addition of 2.5 mM \(\text{Ca}^{2+}\), resulted in an increase of \([\text{Ca}^{2+}]_{\text{i}}\), (32/32 cells; Fig. 5B). These increases of \([\text{Ca}^{2+}]_{\text{i}}\), were abolished by the application of an inhibitor for SOCs and VGCCs, 100 \(\mu\text{M}\) \(\text{Cd}^{2+}\) (32/32 cells, Fig. 5B), by an inhibitor for L-type \(\text{Ca}^{2+}\) channel, 5 \(\mu\text{M}\) nifedipine (35/35 cells, Fig. 5C), and by 80 \(\mu\text{M}\) LTx2 toxin (31/31 cells, Fig. 5D), which suggest that LTx2 toxin act upon these channels. The above results suggest that entry of \(\text{Ca}^{2+}\) through the plasma membrane is mediated mainly via VGCCs and that LTx2 toxin probably acts upon L-type channels.

![Fig. 5](image-url) Voltage-gated \(\text{Ca}^{2+}\) channels were activated by depletion of \(\text{Ca}^{2+}\) store in BC3H1 cells. (A) Application of 1 \(\mu\text{M}\) thapsigargin (Thaps) induced a large \([\text{Ca}^{2+}]_{\text{i}}\), transient in cells present in \(\text{Ca}^{2+}\)-free external buffer (no \(\text{Ca}^{2+}\)). When the \(\text{Ca}^{2+}\)-free external buffer was changed to 2.5 mM \(\text{Ca}^{2+}\)-containing buffer \([\text{Ca}^{2+}]_{\text{i}}\), increased gradually. (B) When the \(\text{Ca}^{2+}\) store was depleted with 10 \(\mu\text{M}\) cyclopiazonic acid (CPA) \([\text{Ca}^{2+}]_{\text{i}}\), decreased markedly. After addition of 2.5 mM \(\text{Ca}^{2+}\), the \([\text{Ca}^{2+}]_{\text{i}}\), increased gradually. Application of 100 \(\mu\text{M}\) \(\text{Cd}^{2+}\) reduced \([\text{Ca}^{2+}]_{\text{i}}\), significantly. (C) The same experiment was done in presence of 5 \(\mu\text{M}\) nifedipine (Nif) or (D) 80 \(\mu\text{M}\) LTx2. Both, Nif and LTx2 reduced significantly \([\text{Ca}^{2+}]_{\text{i}}\).

![Fig. 6](image-url) \([\text{Ca}^{2+}]_{\text{i}}\) oscillations in individual BC3H1 cells observed in the presence of 80 \(\mu\text{M}\) recombinant LTx2 with (lower panel) and without (upper panel) 1 \(\mu\text{M}\) TTX. BC3H1 cells had \(\text{Ca}^{2+}\) oscillations before LTx2 was added to bathing medium, even in the presence of TTX. Spontaneous \([\text{Ca}^{2+}]_{\text{i}}\) oscillations were abolished and there was a decrease in the basal level of \([\text{Ca}^{2+}]_{\text{i}}\), in the presence of 80 \(\mu\text{M}\) LTx2 and 1 \(\mu\text{M}\) TTX.
3.3.3. LTx2 action on Ca\(^{2+}\) channels

BC3H1 cells were loaded with Fluo-3-AM and visualized by confocal microscopy in the presence of the LTx2 without or with Na\(^+\) channel blocker tetrodotoxin (1 \(\mu\)M, TTX) (Fig. 6). Normal Ca\(^{2+}\) oscillations (Fig. 6, upper panel) are mediated by L-type Ca\(^{2+}\) channels and activating sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\)-Mg\(^{2+}\)-ATPase (SERCA) inducing action potentials [7,19,24,37], and can be used as antagonists screening with toxins. When Na\(^+\) channel-induced membrane depolarization was blocked, Ca\(^{2+}\) channels were the only alternative for inducing membrane depolarization. We noted that spontaneous [Ca\(^{2+}\)]\(_{i}\) oscillations were abolished and that there was a decrease in the basal level of [Ca\(^{2+}\)]\(_{i}\) in the presence of 80 \(\mu\)M LTx2 and 1 \(\mu\)M TTX (Fig. 6, lower panel). BC3H1 cells had Ca\(^{2+}\) oscillations before LTx2 was added to bathing medium, even in the presence of TTX (Fig. 6, lower panel). These data are consistent with another study [21] that showed similar results with extracted venom, suggesting the presence of toxins that block L-type Ca\(^{2+}\) channels.

