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Abstract: This work presents a data-centric strategy to meet deadlines in soft real-time
applications in wireless sensor networks. This strategy considers three main aspects: (i)
The design of real-time application to obtain the minimum deadlines; (ii) An analytic
model to estimate the ideal sample size used by data-reduction algorithms; and (iii) Two
data-centric stream-based sampling algorithms to perform data reduction whenever necessary.
Simulation results show that our data-centric strategies meet deadlines without loosing data
representativeness.
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1. Introduction

Despite their potential application, wireless sensor networks (WSNs) [1–3] have severe resource
restrictions, such as low computational power, reduced bandwidth, and limited energy sources. Some
applications are characterized by their emergency to deliver the data (real-time applications), i.e., the data
gathering has tight deadlines. Examples of these applications include: surveillance systems, biometric
sensing, and intrusion detection. These applications have soft real-time characteristics, i.e., environment
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is not controllable, applications usually use probabilistic models to process data, and communication
does not have acknowledgment.

By considering the real-time applications in WSNs, we can identify some related work. In general,
current contributions consider architectures and mathematical models for general applications [4–6].
Aquino et al. [7] propose and evaluate a design strategy to determine minimum deadlines used
by a specific stream reduction algorithm in general WSNs applications. However, routing and
application-level solutions for specific real-time scenarios have been recently proposed [8–10].

In WSNs applications, physical variables, such as temperature and luminosity, can be monitored
continuously along the network operation. The data set representing these physical variables can be
referred to as data-stream [11]—or sensor-stream, considering the WSNs context. As a consequence of
this continuous monitoring, we might have high delays in such a way that real-time deadlines are not
met. This motivation led us to propose a strategy to control the amount of data gathered by the network
and its associated delay.

Before introducing our data-centric strategy, allow us to comment on data-stream related work. The
data-stream contributions usually focus either in improving stream algorithms [12–15] or in applying
the data-stream techniques to specific scenarios [16–20]. However, regarding data-stream solutions used
in WSNs, we can identify a few researches that consider WSNs as distributed databases in which some
functions (e.g., maximum, minimum and average) can be computed in a distributed fashion [21–25].

Considering real-time requirements and sensor-stream characteristics, we propose a data-centric
strategy capable of reducing the data during data routing. In this case, the routing elements consider some
application aspects, such as data type and deadline information. Our strategy considers: (1) a project
design of real-time application to obtain the minimum deadlines; (2) an analytic model to estimate the
ideal sample size used by the reduction algorithms; (3) and two stream-based sampling algorithms to
perform data reduction when necessary during the routing task.

To validate our data-centric strategy, we use specific scenarios in which application deadlines cannot
be met without data reduction. In our simulation, we use a naive tree routing based on shortest-path tree
in a flat network. Application information is fed to relay nodes during build and rebuild tree phases.
To identify the stream item delay, we consider that the clocks of the nodes are exactly synchronized.
Thus, the time synchronization problem in WSNs [26] is not considered here. However, data quality is
evaluated to show the associated data reduction impact. Simulation results show that our data-centric
strategies meet deadlines without loosing data representativeness.

Regarding data reduction strategies for WSNs, current researches use data fusion, aggregation,
compression or correlation techniques [3] to help save energy and reduce the packet delay [27–29]. The
closer approach to sample stream reduction is the adaptive sampling, i.e., the sampling strategy modifies
following the phenomenons variations. The objective of this approach is to improve accuracy, identify
correlation and eliminate redundancy [30–32]. However, there are some works that consider samples of
different sources keeping the representativeness without overwriting the data, which can be applied to an
uniform random or deterministic sample [16, 33–35]. It is important to highlight that our work considers
the reduction of only one source, i.e., our sampling is performed in each data set separately.
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Our contribution can be highlighted through the analytical model, project design, different sample
stream algorithm, and evaluation considering three more realistic real-time scenarios. The general
contributions of our strategy are the following:

• Data-stream: In this work, we use sensor-stream algorithms as an in-network solution, and we
improve the network performance by reducing the packet delay in real-time applications.

• Data reduction: Regarding data reduction, we show that we can meet real-time application
deadlines when we use sensor-stream techniques during the routing task. This in-network approach
represents a new contribution.

• Real-time: We present a analytical model to estimate the ideal amount of data-reduction, and we
apply the stream-based solution in realistic real-time scenarios. To the best of our knowledge this
is the first work that tries to quantify the reduction intensity based on real-time deadlines.