3.4. Expression of RyR, InsP\(_3\)R and VGCCs in BC3H1 cells

Above results indicate that several kinds of ion channels function as Ca\(^{2+}\) signaling pathways in BC3H1 cells. Therefore, we examined the mRNA expression for ion channel genes (RyR I, II, and III; InsP\(_3\)R I, II, and III, VGCC \(\alpha\)-subunits) using RT-PCR. RyR type I gene was only detectable in muscle-differentiated stage (Fig. 7A). InsP\(_3\)R I, II, and III genes were expressed at detectable levels in undifferentiated and muscle-differentiated BC3H1 cells. Genomic amplification was observed for CaV1.3\(\alpha\)1, CaV2.1\(\alpha\)1 (larger band) and CaV3.1\(\alpha\)1. (F) \(\beta\)-Actin control PCR from retina, undifferentiated (Und) and muscle-differentiated (Diff) BC3H1 cells. Images represent ethidium bromide-stained agarose gels loaded with PCR reaction products after RT-PCR.
only the N-type Ca2+ channel could not be detected (Fig. 7D–F).

4. Discussion

4.1. Ca2+ oscillation and Ca2+ release from ER in BC3H1 cells

Spontaneous [Ca2+], oscillations evoked by Ca2+-mobilizing stimuli are present in many types of non-excitable cells, such as pancreatic acinar cells [23,27], oocytes [20], liver cells, and fibroblasts [8]. As shown in Fig. 3, BC3H1 cells showed spontaneous [Ca2+], oscillations without agonists stimuli (Fig. 3A). Our data obtained in Ca2+-free external buffer (Fig. 3A) and with Ca2+ pump ATPase inhibitors (Fig. 3B and C) clearly indicate that the intracellular Ca2+ store is the main source of Ca2+ for [Ca2+], oscillations. However, Ca2+ influx is required to maintain these Ca2+oscillations, which can refill the intracellular Ca2+ stores by influx across the plasma membrane. Then, the decrease of amplitudes of [Ca2+], oscillations in Ca2+-free external buffer (Fig. 3B) may be explained by absence of Ca2+ influx.

InsP\textsubscript{3}R and RyR receptors are known to participate in release of Ca2+ from the intracellular stores [8], and have been suggested to explain the mechanisms of [Ca2+], oscillations [13]. It has been proposed that [Ca2+], oscillations are generated by either fluctuating or sustained concentrations of cytosolic InsP\textsubscript{3} [5]. Recently, it was reported that [Ca2+], fluctuations are induced by InsP\textsubscript{3} levels through a dynamic and rapid uncoupling of G-protein coupled receptors [26]. This finding could explain our results of [Ca2+], oscillations and calcium entry through by plasma membrane, but additional studies are necessary.

This is the first work which presents the nature and functional roles of the intracellular Ca2+ stores in BC3H1 cells. It is not known whether a caffeine/ryanodine-sensitive store exists in BC3H1 cells. We demonstrated Ca2+ release from ER via InsP\textsubscript{3}R (Fig. 3B and C). However, because caffeine presented no effect in [Ca2+], in BC3H1 cells (Fig. 4C) and because the expression of RyRs mRNA is absent (Fig. 7A), we suggest that RyRs have a minor contribution if any contribution to Ca2+ release from internal stores. Taken together, our results demonstrate that InsP\textsubscript{3}R are the major source to Ca2+ release from ER in BC3H1 cells and that RyRs mRNA seem not to be expressed in this cell line at this stage. It has been described that at early stages of development InsP\textsubscript{3}R mRNA and functional InsP\textsubscript{3}-gated Ca2+ release channels are widely expressed in virtually all tissues in mouse embryos, but RyR mRNA could only be detected in the myotome [34]. Therefore, we could speculate that functional RyRs might be present during or after differentiation to excitable cells.

4.2. Ca2+ entry pathway in BC3H1 cells and LTx2 effect

Calcium influx through the plasma membrane plays a central role in controlling cellular activities. In spite of intensive research, there is no consensus yet on how Ca2+ entry is controlled in non-excitable cells. In most non-excitable cells examined, the existence of SOC entry has been demonstrated [10]. In this study, we first demonstrated the functional expression of SOCs in BC3H1 cell line and the role of LTx2 toxin (Fig. 5D and Fig. 6). We also evaluated whether functional VGCCs are present in this cell line. We conclude here, that Ca2+ entry through plasma membrane is mainly mediated by the SOCs receptors in BC3H1 cell line and that LTx2 blocks L-type Ca2+ channels.

Given that LTx1, LTx2 and LTx3 have very similar structures, differing from one another by only 1–3 residues [40] it is likely that LTx1 and LTx3 also act on Ca2+ channels. However, only the expression and biological characterization of the recombinant of LTx1 and LTx3 toxins can reveal their molecular targets.

Acknowledgments

This work was supported by grants from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)—Contract no. CBB 718/05 and Contract no. CBB APQ-4615-4.01/07, PRONEX and by Conselho Nacional de Desenvolvimento Científico e Tecnológico Process 471080/2006-3. R.R. Resende is supported by a postdoctoral research fellowship from FAPESP. English editing has been performed throughout the text by native English speaker Avishek Adhikari from Department of Biological Sciences, Columbia University, New York, USA.

References