This work is organized as follows. Section 2. presents the data-centric real-time reduction problem.
Section 3. shows how to design real-time sensor network applications by using stream-based data
reduction. Section 4. discusses a formal formulation that is used to determine the ideal sample size.
Section 5. describes the sampling stream reduction algorithms. Simulation results are presented in
Section 6., and Section 7. presents our conclusions and outlook.

2. Problem Statement

The problem we address in this work is the sensor-stream reduction algorithms as a data-centric
mechanism to meet deadlines in real-time applications. We consider the data-stream sampling technique
to perform data reduction [36]. Since we use a sensor-stream algorithm for data reduction, the scope,
and the problem itself can be defined as follows.

Let us consider a WSN monitoring physical or environmental conditions, such as temperature, sound,
vibration, pressure, motion or pollutants, at different locations. Such a system is represented by the
diagram [37]:

N V∗ V V′

D∗ D D′

wP

u
R∗

wS wΨ

u
R

u
R′

This diagram illustrates the following behavior:

• The ideal behavior denoted by N → V∗ → D∗, where N denotes the environment and the
process to be measured, P is the phenomenon of interest, with V∗ their space-temporal domain.
If complete and uncorrupted observation was possible, we could devise a set of ideal rules R∗

leading to ideal decisions D∗.

• The sensed behavior is denoted by N → V∗ → V → D. In this case, we have a set of s sensors
S = (S1, . . . , Ss), each one providing measurements of the phenomenon and producing a report in
the domain Vi, with 1 ≤ i ≤ s; all possible domain sets are denoted V = (V1, . . . , Vs). Using such
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information, we can conceive the set of rules R leading to the set of decisions D. We consider V

to be a sensor-stream, due to its “time series” characteristics.

• The reduced behavior is denoted by N → V∗ → V → V′ → D′. Dealing with V may be too
expensive in terms of, for instance, power, bandwidth, computer resources usage, and, specially,
time delivery to meet the deadline requirements. Since the level of redundancy is not negligible in
most situations, we can reduce this information volume. Sensor-stream reduction techniques are
denoted by Ψ, and they transform the complete domain V into the smaller one V′. New rules that
use V′ are denoted by R′, and they lead to the set of decisions D′.

Based on these behaviors, the problem addressed in this work can be stated as follows:
Problem definition: Given a sensor-stream behavior, how can we use a data-centric data reduction
algorithm (Ψ) to meet application deadlines? Moreover, what is the impact over the decisions D, when
we use the Ψ reduction over V generated by S?

To address the data-centric reduction problem in real-time applications, we consider the following
assumptions:

• WSN topology: The set of sensors S = (S1, . . . , Sn) is distributed in a squared area A = L× L.
There is only one sink node located at (0, 0) on the left bottom corner. The density is kept constant
and all nodes have the same hardware configuration.

• Routing protocol: The network communication is based on a multihop shortest-path tree [38] as
the routing protocol. To evaluate only the data-centric stream reduction performance, the tree is
built just once before the traffic starts and the network is kept static. The build tree process is
depict in Figure 1. First in (a), the sink node sends a flooding message requesting to build tree.
After this, in (b), the nodes sets your father node considering the first message received in flooding
process (it is considered that the first packet received represents the shortest path to sink). Finally,
in (c), we have the complete tree mounted.

• Sensor-stream item: Vi values are generated by one specific sensor located at (L,L) on the
right top corner (the opposite side of sink node), for convention we use V to represent the stream
generated. For each stream, we process one stream item V = {V1, . . . ,Vn} where the amount
of data stored before the data sent is |V| = n. The generation is continuous at regular intervals
(periods) of time. We consider gaussian data (µ = 0.5 and σ = 0.1) sent in bursts.

• Quality of a sample: To assess the impact of data reduction on data quality, based on decision
D, we consider two rules: Rdst and Rval. The rule Rdst aims at identifying whether V

and V′ data distributions are similar. To compute this distribution similarity (Υ), we use the
Kolmogorov-Smirnov test [39]. The rule Rval evaluates the discrepancy among the values in
sampled streams, i.e., if they still represent the original stream. To quantify this discrepancy (Φ),
we compute the absolute value of the largest distance between the average value of the original
data, and the lower or higher confidence interval values (95%) of the sampled data:

Φ = max{|vlow − avgg|, |vhig − avgg|}



Sensors 2009, 9 9670

in which the pair (vlow; vhig) is the confidence interval for the sampled data and avgg is the average
(mean value) of original data [36]. These rules help us to identify the scenarios where our sampling
algorithm is better than simple random sampling strategy.

Figure 1. Build tree process.
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(a) Build request.

Sink

(b) First packet received.

Sink

(c) Tree mounted.

These assumptions are considered in the whole paper. For instance, the routing algorithm is
shortest path tree, the stream item is the set V = {V1, . . . ,Vn}, and so on. In the next three
sections, we answer the questions addressed in Problem definition by presenting the reduction design
in real-time applications, the analytic model that estimate the ideal sample size |V′|, and the data-centric
reduction algorithms.

3. Data-Centric Reduction Design in Real-Time WSNs Applications

The first task of our data-centric strategy considers the design of real-time application. The objectives
of this design are the: characterization of the stream flow while it passes by each sensor node;
identification of the software components required by real-time applications by each sensor node; and
identification of the required hardware resources by each sensor node. These aspects are illustrated in
Figure 2, which shows the data-centric design in real-time WSNs applications, this design represents the
sensor node view.

Figure 2. Data-centric reduction design in WSNs real-time application, the sensor view.
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Basically, we have three steps to characterize the stream flow in each node: received data, data
classification, and data processing. Considering the received data, V can be generated by the application
or received from other nodes. In both cases, V is delivered to the routing layer. Application parameters,
used to help the reduction phase, are also received whenever the routing tree is rebuilt. Once a sensor
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node receives V, we need to classify its type (classification step). In our case, the types considered
are the sensing received from the application and the infrastructure received from other nodes. This
classification is important because the routing layer behavior will be different for each one. When the
node receives the application parameters, the real-time information database must be updated with new
information. Such information include, for example, application deadlines, hops towards the sink, and
time towards the sink. In the processing step, real-time requirements are verified. These requirements
are used to decide the more suitable reduction strategy (stream solution choice), it is important highlight
that this requirements are dynamically updated when the stream is received, i.e., the relay node has only
the local information. This occurs because the reduction may lead to different outputs with different
“data qualities”. In our case, in this step, we determine |V′| according to the deadline requirements. The
sample size determination and the reduction algorithm will be presented latter on. Finally, in the data
out step, V′, which may be reduced, is routed towards the sink.

In Figure 2, we can identify the software components required in real-time applications: a
classification component to identify the type of |V|; an application-parameter component to process
and store real-time application parameters; an oracle component to verify when the current stream item
requires reduction; a stream size estimation component to compute |V′|, when necessary; a reduction
component to perform the reduction; and a data out component to set the new parameters aggregated
to V′.

Finally, the hardware resources necessary must be identified considering the |V| supported and the
reduction algorithm complexity. |V| and |V′| are used to estimate the memory and bandwidth necessary
to conceive the real-time WSN solution. In addition, the complexity of the reduction algorithm is
important to determine the computational power necessary to apply the reduction strategy. These aspects
are important to conceive a successful data-centric reduction for real-time applications.

4. What Is the Ideal Sample Size?

The second task of our data-centric strategy considers the |V′| estimation. The objectives of this
estimation is to allow relay nodes to perform the reduction in a data-centric way, i.e., the routing layer
uses application information to meet real-time requirements by applying Ψ to reduce |V|.

In the stream solution choice of processing step (Figure 2) we determine |V′| necessary to meet
the deadline specified in real-time requirements. In this case, to determine |V′|, every sensor node
has a maximum packet size (ps) permitted. In our case, we consider ps = 20 items. However, every
relay node knows its hop and time distances (considering only one packet) to the sink node, hdst

and tdst respectively. This information is fed during the tree building phase, and stored in real-time
information database.

In some cases, V needs to be fragmented in V = {V1 . . .Vnf}, where nf is the number of fragments.
All Vj (0 < j ≤ nf ) encapsulate the application deadline (da), number of fragments (nf ), instant the
fragment was generated (tgen), and its number of hops (hsrc). Thus, the relay node has all information
about the stream item when it receives only one fragment.

Every relay node computes the new local deadline (dl), as depicted at the following:
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This deadline accounts the route between the relay and the sink node, and it is defined as

dl = da − tsrc

where tsrc is the estimated time to deliver Vj from the source node to the current relay node,

tsrc = tnow − tgen

Let us consider tsrc be the time of the V1 to travel from source at relay node. Then, V2 will arrive in
tsrc/hsrc units of time (e.g., seconds), i.e., estimated time for the last hop as depicted at the following:

SinkSource Relay

Time line

t
SRC

t h
SRC SRC

/

This consideration is necessary, because the information in the relay node is only about tsrc, therefore,
the complete stream cames from the last relay node rather than directly from source. Thus, the estimated
time receive V is

trec = (nf − 1) tsrc/hsrc (1)

In a similar way, let us consider tdst the time of the V1 to travel from relay node at sink. Then, V2

will arrive in tdst/hdst units of time (e.g., seconds), i.e., estimated time for the last hop as depicted at
the following:

SinkSource Relay

Time line

t
DST

t h
DST DST

/

Thus, the estimated time to deliver V is

tdel = tdst + (nf − 1) tdst/hdst (2)

The first term of the sum is considered in tdel equation because V1 has not arrived yet. Remember
that tdst and hdst are calculated when the tree is built. It is important highlighted that the transmissions
between nodes in a WSN does not work like a pipeline. In our scenarios each sensor node has only one
radio and it can either receive or send data, but not do both at the same time. So, the trec and tdel are
estimated in each relay node separately.
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Thus, |V′| is determined and used only if the gap > 0, i.e., there is time to deliver the complete stream
or part of it. gap is defined as

gap = dl − delay (3)

where the stream delay at the sink node is

delay = trec + tdel (4)

The delay can be depicted as the following:

SinkSource Relay

Time line

t
DST

delay

t
SRC

Thus, to compute |V′|, used to meet the application deadline, we consider the inequality

gap > 0 (5)

from (3) and (4) we have
dl − delay > 0

dl − (trec + tdel) > 0

using (1) and (2) we have

dl − ((nf − 1) tsrc/hsrc + tdst + (nf − 1) tdst/hdst) > 0

so that

nf < 1 +
hsrc hdst (dl − tdst)

hdst tsrc + hsrc tdst

considering that nf = d|V′|/pse, we have

|V′| < ps

(
1 +

hsrc hdst (dl − tdst)

hdst tsrc + hsrc tdst

)

finally to reach the inequality we have

|V′| = ps

(
1 +

hsrc hdst (dl − tdst)

hdst tsrc + hsrc tdst

)
− 1 (6)

Meanwhile, considering the |V′| presented by Aquino et al. [40], the sample size is estimated
based on

|V′| = ps da/tdst (7)

In order to identify both formulations, in simulation study (Section 6.), we will use the terms complex
formulation and simplified formulation to represent Equations 6 and 7, respectively. However, in both
cases when the gap ≤ 0 we consider |V′| = ps or the received is simple forwarded to preserve the data
quality, because this gap means that the deadline was lost and the minor and more quickly data that can
be delivered have to ps size.
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5. Sensor-Stream Reduction

Finally, the third aspect of our data-centric strategy considers the sensor-stream reduction algorithm
(Ψ). The objective of this reduction is to try to meet deadlines from real-time applications while keeping
data fidelity (accuracy). The proposed sensor-stream reduction is motivated by the problem stated in
Section 2. and evaluated in processing phase of project design described in Section 3.

The in-network (data-centric) reduction algorithm is integrated into a shortest-path routing tree. In
this case, the routing tree is built, based on application requirements, from the sink (root) to the sources
nodes by using a flooding strategy. In this flooding, hdst and tdst values are delivered to every sensor
node. Once the routing tree is built, the source node can send V towards the sink. At this moment, relay
nodes receive {V1 . . .Vnf} in some packets (fragments) and forward them to another relay node until
the sink is reached.

In this forward process, when a relay node receives V1, it checks the stream reduction criterion, in
our case if gap > 0 (Equation 5). If the criterion is satisfied V1 is stored and the node waits to receive
and store {V2 . . .Vnf}. Otherwise, all fragments are forwarded. It is important highlighted that this
forwarding is in routing layer, considering the sensor radio, certainly, the fragments are queued until the
sender radio turns able. Based on the real-time information, |V′| is computed through Equation 6. When
all fragments arrive, the Ψ reduction is enabled. This forwarding process is shown in Algorithm 1.

Algorithm 1: Pseudo-code of reduction decision.
Data: Vj – fragment stream received
begin1

“Get from Vj the fragments information”2

if j = 1 then3

“gap is computed through equations (2–4)”4

if gap > 0 then5

“Enable V storage”6

|V′| = ps

(
1 + hsrc hdst (dl−tdst)

hdst tsrc+hsrc tdst

)
− 1 {Equation 6}7

end8

end9

if Storage is enabled then10

“Store Vj”11

if j = nf then12

V′ ← “Compute Ψ on V with |V′| size”13

“Send V′”14

end15

end16

else17

“Forward Vj”18

end19

end20
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When the reduction is able, a histogram of V is built (line 13 of Algorithm 1). We consider a simple
histogram, all elements sensed are between [0; 1] and we have 10 equals histogram classes. To obtain
such a sample, we choose the central elements of each histogram class, respecting the sample size
|V′| and the class frequencies of the histogram. Thus, the resulting sample will be represented by the
same histogram. Meanwhile, considering the sensor-stream reduction algorithm presented by Aquino
et al. [40], the sample elements are randomly chosen in each histogram class instead of considering the
central elements. The reduction algorithms, used here, and their operations are depicted in Figure 3.
The random sampling (a), we have a “stream in V” with 100 elements, |V′| → 50% of V is randomly
chosen (this choice is performed in each histogram class), and then a “stream out V′” is generated with
|V′| = 50. The central sampling (b), we have again a “stream in V” with 100 elements, |V′| → 50% of
V is choice considering the central histogram classes elements, and then a “stream out V′” is generated
with |V′| = 50.

Figure 3. Reduction algorithms.
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(a) Random sampling.
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(b) Central sampling.

In order to identify both algorithms, in simulation study (Section 6.), we use Ψcentral and Ψrandom to
represent the central and random elements choice, respectively. The Ψcentral sample reduction process is
present in Algorithm 2.

Analyzing the Algorithm 2 we have:

Line 2 Executes in O(|V| log |V|);

Lines 11–15 Define the inner loop that determines the number of elements at each histogram class of
the resulting sample, considering Hcn as the number of histogram class and n′coli

as the columns
in sampled histograms, where 0 < i ≤ Hcn. The

∑Hcn

i n′coli
= |V′|, we have that this inner loop

executes in O(|V′|) steps.

Lines 7–20 Define the outer loop in which the input data is read and the sample elements are chosen.
Because the inner loop is executed only when condition in line 8 is satisfied, the overall complexity
of the outer loop is O(|V|) + O(|V′|) = O(|V| + |V′|), since we have an interleaved execution.
Let ncoli be the columns in original histograms, where 0 < i ≤ Hcn. Basically, before evaluating
the condition of Line 8, ncoli is accounted and |V|/Hcn interactions are executed. Whenever
this condition is satisfied, n′coli

is built and |V′|/Hcn interactions are executed (Lines 11–15). In
order to build the complete histogram, we must cover all classes (Hcn), then we have Hcn (|V| +
|V′|)/Hcn = |V|+ |V′|.

Line 21 Re-sorts the sample in O(|V′| log |V′|).
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Thus, the overall complexity is

O(|V| log |V|) + O(|V|+ |V′|) + O(|V′| log |V′|) = O(|V| log |V|)

since |V′| ≤ |V|. The sorting step is necessary, because, in our case, to build the histogram, we need
the elements to be sorted, so that we always get the correct elements of V′. The space complexity is
O(|V| + |V′|) = O(|V|) because we store the original sensor-stream and the resulting sample. Since
every source node sends its sample stream towards the sink, the communication complexity is O(|V′|D),
where D is the largest route (in hops) in the network.

Algorithm 2: Pseudo-code of Ψcentral sampling reduction.
Data: V – original sensor-stream
Data: |V′| – resulting sample size
Result: V′ – resulting sample set
begin1

Sort(V)2

wid ← “Histogram’s class width”3

fst ← 0 {first index of histogram class}4

ncol ← 0 {number of elements per columns in V}5

w ← 06

for k ← 0 to |V| − 1 do7

if V[k] > V[fst] + wid or k = |V| − 1 then8

n′col ← dncol |V′|/|V|e {number of elements per columns in V′}9

index ← fst + d(ncol − n′col)/2e10

for l ← 0 to n′col do11

V′[w] ← V[index]12

w ← w + 113

index ← nextIndex14

end15

ncol ← 016

fst ← k17

end18

ncol ← ncol + 119

end20

Sort(V′) {according to the original order}21

end22

6. Simulation

This section presents the simulation study of our data-centric strategy in specific scenarios. We
perform our evaluation by using the NS-2 (Network Simulator 2), version 2.33 (http://nsnam.isi.edu/
nsnam/index.php/Main Page). Each simulated scenario was executed with 33 random topologies. At the
end, for each scenario we plot mean values with 95% (symmetric asymptotic) confidence intervals.
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To identify assess the network behavior, we variate the number of nodes and the stream size (|V|).
The evaluated parameters are the delay and error in data quality, specified by two statistical tests. The
default parameters used in simulations are presented in Table 1.

To evaluate the delay in real-time scenarios, it is important to determine the minimum deadline (dmin)
for each number of nodes and |V| being considered. To do this, we consider different network sizes
(128, 256, 512, and 1024), the |V| = {256, 512, 1024, 2048}, and only one data source generating V. In
our case, the dmin values is determined by measuring the time between the first data packet sent by the
source and the last packet received by the sink, i.e., the time for V to be entirely received by the sink.
Figure 4 illustrates dmin values for all scenarios being considered.

Table 1. Simulation parameters.

Parameter Values

Network size Varied with density
Queue size Varied with stream
Simulation time (seconds) 1100
Stream periodicity (seconds) 10
Radio range (meters) 50
Bandwidth (kbps) 250
Initial energy (Joules) 1000

Figure 4. Minimum deadlines.
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It is important to highlight that if either application has a deadline smaller than the one shown in
Figure 4 or the network is not in perfect conditions, then all data cannot be transmitted unless some
reduction is performed. However, despite all nodes (sources) know the real time requirements of the
packets they generate, they cannot infer the necessary data reduction locally because the network has
some global restriction not perceived for them.

In the problem scope defined in Section 2., we discuss the impact of the solutions regarding the data
quality, which is considered as our decision D. To assess the impact of data reduction on data quality,
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based on decision D, we consider the rules Rdst and Rval defined before. These rules are represented by
Υ and Φ errors, respectively.

It is possible to apply these rules, because we consider the reduction of only one source, i.e., our
sampling is performed in each data set separately. For example, considering a simple network of nodes
connected as a tree as Sink–NodeA–NodeB. After in network data reduction we give equal opportunity
to the data points of NodeA and NodeB separately. So, clearly the data gathered in the sink will represent
the original data of the network, where neither data nodes will be over-represented.

The deadlines for the real-time scenarios, that we consider, are 50% of the minimum deadlines
with(out) concurrent traffic; minimum deadlines with delay caused by relay nodes in each packet
transmitted with(out) concurrent traffic. These study are discussed in the next subsections. For all
scenarios, we evaluate the simplified and complex formulations, both using Ψcentral or Ψrandom. We use
a Monte Carlo simulation [41] considering a complete mapping between the number of nodes and the
stream size, only unusual results will be presented. However, the y-axis scale is not kept constant in all
figures. The reason is that such a re-scale allow us to make better analysis.

6.1. Half of Deadlines without Concurrent Traffic

The first scenario considers half of minimum deadlines (da = dmin/2) without concurrent traffic in
this case, the application cannot send V and meet da. In this case, V is reduced by using our data-centric
strategy. In Monte Carlo simulation, we change the number of nodes (128, 256, 512, and 1024) and
|V| (256, 512, 1024, and 2048). Figure 5 shows the delay results varying the number of nodes with
|V| = 2048.

Figure 5. Delay considering the half of deadlines without concurrent traffic.
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In this case, the da cannot be met in many cases. However, without the our data-centric reduction
strategy these delays would be even larger. When the number of nodes is 512 and 1024, the simplified
formulation presents a smaller delay compared with the complex formulation, and the deadline is met.
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The reason is that, in the simplified formulation, the reduction is harder and less data is forwarded.
When the number of nodes is 1024, the simplified formulation delivers 19% of data, while the complex
formulation delivers 25%. This indicates that, considering only the deadline achievement, the simplified
formulation is more appropriate. However, the reduction ratio is greater.

Regarding the data error evaluation. Figures 6 and 7 show the error evaluation for different numbers
of nodes with |V| = 256. Figure 6 shows that in all cases we have Υ ≤ 40%. Ψrandom, in both
formulations, has a smaller Υ-error because the random choice improves data dispersion, and the
simplified formulation has a smaller Υ-error.

Figure 6. Υ-error considering the half of deadlines without concurrent traffic.
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Figure 7. Φ-error considering the half of deadlines without concurrent traffic.
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Figure 7 shows that in all cases we have Φ ≈ 5%. Ψcentral, in both formulation, has a smaller Φ-error
because the central elements choice improves the average test. Again, the simplified formulation has
a smaller Φ-error. The error evaluation indicates that the simplified formulation is more appropriate in
this specific scenario. Considering the evaluated algorithms, Ψrandom may be used when Rdst is the rule
priority, otherwise, Ψcentral should be used.

The partial conclusion, considering this critical real-time scenarios, is that the simplified formulation
is more appropriate, because the deadlines are usually met while keeping data representativeness.
Considering the sampling algorithm, Ψrandom or Ψcentral can be used when data application decisions
are related, Rdst or Rval, respectively.

6.2. Delay Caused by Relay Nodes without Concurrent Traffic

The second scenario, considers da = dmin and all relay nodes delaying the stream fragments (Vj) per
da/10000 or 0.01% of the da. In this scenario, the application cannot send V, because the relay nodes
eventually can be executing another task, consequently, the deadline da cannot be met. We change the
number of nodes (128, 256, 512, and 1024) and |V| (256, 512, 1024, and 2048). The objective of this
scenarios is to identify the appropriate strategy when relay nodes have other high priority tasks.

Figure 8 shows the delay results when we change the number of nodes with |V| = 2048. In contrast
to prior scenario, da is always met. The complex formulation, in a more realistic scenario, presents
a better time usage, i.e., the delay is closer to deadline values. This occurs because the Ψ-reduction
estimation in sample case [Equation 7] is related to da, i.e., if da ≥ dmin reduction cannot be efficient,
when we consider other delay aspects like concurrent traffic. Another important observation is that more
data is received in the complex formulation strategy. When the number of nodes is 1024, nearly 20%

of data are deliver, in the complex formulation, against 18%, in the simplified one. This fact indicates
that, considering only the deadline achievement, the complex formulation is more appropriate to more
realistic scenarios.

Figure 8. Delay considering the delay caused by relay nodes without concurrent traffic.
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Figures 9 and 10 show the error evaluation when we vary the number of nodes and keep |V| = 256.
Similar to previous scenario, the results (Figure 9) show that in all cases we have Υ ≤ 40%. Ψrandom, in
both formulation, has a smaller Υ-error, because the random choice improves data dispersion. However,
the simplified formulation has a smaller Υ-error. In Figure 10, we always have Φ ≈ 5%. Again, Ψcentral,
in both formulation, has a smaller Φ-error because the central elements choice improves the average test.
Although, the simplified formulation has a smaller Φ-error with 128, 256 and 512 nodes, the complex
formulation presents a better performance for 1024 nodes.

Figure 9. Υ-error considering the delay caused by relay nodes without concurrent traffic.
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Figure 10. Φ-error considering the delay caused by relay nodes without concurrent traffic.
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Error evaluations suggest that the simplified formulation is more appropriate for small networks and
the complex formulation is more scalable. In general, Ψrandom is preferable when the Rdst has higher
priority compared to the Rval, otherwise, Ψcentral should be chosen. However, the complex formulation is
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more appropriate when we have large scale networks. The partial conclusion, considering more realistic
real-time scenarios, is that the complex formulation is more appropriate, because the deadlines are met
in all cases and the data representativeness is kept.

6.3. Half of Deadlines with Concurrent Traffic

This scenario considers 50% of minimum deadlines (da = dmin/2) with concurrent traffic. We use
a 128-node network (we do not consider more nodes due to NS limitations), and vary the percentage
of nodes generating data traffic (16%, 20%, 25%, and 33% of 128 nodes) and |V| (256, 512, 1024, and
2048). The objective of this scenario is to identify the best strategy in critical applications when the
network traffic gradually increases.

In Figure 11, da is met only by complex formulation. The reason is that the Ψ-reduction, in complex
formulation, is gradually performed during the data routing, and fewer data is delivered. Particularly,
when the percentage of nodes generating data is 33%, nearly 6.5% of data is delivered by the complex
formulation, while 10% is delivered by the simplified formulation. Thus, considering the deadline
achievement, the complex formulation is more appropriate in this scenario.

Figure 11. Delay considering the half of deadlines with concurrent traffic.
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Figures 12 and 13 show the error evaluation considering a 128-node network, varying the percentage
of nodes that generate data traffic, and keeping |V| = 256. As we can see in Figure 12, results show
that in all cases we have Υ ≤ 30%. In both formulations, Ψrandom has a smaller Υ-error. However, in
the complex formulation, Ψcentral presents a smaller Υ-error when we have fewer data traffic (16% and
20%). The reason is that the complex formulation executes fewer consecutive Ψ-reductions. Figure 13
shows that, in all cases, we have Φ ≈ 20%, note the increase in Φ-error, compared to previous
scenarios (Φ ≈ 5%). The reason is that in both formulations there more consecutive Ψ-reductions
affecting data quality. Therefore, considering the confidence interval, both Ψ-reductions have the same
behavior. Again, when the percentage of nodes generating data is high, the simplified formulation has a
smaller Φ-error.
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Figure 12. Υ-error considering the half of deadlines with concurrent traffic.
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Figure 13. Φ-error considering the half of deadlines with concurrent traffic.
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The data error evaluation suggests that the simplified formulation is slightly better than the complex
one. However, the partial conclusion, considering this critical and realistic real-time scenario, is that the
complex formulation is more appropriate, because deadlines are met and data representativeness is kept.
Considering the sampling algorithms, the behavior is kept in both Ψ-reduction strategies.

6.4. Delay Caused by Relay Nodes with Concurrent Traffic

The last scenario considers da = dmin, concurrent traffic, and all relay nodes delay the stream
fragments at 0.01% of the da. Again, we use a 128-node network and vary the percentage of nodes
generating traffic (16%, 20%, 25%, and 33% of 128 nodes) and |V| (256, 512, 1024, and 2048). The
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objective of this scenario is to identify the best strategy when the relay nodes have extra tasks with high
priority and the network has a traffic that gradually increases.

Figure 14 shows the delay results in a 128-node network varying the percentage of nodes generating
traffic and |V| = 2048. The da is met in most cases. The complex formulation presents a more scalable
behavior considering the percentage of nodes generating data. This occurs because the Ψ-reduction
estimation [Equation 7] is related to da, i.e., if da ≥ dmin the Ψ-reduction cannot be efficient, when we
consider other delay aspects, like concurrent traffic.

Figure 14. Delay considering the delay caused by relay nodes with concurrent traffic.
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Figure 15. Υ-error considering the delay caused by relay nodes with concurrent traffic.
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Figures 15 and 16 show the error evaluations considering a network with 128-nodes, varying the
percentage of nodes generating traffic and |V| = 256. Simplified and complex formulation are presented
by using Ψcentral and Ψrandom. Figure 15 shows that in all cases we have Υ ≤ 40%. The Ψcentral, in
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complex formulation, has a smaller Υ-error. The reason is that the complex formulation performs the
maximum Ψ-reduction sooner (Ψcentral is executed once or twice). This result shows that because fewer
successive Ψ-reductions are performed, more representativeness is kept in the reduced data, i.e., data
degradation is mitigated.

Figure 16. Φ-error considering the delay caused by relay nodes with concurrent traffic.
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Figure 16 shows that, in general, we have Φ ≤ 30%. The complex formulation with Ψcentral presents
Φ ≈ 5%. The reason is that the Ψcentral has a smaller Φ-error because the central elements choice
improves the average test and the complex formulation performs the maximum Ψ-reduction early.

The errors evaluation suggest that the complex formulation is more appropriate with the Ψcentral

strategy. The partial conclusion, considering this scenario, is that the complex formulation is actually
more appropriate, because the deadlines are met in all cases while keeping data representativeness.
Considering the sampling algorithm, the Ψcentral strategy with complex formulation is always indicated.

7. Conclusions

In real-time applications of wireless sensor networks, the time used to deliver sensor-streams from
source to sink nodes is a major concern. The amount of data in transit through these constrained networks
has a great impact on the delay. In this work, we presented a data-centric strategy to meet deadlines in
soft real-time applications for wireless sensor networks. This work represents shows how to deal with
time constraints at lower network levels in a data-centric way.

With our data-centric strategy we met application deadlines in several scenarios. In additional, we
showed how to design real-time sensor-stream reduction applications and a analytical model used to
found the ideal sample size. Results showed the efficiency of the strategy by reducing the delay without
losing data representativeness. If the application is not strongly dependent on data accuracy, or the
network operates in exception situation (e.g., few resources remaining or urgent situation detection), then
data reduction algorithms are powerful tool for real-time applications for resource-constrained networks.
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As future work, we intend to match the proposed application-level solution with lower-level ones, for
example, by considering some real-time-enabled signal processing method. In this case, not only data
from a source is reduced, but similar data from different sources is also reduced, resulting in a more
efficient solution. Another future work is to use feedback information to enable the source nodes to
perform the reduction sooner. However, we intend to improve the central sampling algorithm complexity
to O(n), by considering some rank selection algorithms.
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